圆的周长教学设计

时间:2023-04-10 17:18:51 教学设计 我要投稿

圆的周长教学设计

  作为一位杰出的教职工,有必要进行细致的教学设计准备工作,教学设计是对学业业绩问题的解决措施进行策划的过程。那么优秀的教学设计是什么样的呢?下面是小编为大家收集的圆的周长教学设计,仅供参考,希望能够帮助到大家。

圆的周长教学设计1

  一、教学目标

  【知识与技能】

  掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。

  【过程与方法】

  通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。

  【情感态度与价值观】

  积极参与数学活动,培养学习数学的兴趣。

  二、教学重难点

  【重点】圆的周长的计算公式。

  【难点】圆的周长公式的推导过程。

  三、教学过程

  (一)导入新课

  创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的`铁皮。

  学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。

  教师明确,圆一圈的长度即为圆的周长。

  引入课题——圆的周长。

  (二)探索新知

  1.探索发现

  学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。

  学生汇报测量结果及测量方法。

  教师引导学生思考,圆的周长大小与什么有关。

  学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。

  教师明确直径是半径的2倍,可看其中一项即可。

  2.探索圆的周长与圆的直径关系

  小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。

  小组汇报分享测量结果,教师板书。

  学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。

  学生汇报通过多次测量计算比值总在3.1左右。

  教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。

  给出圆周率的特点:

  (1)是一个无限不循环的小数;

  (2)我国伟大的数学家祖冲之将其精确到小数点后七位;

  (3)现在为了方便只要取小数点后两位即可。

  (三)应用新知

  问题:大头儿子家圆桌直径为1米,求需要买多长的'铁丝?3.1米够吗?

  教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。

  (四)小结作业

  提问:通过本节课,你有什么收获?

  课后作业:回家找一个圆形,借助直尺测量,计算出周长。

  四、板书设计

  略

圆的周长教学设计2

  一、素质教育目标

  (一)知识教学点

  1、认识圆的周长,知道圆周率的意义。

  2、理解和掌握圆周长的计算公式。

  (二)能力训练点

  1、会用公式正确计算圆的周长。

  2、通过引导学生探究圆周长的意义,培养学生抽象概括能力。

  (三)德育渗透点

  1、通过对圆的周长测量方法的探究,渗透化归思想。

  2、通过介绍祖冲之在圆周率方面的研究成就,进行爱国主义教育。

  (四)美育渗透点

  通过演示,使学生受到美源于生活,美来自生产和时代的进步,感悟数学知识的魅力。

  二、学法引导

  1、引导学生操作、实验,从中发现规律。

  2、运用周长公式,指导学生计算。

  三、教学重点:

  圆周长的计算方法

  四、教学难点:

  圆周率意义的理解。

  五、教具、学具准备:

  微机、实物投影、小黑板、系有螺丝帽的线、大小不等的圆片、铁圈、皮尺、直尺、线绳。

  六、教学过程:

  (一)认识圆的周长

  1、创设情境

  (屏幕显示)两只小蚂蚁在地上跑步,红蚂蚁沿着正方形路线跑,黑蚂蚁沿着圆形路线跑。

  2、迁移类推

  (1)要求红蚂蚁所跑的路程,实际上就是求正方形的什么?什么叫正方形的周长?怎样计算正方形的周长?(板书:围成)

  (2)求黑蚂蚁所跑的路程,实际上就是求圆的什么?(板书并揭示课题:圆的周长),围成圆的这条线是一条什么线?(板书:曲线)这条曲线的长就是什么的长?什么叫圆的周长?(生回答,师完成板书:围成圆的曲线的长叫做圆的周长)。

  3、实际感知

  (1)师拿出一个用铁丝围成的圆,让学生用手摸出圆周长的那部分。

  (2)让全班学生动手摸摸硬币、硬纸板、圆柱的周围,同桌之间边说边指出周长是指哪一部分的长。

  (二)测量圆的周长

  圆的周长是一条封闭的曲线,你能用手边的测量工具,测出圆的周长吗?你能想出几种测量方法?(学生自己动手测量硬币、圆铁圈、硬纸板等)。

  学生说出测量方法:化曲为直、滚动、软皮尺测、绳绕圆一周。生边说,师边微机演示。

  师:你们想的这些方法都很好,但是不是对所有的圆都能用这些方法测量出它的周长呢?请同学们看:(师捏住一头系着螺丝帽的线,用力甩出一个圆)象这个圆你能用绕线法或滚动法量出圆的`周长吗?当然不能,因为只要老师的手一停,圆就消失了,那么我们能不能找出一条求圆周长的普遍规律呢?

