《比赛场次》教学设计

时间:2024-08-14 23:20:13 教学设计 我要投稿
  • 相关推荐

《比赛场次》教学设计

  作为一名人民教师,通常需要准备好一份教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那要怎么写好教学设计呢?以下是小编收集整理的《比赛场次》教学设计,仅供参考,欢迎大家阅读。

《比赛场次》教学设计

《比赛场次》教学设计1

  一、谈话导入、出示问题。

  1、谈话

  师:有谁知道我们五星小学是石狮市唯一一所省级什么传统校?(乒乓球传统校)喜欢打乒乓球的同学请举手,看来还真不少。那我来考考大家吧?你们了解乒乓球的赛制吗?

  2、出示问题,揭示课题

  校运动会要增加乒乓球赛,我们六(1)班要选出4名同学进行乒乓球比赛。如果每两名同学之间都进行一场比赛,一共要比赛多少场?(课件出示)

  这就是本节课我们要研究的问题“比赛场次”

  3、认识单循环制比赛:认识“单循环制”:对于这个问题,大家认为应该抓住什么条件?我们把这种比赛方式叫做单循环制。

  二、联系生活,自主探究。

  (一)探究问题一,利用学过的列表法和画图法解决问题。

  1、学生独立解决。

  2、交流解决方法

  3、师小结:看来,不管是画图法、还是列表法都非常直观简洁的,能让我们一下子就看清楚比赛的场次了。

  (二)提出问题二,激发学生的探究欲望。

  1、提出问题:

  课件出示:六(1)班有10名同学进行乒乓球比赛,如果每两名同学之间都进行一场比赛,一共要比赛多少场?

  师:如果现在有10名同学要进行乒乓球比赛,还用刚才的方法解决,你觉得怎么样?(学生发表自己的见解)

  师:我们发现10名同学进行单循环比赛问题有些复杂,如果按照学过的列表法或画图法一一画出比赛场次会比较繁琐,那该怎么解决这个问题呢?

  2、从简单的情形开始,研究过程,探索解决比赛场次的策略。

  对了,当遇到复杂的问题,我们可以从简单的`情形开始寻找规律。

  请你根据刚才列表或画图中的计算过程和结果,试着总结出计算比赛场次的策略,并完成课本85页中的3个图表。

  (1)要求:先独立做,想发现了什么规律,再与同伴说一说。

  (2)交流规律

  方案一:列表找规律

  交流展示:我们先来看第一种方案,你是如何找规律的?

  引导学生发现:把10名同学的复杂问题,转化为从2名开始研究,到3名,到4名,到5名,找出规律。

  你发现了什么?指名小组代表发表想法。(能不能把你的发现和同学们说一说)

  方案二:画图找规律

  师:还可以采用方案二,通过画图找规律,你又有什么发现?

  引导学生发现:2名同学时,只有1条线;3名同学时,增加了2条线;4名同学时,又增加了3条线,5名同学时,又增加了4条线,得出1+2+3+4=10。

  说一说:10名同学一共要比赛多少场?

  总结规律,找出解题策略:5名同学时,比赛场次从1加到4;6名时,比赛场次从1加到5;以此类推,10名同学时,比赛场次为从1加到7,即1+2+3+4+5+6+7+8+9=45,所以45名同学一共要比赛45场。

  (3)补充等差数列求和方法:

  同学们观察这些算式有什么特点?能不能很快算出结果?

  像这样相邻的两个数之间的差值相等。则称这个数列为等差数列。计算等差数列的和可以用(首项+末项)×项数÷2。如:(1+9)×9÷2=45

  (4)为什么每次同样是增加人,但比赛场次却是+2、+3、+4呢?边看图边跟同伴说一说?

  每增加一名队员,该队员都要分别跟之前的队员进行一场比赛,所以参赛人数每增加1人,比赛场次所增加的数目等于原来参赛的人数,增加的场数应该是(现在人数-1),还要说明-1是因为自己不和自己比。

  概括所有的情况:如果有n个人参加比赛,一共有多少场次?

  根据规律得:1+2+3++(n-1)=比赛场次。根据等差数列求和方法,得(1+(n-1))×(n-1)÷2=比赛场次,也就是n(n-1)÷2

  三、问题延伸

  1、比赛结束后,2名教练和10名选手握手告别,如果每两人握一次手,一共握了几次手?

  2、抢答:(只列式不计算)

  (1)全班同学进行单循环比赛,一共要比赛多少场次?

  (2)小红与3位好朋友决定互送卡片庆祝节日,他们一共需准备几张卡片?

  3、刚才8名同学进行单循环比赛28场,如果采用淘汰制进行比赛,一共要比赛多少场次?

  介绍淘汰制比赛规则:淘汰赛是每两名同学之间比赛一场,必须分出胜负,负者被淘汰,胜者进入下一轮,最后决出冠军。

  (1)画图帮助理解,列式:4+2+1=7(场)。

  (2)小结:每一场比赛都必须淘汰一名选手,淘汰几人即赛了几场,8名选手参加,最终一名选手夺冠,淘汰了7名选手,所以比赛了7场。(8-1=7)

  四、全课总结

  解决刚才问题,我们采取了什么策略?

