初二

初二方差知识点讲解

时间:2022-01-25 17:39:42 初二 我要投稿

初二方差知识点讲解

  上学期间,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。想要一份整理好的知识点吗?以下是小编收集整理的初二方差知识点讲解,欢迎大家分享。

初二方差知识点讲解

  方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。 在实际计算中,我们用以下公式计算方差。

  方差是各个数据与平均数之差的平方的.平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示样本的平均数,n表示样本的数量,xn表示个体,而s^2就表示方差。

  而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为样本X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。

  方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。

  定义

  设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX。

  即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。

  方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差.方差越大,离散程度越大。否则,反之)

  若X的取值比较集中,则方差D(X)较小

  若X的取值比较分散,则方差D(X)较大。

  因此,D(X)是刻画X取值分散程度的一个量,它是衡量X取值分散程度的一个尺度。

  计算

  由定义知,方差是随机变量 X 的函数

  g(X)=∑[X-E(X)]^2 pi

  数学期望。即:

  由方差的定义可以得到以下常用计算公式:

  D(X)=∑xipi-E(x)

  D(X)=∑(xipi+E(X)pi-2xipiE(X))

  =∑xipi+∑E(X)pi-2E(X)∑xipi

  =∑xipi+E(X)-2E(X)

  =∑xipi-E(x)

  方差其实就是标准差的平方。