  (三)引导发现圆的周长与直径的关系:

  1、圆的周长与什么有关系?

  启发思考:正方形的周长与它的边长有什么关系?(周长是边长的4倍)那么圆的周长是否也与圆内的某条线段长有关,也存在着一定的倍数关系呢?

  学生小组讨论后汇报结果。

  微机演示:用三条不同长度的线段为直径,分别画出三个大小不同的圆,并把这三个圆同时滚动一周,得到三条线段的长分别就是三个圆的周长。

  引导学生观察,生说出观察结果,从而得出:圆的周长与直径有关系。

  2、圆的周长与直径有什么关系?

  (1)测量计算

  小组合作,分别量出几个圆形物体的周长和直径,并计算出周长和直径的比值,结果保留两位小数,并把相应的数据填在89页的表格中。

  请同学汇报所填数据。

  观察这些数据,能发现什么呢?

  生概括出:每个圆的周长是它直径的3倍多一些。

  (2)媒体演示:

  屏幕上大小不同的三个圆及三个圆的周长(化曲为直的线段),用每个圆的直径分别去度量它的周长,得出:大小不同的三个圆,每个圆的周长还是它直径的3倍多一些。

  (3)引导概括

  其实,任何一个圆的周长都是它的直径的3倍多一些。这就是圆的周长与直径的关系。

  3、介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。

  表示这个3倍多一些的数是一个固定不变的数,我们把圆的周长与直径的比值,叫做圆周率。(板书:圆的周长和直径的比值,叫做圆周率。)用字母π表示。

  教学生读写π,介绍π在计算时如何取值。

  学生自己读书中介绍祖冲之的一段知识。

  (四)归纳圆的周长的计算公式。

  学生讨论:(1)求圆的周长必须知道哪些条件?

  ?(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd?或C=2πr

  (五)应用圆周长计算公式,解决简单的实际问题。

  小黑板出示例1:一张圆桌面的直径是0.95米,这张圆桌面的周长是多少米?(得数保留两位小数)

  指名读题,自己列式解答(1生板演)

  (六)订正时教师强调说明:

  (1)解答时不必写出公式。

  (2)π取两位小数,计算时就不再看成近似的数了。

  (3)计算中取近似值的那一步要用“≈”表示。

  完成例1下的做一做,实物投影订正。

  (七)看书质疑,全课小结。

  (八)课堂练习

  1、判断正误,并说明理由。

  (1)圆的周长是直径的3.14倍。?()

  (2)大圆的圆周率比小圆的圆周率大。()

  (3)π=3.14?()

  2、求下面各图的周长(只列式不计算)

  3、求下面各圆的周长

  (1)d=2米?(2)d=1。5厘米(3)d=4分米

  r=6分米r=3米r=1。5厘米

  分三组进行解答,订正时强调单位名称。

  4、解答简单应用题

  (1)一个圆形花池,直径是4。2米,周长是多少?

  (2)一个圆形牛栏的半径是12米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计)

  (3)一种压路机的前轮直径是1。32米,前轮的周长是多少米?如果前轮每分转6周,它每分钟前进多少米?(得数保留整米数)。

  (九)课后练习

  量一量家中自行车轮胎的外直径,计算它滚动一周前进多少米?

圆的周长教学设计3

  【教学资料】

  本课选自义务教育课程标准实验教科书五年级(下册)第十单元《圆》。

  【教材分析】

  这部分资料是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,透过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的潜力,体会数学与现实生活的密切联系。

  【教学目标】

  1.让学生经历圆周率的探索过程,理解圆周率的好处,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

  2.培养学生的观察、比较、分析、综合及动手操作潜力,发展学生的空间观念。

  3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。

  【教学重点】

  透过多种数学活动推导圆的周长公式,能正确计算圆的周长。

  【教学难点】

  圆的周长与直径关系的探讨。

  【教学准备】

  多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。

  【教学过程】

  一、把准认知冲突,激发学习愿望。

  1.谈话:同学们,明白大家都喜欢看《喜羊羊和灰太狼》的动画片,这天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)

  2.要想确定它俩究竟谁跑的路程长,可怎样做?(生:先求出正方形和圆形的周长,再进行比较。)

  3.指名一生说说正方形的周长计算方法:(生:边长×4=周长)这天这节课,我们一齐来研究圆的周长。(揭示课题:圆的周长)