《比赛场次》教学设计2

  教学目标:

  1`、了解“从简单的情形开始寻找规律”的解决问题的策略,提高解决文的能力。

  2、会用列表、画图的方法寻找实际问题中蕴含的简单的规律‘体会图、表的简洁性和有效性。

  重点难点:

  通过列表、画图发现规律,体会解决问题的策略

  教学过程:

  一、复习导入

  同学们,你们喜欢踢足球吗?下面有这样一个问题请你关注一下。

  (出示问题1)

  六年级4个班男生要进行足球比赛,如果每两个班之间都进行一场比赛,一共要比赛多少场?

  1、你用什么方法来解决这个问题?

  2、教师根据学生的'回答适时板书。

  3、小结:这样的问题我们可以用画图、列表或枚举等方法进行解决。

  4、如果比赛的队伍是10或者20,我又该怎样来解决呢?今天我们继续来研究比赛场次的问题。

  二、探索规律

  出示问题2

  如果是8个队伍参加比赛,每两个队之间都进行一场比赛,一共要比赛多少场?

  1、请同学们结合前面的方法,在小组里讨论一下用什么合适的方法解决这个问题?

  2、在小组里写出解决问题的方案。

  3、看看你有什么发现,在小组里说一说。

  4、汇报

  引导说出表格如何建立的,发现规律,得到结果。

  5、小结:遇到类似问题,尝试从简单的情形开始找规律,用列表、画图等方法解决问题。

  三、解决问题

  出示问题3

  六年三班6人参加乒乓球比赛,如果每两人之间进行一场比赛,一共要比赛多少场?

  学生依照上面学到的方法先独立解决 ,再汇报。

  四、看书质疑

  五、本课你有什么收获?

《比赛场次》教学设计3

  教案背景:

  1、对象:全体学生

  2、学科:数学

  3、课时:1课时

  4、学生课前准备:复习回顾三年级下学期《数学与体育》的相关内容

  教学课题:

  比赛场次

  教材分析:

  《比赛场次》是北师大版小学数学六年级上册第三单元《数学与体育》的第一小节。该问题在三年级下学期时学生有过初步接触,当时数额限制在4以内,引导学生用画图或列表的方法来解决问题。本内容是在上述基础上的进一步发展,主要借助解决“比赛场次”的实际问题,引导学生通过列表、画图发现规律,体会解决问题的策略,包括“从简单的情形开始寻找规律”的策略,也包括列表、作图的策略。

  依据教材和学生的实际,我设定了如下几点:

  教学目标:

  了解“从简单情形开始寻找规律”的解决问题的策略,会用列表、画图的方式寻找实际问题中蕴涵的简单规律,能正确计算比赛场次。

  经历探索规律的过程,提高运用知识解决实际问题的能力

  在解决实际问题的情境中,感受数学和体育及数学和生活的联系,增强应用数学的意识。

  教学重点:

  会用列表或画图的方式寻找实际问题中蕴含的简单规律,并运用规律解决实际问题。

  教学难点:

  体会解决问题的策略。

  教学关键:

  从简单的情形开始寻找规律

  教学准备:

  多媒体课件、实物展台、学生用表

  教学方法:

  创设情境法 讲授法 练习法 演示法 实践法等

  教学过程:

  复习导入 8分钟

  导入

  今天我们一起来学习 “比赛场次”这一内容。

  复习

  (1)出示

  6年级有4名同学要进行乒乓球比赛,如果每2名同学之间都进行一场比赛。他们一共要进行多少场比赛?

  (2)读题

  (3)提问:

  这句话里可以看出比赛规则是什么?

  (4)估计

  4名同学一共要进行多少场比赛?

  (5)试做

  用以前学过的列表法和画图法

  (6)小组交流

  (7)全班交流列表法

  能用一个算式求出4名同学一共要进行几场比赛

  (生列式师板书4名 1+2+3 =6(场))

  (8)引导

  3名 2名 比赛场次是几?如何列算式?

  (9)全班交流画图法

  3、修改

  自己的答案

  4、尝试解答

  5名同学参加比赛,试着用列表法和画图法接着刚才的继续做

  交流

  新知探究 15分钟

  (一)探究规律一

  试做

  6年级有8名同学要进行乒乓球比赛,如果每2名同学之间都进行一场比赛。他们一共要进行多少场比赛?

  交流

  3、发现规律

  有几名学生参加比赛就从1开始一直加到比比赛人数少1为止

  4、验证规律

  6名 7名

  5、练说规律

  6、比较三种方法

  列表法、画图法和列式计算三种方法相比较,哪种方法更加的省时高效?

  7、举例类推

  (1)如果有比8更多的人参加比赛,利用这个规律举出实际例子

  (2)有n个学生参加比赛,列出算式

  小结解决复杂问题的`策略

  从简单的情形出发,找出规律,并利用这个规律列式计算——是我们解决复杂问题的策略

  (二)探究规律二

  1、引导

  如果每人都比赛四场,一共应该是多少场比赛?

