初二奥数练习题
初二奥数练习题1
1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?
分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。
总路程: (米)
通过时间: (分钟)
答:这列火车通过长江大桥需要17.1分钟。
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?
分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程: (米)
火车速度: (米)
答:这列火车每秒行30米。
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?
分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:
山洞长: (米)
答:这个山洞长60米。
初二奥数练习题2
1.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
分析:这是一道比较复杂的牛吃草问题.把每头牛每天吃的草看作1份,因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份,所以每亩面积原有草量和每亩面积30天长的'草是300÷5=60份;因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份,所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份,所以45-30=15天,每亩面积长84-60=24份;则每亩面积每天长24÷15=1.6份.
所以,每亩原有草量60-30×1.6=12份,第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份,新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃.
解答:解:设每头牛每天的吃草量为1,则每亩30天的总草量为:10×30÷5=60;
每亩45天的总草量为:28×45÷15=84;
那么每亩每天的新生长草量为(84-60)÷(45-30)=1.6;
每亩原有草量为:60-1.6×30=12;
那么24亩原有草量为:12×24=288;
24亩80天新长草量为24×1.6×80=3072;
24亩80天共有草量3072+288=3360;
所以有3360÷80=42(头).
答:第三块地可供42头牛吃80天.
点评:本题为典型的牛吃草问题,要根据“牛吃的草量--生长的草量=消耗原有草量”这个关系式认真分析解决.
初二奥数练习题3
性质:
① 在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数;
②k大于0时,图像在1、3象限。k小于0时,图像在2、4象限。k的绝对值表示的是x与y的坐标形成的矩形的面积。
概念:
形如函数y=k/x(k为常数且k≠0)叫做反比例函数[1],其中k叫做反比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数
【函数图象】
图象画法
1)列表
2)在平面直角坐标系中标出点。
3)用平滑的曲线连接点。
当,K>0,Y随X的增大而减小。
当,K<0,Y随X的增大而增大。
【练习题】
1、下列函数中,反比例函数是( )
A、y=x+1 B、y=1/x2 C、y/x=1 D、3xy=2
2、当三角形的面积一定时,三角形的底和底边上的高成( )关系。
A、正比例函数 B、反比例函数 C、一次函数 D、二次函数
3、若点A(x1,1)、B(x2,2)、C(x3,—3)在双曲线y=1/x上,则( )
A、x1>x2>x3 B、x1>x3>x2 C、x3>x2>x1 D、x3>x1>x2
【参考答案】
1。D 2。B 3。C
【初二奥数练习题】相关文章:
奥数练习题07-07
奥数《数苹果》练习题及答案07-06
小升初奥数练习题精选07-08
小学奥数练习题精选07-09
小学奥数精选练习题07-09
奥数专用练习题07-05
奥数练习题目07-05
奥数练习题及解析07-05
奥数练习题答案07-06