  (设计意图:《喜羊羊与灰太狼》是当前孩子们最喜闻乐见的动画片。设计两者进行赛跑时生活问题,转化为比较圆的周长和正方形周长的数学问题。创设生动的教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的.演示过程,很好地展示并便于学生理解圆周长的概念。)

  二、经历探究全程,验证猜想发现。

  (一)认识圆周长的含义并初步感知圆周长与直径之间的关系。

  谈话:那什么是圆的周长呢?(课件出示3个车轮)

  2.师:上面的3个数据是表示什么的?(生:圆的直径)“英寸”是什么意思?(学生看书回答)

  3.将3个车轮各滚动一圈,猜一猜,谁滚动的路程最长?从中你们有什么发现?(生:车轮滚动一周的长度是车轮的周长;直径越长,周长越长,直径越短,周长越短)

  (设计意图:本环节淡化了对圆周长概念的讲述,以生活中常见的三个车轮为研究的对象,在滚动的过程中具体理解圆周长的含义。并借助观察、比较、合作交流,初步感知到圆的周长与它的直径有关。)

  (二)交流测量圆周长的方法:

  1.学生拿出课前剪的圆,互相指一指它们的周长。

  2.用什么办法测量它们的周长?(同桌交流方法)

  3.指名到前面投影上展示测量周长的方法:

  ①滚动法。明确注意点:做好记号,从零刻度开始滚,滚动到这个记号再次指向那里,圆滚动一周的长就是这个圆的周长。

  ②绕圈法。明确:线贴紧圆周,把剩余的部分剪掉,把线拉直,这两点之间线的长就是这个圆的周长。

  ③用软尺测量。明确:用软尺上有厘米刻度的一面测量。从零刻度开始量,绕圆周一圈,然后看看对齐哪个刻度。

  4.小结:这些方法有一个共同的特点:(生:将一条弯曲的线变成一条直的线)这就是数学上所讲的“化曲为直”的方法。

  5.(课件出示摩天轮图片)问:它的周长能用刚才的方法测量吗?(生:不能,很不方便)问:那怎样办?引发学生探究圆的周长与直径之间的关系。

  (设计意图:精心做好实验准备。为了发散学生的思维,课前让学生准备了软尺,因为软尺既具备了线的特点又兼有尺子的功能,不仅仅能提高实验的速度,而且也能减少实验误差。对学生实验的方法进行深入细致的指导,促使学生有效地进行探究。最后抛出的一个问题也激发了学生进一步探究新方法的欲望。)

  (三)认识圆周率。

  1.谈话:接下来同学们分4人小组,选取自己喜欢的方法,测量出身边这些圆的周长与直径,完成表格。(学生分组活动,完成书上表格)(课件出示表格)

  2.各小组组长汇报测量结果。(学生说结果,教师在课件上完善)

  3.让学生观察表格中的数据,说说又发现了什么?(学生小组交流后汇报:一个圆的周长总是直径的3倍多一些)

  (设计意图:本环节的设计中,教师为学生带给了从事数学活动的时间和空间。在操作前明确操作要求、操作方法以及操作的注意点,然后以小组合作的方式动手实践,探索圆周长和直径之间比值的规律,提示出圆周率的概念,让学生体验到学习数学的乐趣,获得学习体验。)

  4.(课件出示)介绍《周髀算经》这本书及“周三径一”的意思。(圆的周长大约是直径的3倍)

  5.介绍祖冲之在求圆周率中做出的贡献,让学生想象祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(课件播放资料,学生自学)

  6.学生说说从资料的介绍中明白了什么?(学生交流自己的学习所得)

  7.师小结:祖冲之是我们民族的骄傲与自豪,正因为他杰出的成就,月球上有一座环形山就被命名为祖冲之山,宇宙中第1888号小行星也是以他的名字命名的。期望同学们以后也能像他那样刻苦钻研,将来也做一个不平凡的人。

  (设计意图:那里向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学礼貌的发展,体验到人类不断探索的脚步。透过介绍祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时对学生的后续学习也起到了必须的激励作用。)

  (四)推导公式

  1.当学生弄清了圆周长与直径之间的关系后,让学生说说圆的周长怎样计算?(生:圆的周长=圆周率×直径)

  2.谈话:如果圆的周长用大写字母C表示,那么这个公式用字母怎样表示?

  3.谈话:还可已知什么条件求周长?(生:半径)为什么?(生:在同一个圆中,圆的直径是半径的两倍)那这个公式还可怎样变换?

