初二

初二数学上册位置与坐标知识点的概括总结

时间:2022-08-16 11:26:41 初二 我要投稿

初二数学上册有关位置与坐标知识点的概括总结

  在我们平凡无奇的学生时代,大家最不陌生的就是知识点吧!知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。还在苦恼没有知识点总结吗?以下是小编收集整理的初二数学上册位置与坐标知识点的概括总结,仅供参考,大家一起来看看吧。

初二数学上册有关位置与坐标知识点的概括总结

  初二数学上册位置与坐标知识点的概括总结1

  【用坐标表示地理位置】

  ① 建立坐标系,选择一个适当的参照点为原点,确定 x 轴、 y 轴的正方向;

  ② 根据具体问题确定单位长度;

  ③ 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.

  【用坐标表示平移】

  1.平移:把一个图形整体沿某一方向移动一定的距离, 图形的这种移动,叫做平移。平移后图形的位置改变,形状、大小不变。

  2.在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

  3.图形平移与点的坐标变化之间的关系:

  (1)左、右平移:

  原图形上的点(x、y),向右平移a个单位(x+a,y);

  原图形上的点(x、y),向左平移a个单位(x-a,y);

  (2)上、下平移:

  原图形上的点(x、y),向上平移a个单位(x,y+b);

  原图形上的点(x、y),向下平移a个单位(x,y-b)。

  小编为大家提供的初二上册数学位置与坐标知识点就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。

  初二数学上册位置与坐标知识点的概括总结2

  1注意初中数学基础知识的掌握

  在初中数学的学习阶段,很多初中生过度的关注自己数学成绩,不要过分看重数学成绩的高低。初中数学阶段都是以基础知识为主,一次考试的.成绩很难将这些基础性地位的知识考查全面。

  而初中生如何过度关注成绩,那么会很容易忽略这些重要的知识点,知识掌握好才能取得好成绩,而不是成绩高了就说明知识掌握得好,所以初中生在学习数学的时候千万不要本末倒置。

  2培养初中生对于数学的自学能力

  大部分初中生数学成绩不好的原因很简单,一直都是在被动的去学习数学,其实初中生在数学课上听讲的时候,不仅仅是在学习新的知识,在听课的同时最重要的是要掌握和培养一种数学思维,这样就可以慢慢的去培养对于数学一种自学的悟性。

  自学的能力越强那么你学习数学的悟性就会越高,那么怎么能够培养初中数学自学的能力呢?首先就要学会课前主动预习,在老师对于新的知识点讲解之前,学生可以运用自己已经掌握的知识点去预习,当碰到自己无法解决的问题时,带着问题去听课的收获是非常大的。

  初二数学上册位置与坐标知识点的概括总结3

  有理数加法法则

  1、同号两数相加,取相同的符号,并把绝对值相加;

  2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  3、一个数与0相加,仍得这个数。

  有理数加法的运算律

  1、加法的交换律:a+b=b+a;

  2、加法的结合律:(a+b)+c=a+(b+c)

  有理数减法法则

  减去一个数,等于加上这个数的相反数;即a—b=a+(—b)

  有理数乘法法则

  1、两数相乘,同号为正,异号为负,并把绝对值相乘;

  2、任何数同零相乘都得零;

  3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  初二数学上册位置与坐标知识点的概括总结4

  一、平面解析几何的基本思想和主要问题

  平面解析几何是用代数的方法研究几何问题的一门数学学科,其基本思想就是用代数的方法研究几何问题。例如,用直线的方程可以研究直线的性质,用两条直线的方程可以研究这两条直线的位置关系等。

  平面解析几何研究的问题主要有两类:一是根据已知条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质。

  二、直线坐标系和直角坐标系

  直线坐标系,也就是数轴,它有三个要素:原点、度量单位和方向。如果让一个实数与数轴上坐标为的点对应,那么就可以在实数集与数轴上的点集之间建立一一对应关系。

  点与实数对应,则称点的坐标为,记作,如点坐标为,则记作;点坐标为,则记为。

  直角坐标系是由两条互相垂直且有公共原点的数轴组成,两条数轴的度量单位一般相同,但有时也可以不同,两个数轴的交点是直角坐标系的原点。在平面直角坐标系中,有序实数对构成的集合与坐标平面内的点集具有一一对应关系。

  一个点的坐标是这样求得的,由点向轴及轴作垂线,在两坐标轴上形成正投影,在轴上的正投影所对应的值为点的横坐标,在轴上的正投影所对应的值为点的纵坐标。

  在学习这两种坐标系时,要注意用类比的方法。例如,平面直角坐标系是二维坐标系,它有两个坐标轴,每个点的坐标需用两个实数(即一对有序实数)来表示,而直线坐标系是一维坐标系,它只有一个坐标轴,每个点的坐标只需用一个实数来表示。

  三、向量的有关概念和公式

  如果数轴上的任意一点沿着轴的正向或负向移动到另一个点,则说点在轴上作了一次位移。位移是一个既有大小又有方向的量,通常叫做位移向量,简称向量,记作。如果点移动的方向与数轴的正方向相同,则向量为正,否则为负。线段的长叫做向量的长度,记作。向量的长度连同表示其方向的正负号叫做向量的坐标(或数量),用表示。这里同学们要分清,三个符号的含义。

  对于数轴上任意三点,都有成立。该等式左边表示在数轴上点向点作一次位移,等式右边表示点先向点作一次位移,再由点向点作一次位移,它们的最终结果是相同的。

  向量的坐标公式(或数量公式),它表示向量的数量等于终点的坐标减去起点的坐标,这个公式非常重要。

  有相等坐标的两个向量相等,看做同一个向量;反之,两个相等向量坐标必相等。

  注意:①相等的所有向量看做一个整体,作为同一向量,都等于以原点为起点,坐标与这所有向量相等的那个向量。②向量与数轴上的实数(或点)是一一对应的,零向量即原点。

  四、两点的距离公式和中点公式

  1、对于数轴上的两点,设它们的坐标分别为,,则的距离为,的中点的坐标为。

  由于表示数轴上两点与的距离,所以在解一些简单的含绝对值的方程或不等式时,常借助于数形结合思想,将问题转化为数轴上的距离问题加以解决。例如,解方程时,可以将问题看作在数轴上求一点,使它到,的距离之和等于。

  2、对于直角坐标系中的两点,设它们的坐标分别为,,则两点的距离为,的中点的坐标满足。

  两点的距离公式和中点公式是解析几何中最基本、最常用的公式之一,要求同学们能熟练掌握并能灵活运用。

  五、坐标法

  坐标法是数学中一种重要的数学思想方法,它是借助于坐标系来研究几何图形的一种方法,是数形结合的典范。这种方法是在平面上建立直角坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标所满足的方程表示曲线,通过研究方程,间接地来研究曲线的性质。

【初二数学上册位置与坐标知识点的概括总结】相关文章:

初二上册数学位置与坐标知识点07-04

初二上册数学知识点总结概括11-26

初二上册数学方向与位置知识点总结07-29

有关初二数学点的坐标知识点总结11-27

初二数学关于位置与坐标的练习题04-26

初二上册数学确定位置知识点08-16

初二上册数学知识点总结:位置的确定06-25

初二上册数学:平面直角坐标系知识点总结07-03

初二上册数学知识点总结之位置的确定07-04