  如何计算的?

  因为自己不能和自己比,这就减去了几场?

  因为是一场单循环比赛,每个人只能赛一场,不能重复,所以,还得再÷2

  2、得出规律

  ( 4 x 4—4)÷2

  3、质疑

  4、拓展

  5名同学参加比赛,你也能运用这个公式求出比赛的总场次吗?

  6名同学呢?

  8名呢?

  n名同学参加比赛呢?

  5、规律之间的联系

  1+2+3 = (4x4—4)÷2

  6、小结激励

  练习内化 7分钟

  一场体育比赛中,一共有9名运动员。如果每两个人握一次手,一共握了几次手?

  用刚才找到的规律,求出结果。

  2、和小亚同组的选手还有9名,小组中每2人之间都要进行一场比赛,小亚所在的小组共要进行几场比赛?

  比赛结束了,运动员们纷纷合影留念,每2人之间都要拍一张照片。摄影师一共要排多少张照片?他准备了3卷同样的胶卷,每卷又36张,这些胶卷够用吗?

  参赛:6人

  替补:6人

  领导:1人

  教练:2人

  合计:15人

  4、“星星体操表演队为联络方便,设计了一种联络方式。一旦有事,先由教练同时通知两位队长,这两位队长再分别同时通知两名同学,依此类推,每人再同时通知两个人。如果每同时通知两人共需1分,6分可以通知到多少名同学?”

  小结回顾 1分钟

  畅谈收获或体会

  板书设计:

  比赛场次

  规律一 规律二

  2名 1 1 场

  3名 1+2 =3场

  4名 1+2+3 =6场 4 x 4—4

  …… ……

  8名 1+2+3+4+5+6+7 =28场 8 x 8—8

  N名 1+2+3+4+…+(n-1) n x n —n

  教学反思:

  反思整个教学过程,既有学生独立自主的探索活动,又有小组合作的探究活动;既有基础知识的学习,又有课本知识的发展和延伸。我认为取得比较理想的效果主要有三点:

  1、创设情境,激发兴趣。

  人的思维起始于问题,问题情境具有情感上的吸引力,容易激发学生的好奇心,以及他们的学习兴趣,促使学生寻求问题的答案。在课堂的第一个环节,我跟他们以聊天式的进行有关比赛场次形式的对话。例如,伦敦奥运会亚洲预选赛。学生深深地被吸引住了,自然投入到课堂教学中去。在新授过程中,我还出示了相关的比赛图片,创设了相关的比赛情境。学生会觉得非常真实,比赛场次这个知识就在我们的身边、就在我们的实际生活中,自然就想去学习。

  2、重视过程,渗透策略

  学生的知识是有限的,但学生的内在潜力是无限的。我给学生创设了一个宽松、和谐、民主的氛围。在课堂教学中,为了解决8名学生一共要进行多少场比赛这个问题,我首先出示4名学生参加比赛这一简单情形,然后鼓励学生猜测并运用图例、表格等以前学过的方法进行验证,引导学生发现比赛人数与比赛场次之间的规律。整个过程注重让学生体会“从简单的情形开始寻找规律”这一解决复杂问题的策略,也包括列表和画图的策略,而不是仅仅为了解决类似比赛场次的问题。课堂中充分为学生提供给了探索解决问题策略的空间。在学生研讨过程中,我注意走近学生,和学生一起去探究、交流,在学生有困难的时候,帮助学生排除障碍。

  3、拓展教材,方法延伸

  这节课我没有局限于教材上的一种规律,而是引导学生探索出了两种规律。

  在教学的过程中我还存在了以下几点不足之处:

  课前教师谈话导入的内容和紧接着进行的教学情境内容不够统一。

  课前说的是:伦敦奥运会亚洲杯预选赛。教学情境的内容是:乒乓球比赛。两者没有能够很好的统一起来,显得他们之间不够衔接。

  对学生三年级学过知识的掌握程度没有足够的了解

  教师在备课的时候预设学生复习4名学生进行多少场比赛应该能很顺利,但是由于时间比较久远,大部分学生都已经淡忘了。尤其是列表法,在复习的交流中体现得比较随意。这就说明教师在课前对学生的已有知识水平还没有足够的了解。

  今后改进措施:

  1、创设统一的情景,这样更能体现课堂教学的完整性和连贯性。

  2、备课之前先备学生。把学生已有的知识水平了解清楚,明确他们对已有知识的掌握程度,再进行备课。这样会更有利于课堂教学的顺利进行。

【《比赛场次》教学设计】相关文章:

《骑牛比赛》教学设计02-01

数学教学教学设计04-15

《掌声》教学设计03-13

体育教学设计03-14

名师教学设计03-16

《莫高窟》教学设计03-16

《守株待兔》教学设计12-31

《过秦论》教学设计12-31

数学教学设计12-28