  4.齐读公式,加深印象。

  (设计意图:当学生发现了已知直径求圆周长的方法后,让学生思考还能够已知什么条件来求圆周长,这样透过学生自己总结得出的结论印象更深刻。)

  三、刷新应用潜力,总结巩固新知。

  1.(课件出示第1题)学生口答两个圆的周长。

  2.计算例4中三个自行车车轮的周长大约各是多少英寸?(课件出示3个车轮)透过计算,比一比谁的周长最长?这再一次说明了什么?(生:圆的周长与它的直径有关)

  3.(课件出示一个喷水池)一个圆形喷水池的周长是12米,它的周长是多少米?(学生独立完成在作业本上,投影仪展示答案)

  4.(课件出示摩天轮图)它的半径是10米,坐着它转动一周,大约在空中转过多少米?(学生独立完成在作业本上,后在全班交流)

  (设计意图:设计有层次的巩固练习,从计算直观的图形的周长到解决实际问题,让学生学以致用,体会到数学知识在生活中的运用价值,进一步激发数学学习的兴趣和爱好。)

  四、交流学习收获,课后拓展延伸

  1.透过这节课研究圆的周长,你有什么收获?(学生全班交流)

  (设计意图:让学生对本节课所学习的知识进行一个系统的回顾和总结,让学生掌握学习方法,感受数学价值,增强学习和发展的自信心。)

  2.谈话:此刻如果老师问喜羊羊和灰太狼谁走的路程长一些?同学们可怎样做?(学生独立完成,后全班交流)有没有其它方法?(学生可透过计算解决,也可直接观察两个图比较)

  3.师:种种方法都能够帮忙我们来确定谁走的路程长,所以当喜羊羊得知这一结果后,直喊比赛不公平,于是老村长为它们又重新设计了一种新的赛跑路线:

  问:如果喜羊羊和灰太狼沿这样的路线赛跑,谁走的路程长一些呢?(学生课后思考,下节课交流。)

  【设计意图:让学生利用所学新知去解决课前矛盾,一方面让学生体验到了学习数学知识的价值,另一方面拓展题的创设使得本节课的知识有了一个很好的延续。】

  教学反思

  一、“情境”与“知识”两条主线相互交融。

  结合本节课的教学资料和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们明白,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此十分感兴趣,也有必须的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一齐,构成一个完整的统一体,激发了学生的学习兴趣,时学生用心主动地投入到学习活动中。

  二、动手操作让学生亲身经历知识的构成过程。

  动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们带给了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的学习活动中,使学生的操作活动有目的、有思考、有选取、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践潜力,获得用心的情感体验。

  三、数学阅读让学生感受数学的厚实的文化

  在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到必须的激励作用。结合本节课的教学资料,教师向学生介绍了圆周率的有关认识。那里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。

圆的周长教学设计4

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想:

  新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。

  教学具准备:

  多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

  教学过程:

  一、创设情境,提出问题

  1、创设情境。

  这节课,老师要和同学一起探讨一个有趣的'数学问题。

  媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

  2、迁移类推。

  引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

  (1)要求唐老鸭所跑的路程实际就是求什么?

  (2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

  (3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

  3、提出问题。

  看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

  梳理筛选形成学习目标:

  ①什么叫做圆的周长?

  ②怎样测量圆的周长?

  ③圆的周长与什么有关系,有什么关系?

  ④圆的周长怎样计算?

  ⑤圆的周长计算有什么用处?

  设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。

  二、自主参与,探究新知。

  1、实际感知圆的周长。

  让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

  2、明确圆周长的意义。

  引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

  (1)圆的周长是一条什么线?

  (2)这条曲线的长就是什么的长?

  (3)什么叫做圆的周长?

  学生讨论互补,概括出围成圆的曲线的长叫做圆的周长(显示字幕)

  设想:让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识。在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。

圆的周长教学设计5

  【教学内容】

  新课标人教版六年级上册第62~64页。

  【教学目标】

  1.通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。

  2.能利用圆的周长的计算公式解决一些简单的数学问题。

  3.培养学生的观察、比较、分析、综合及动手操作能力。

  4.通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。

  难点:理解圆周率的意义。

  【教具、学具】

  课件、软尺、直尺、绳子、圆形。

  【教学过程】

  课前交流:请同学们唱一首歌。

  (设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)

  一、创设情景,生成问题

  国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。

  (设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。

  (设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)

  二、探索交流,解决问题。

  师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。

  师:同桌想一想圆的周长怎样测量?

  师:把你的好方法在小组内交流一下。

  (设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

  师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?

  (设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。

  师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。

  师演示(线绕圆一周,然后量出线的长度。)

  师:还有其他的方法吗?

  生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。

  师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。

  生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。

  师:这个办法也很妙!其他同学还有要补充的吗?

  生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。

  师:你的想法可真不简单!

  师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。

  师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?

  生:能!

  师:正方形的周长和什么有关?

  生:周长是边长的4倍,

  师:那么圆的周长和什么有关系呢?

  生:圆的直径越长圆越大,所以周长就越长。

  师:那周长和直径有怎样的关系呢?

  (设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)

  师:同学们用自己手中的'工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。

  师:现在大家通过填写表格发现了什么?

  生:在测量中发现,大小不同的圆的周长是不同的。

  师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?

  生:是由半径(或直径)唯一决定的。

  师:圆的周长与直径或半径之间到底存在着怎样的关系?

  生:每组算的结果不大一样,但都是3点多。

  师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?

  生:一样。

  师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。

  师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?

  我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)

  师:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  师:从表中我们可以看出圆的周长÷直径=圆周率

  (板书:圆的周长=π×直径)。

  如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。

  生读:c=πd c=2πr

  师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?

  生:圆的直径或半径。

  (设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)

  三、回顾整理,反思提升。

  这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?

  (1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。

  (2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。

圆的周长教学设计6

  【教学资料】

  课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习

  【教学目标】

  1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题

  2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。

  3、培养学生创新思维潜力。

  4、透过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。

  【教学重点】

  探索圆的周长公式

  【教学难点】

  对圆周率π的理解

  【学具准备】

  每四个学生一组

  1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个

  2、直尺一把

  3、细绳一条、两根长31.4厘米的细铁丝

  4、实验表格

  5、计算器

  【教具准备】

  实物投影议、电脑

  【教学过程】

  一、设疑导入、培养创新意识

  1、电脑演示:有甲、乙两学生争论。

  甲说:“我脑袋大。”

  乙说:“我脑袋比你在大。”

  师:“如果你是裁判员应如何评判,两人才能都服气?”

  2、学生四人小组讨论

  请学生说一说自己的方法

  甲生:“看谁的脑袋大。”

  师:“如果看不出来怎样办?”

  乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”

  师:“十分好!很有创意。”

  丙生:“用绳绕头一周,测量绳的长度。”

  师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。

  二、动手尝试操作,探求新知

  1、动手尝试操作

  (1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。

  圆的周长c(厘米)

  直径d(厘米)

  周长÷直径(c÷d)

  1

  2

  3

  4

  (2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。

  讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。

  (3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。

  2、探索规律

  (1)师将填好的实验表格在实物投影议上出示。

  学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。

  (2)思想教育

  师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约20xx年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的'周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。

  教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。

  师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”

  生:“不能”。

  师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”

  (3)推导圆周长公式

  师:“从公式看出,明白什么条件能够求出圆周长?”

  生:“直径、半径。”

  师:“如果圆的周长已知,怎样才能求出圆的半径或直径?”

  三、圆周长公式的应用(尝试练习)

  1、出示例1

  学生尝试练习,找学生板演,师生共同讲评。

  2、完成例1下面的“做一做”。

  3、出示例2

  学生尝试练习,找学生板演,师生共同讲评。

  4、完成例2下面的“做一做”题目。

  5、第8页练习二的1、2、3题。

  四、再次尝试操作、第二次创新

  1、求出人脑袋的横切面的半径

  (1)利用桌面上现有的测量工具,透过计算,怎样求出你脑袋的半径?

  (2)四人一组互相合作,动手测量,计算时可利用计算器。

  (3)将运算的结果对全班公布,并说明理由。

  2周长相等的正方形、圆,谁的面积大

  (1)组织学生将长为31.4厘米的铁丝折成正方形和圆形,比一比谁的面积大?

  师将折好的正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”

  (2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。

  五、全课小结

  1、这天我们学习了什么资料?

  2、经过这节课的学习,你有什么收获?

  3、师:“这天我们透过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。

  六、作业

  第9页练习二中的第9、10、11题。

  板书设计

  圆的周长

  围成圆的曲线的长叫圆的周长

  c=πdc=2πr

  例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

  (生板演)3.14×0.95

  =2.983

  =2.98(米)

  答:这张圆桌面的周长约是2.98米。

  例2、一个圆形水池,周长是37.68米。它的直径是多少米?

  (生板演)解:设水池的直径是X米。

  3.14×X=37.68

  X=12

  或:37.68÷3.14=12(米)

  答:水池的直径是12米。

圆的周长教学设计7

  一、教学目标:

  1.知识目标:在具体的情境中,结合已有的知识经验认识什么是圆的周长。

  2.能力目标:通过测量和计算,了解圆的周长与直径的比为定值,推出圆的周长计算公式,并会运用公式解决现实问题。

  3.情感目标:在观察、实验、猜想、验证等活动中,渗透解决问题的一般方法,进一步展学生的转化策略和推理能力;结合圆周率的学习,对学生进行爱国主义教育。

  二、教学重、难点:

  重点:推导并总结出圆周长的计算公式。

  难点:深入理解圆周率的意义。

  三、教学准备:

  电脑课件、一元硬币、茶叶筒或易拉罐、圆形硬板、纸杯、直尺、水彩笔、细线、小组测量记录表、计算器、剪刀、三角板

  四、教学过程:

  (一)、创设情境,引起猜想:

  1.复习长方形、正方形周长公式。讨论正方形周长与其边长的关系:

  长方形周长=(长+宽)×2正方形周长=边长×4教学反思:应温故知新,注意知识点掌握的连贯性,同时为讲解圆的周长做铺垫。

  2.激发兴趣

  出示课件:同学们,我们已经认识了美丽的图形圆,什么是圆的周长?周长和圆的直径有什么关系呢?

  (1)我们的村长在卖村里的树的时候,他用手拃一拃树的周长,就能知道树的直径,估计出树的体积,他是怎样算出直径的呢?同学们想知道吗?今天我们就来探究一下,看看会有什么收获。

  (2)看这是圜丘坛俗称祭天台,及细观察,共有三层。上层直径30米,中层50米,下层70米。你发现了什么信息?根据这些信息你能提出什么问题?

  3、认识圆的周长

  圆的周长又指的是什么意思?(围成圆的曲线的长)出示课件

  从准备的一元硬币、茶叶筒、易拉罐、纸杯、圆形硬板等物品中找出一个圆形来,并指出这些圆的'周长。

  4.讨论正方形周长与其边长的关系

  (1)根据已学知识总结正方形的周长总是边长的几倍?

  出示课件:正方形周长=边长×4

  正方形周长÷边长=4(固定值)(2)那么圆的周长与什么有关系呢?

  5.讨论圆周长的测量方法

  (1)讨论方法:刚才我们已经解决了正方形周长的问题,可以测量再计算;而圆的周长呢?各小组同学选出你手中的一个圆形物品来试一试,测量圆的周长,看看你们有哪些好的方法?

  (2)汇报交流总结:

  ①“绳绕法”——用细线缠绕实物圆一周并打开,然后再把绸带拉直测量长度;

  ②“滚动法”——把实物圆沿直尺滚动一周,数出直尺上的刻度差

  ——还可以先用水彩笔在硬币的圆周长上涂上颜色,然后将硬币在纸上沿直尺滚动一周,测量纸上留下的痕迹的长度;

  ③“剪圆”——先用剪刀沿着纸杯圆口剪下一条,剪得越细越好,

  然后测量纸条的长度;

  (3)小结各种测量方法:把曲线化成直线进行测量是我们数学中常用的方法。

  出示课件

  转化曲→

  直

  (4)创设冲突,体会测量的局限性

  刚才大屏幕上圜(yuán)丘坛有三个圆,这三个圆的周长还能用刚才的方法进行实际测量吗?(不能)那怎么办呢?有没有一种更为简单的方法呢?(5)明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。出示课件:圆周长的计算方法6.合理猜想,强化主体:

  (1)我们能不能像求正方形周长那样找到求圆周长的一般方法呢?正方形的周长与它的边长有关,而且周长总是边长的4倍;你认为圆的周长与它的什么有关?(半径、直径)向大家说一说你是怎么想的?(2)正方形的周长总是边长的4倍,再看这幅图,出示小黑板,猜猜看,圆的周长大概应该是直径的几倍?说明道理:(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)(3)小结并继续设疑:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?出示课件:圆周长÷直径=?

  老师请各小组讨论:要想研究圆的周长与直径的倍数关系需要做哪些工作?根据学生的回答老师出示探究建议:①测量圆的周长和直径;②记录数据;③进行计算;④得出结论。

  (二)实际动手,发现规律:

  (1)明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,每组同学可以从桌上物品中选出2-3个圆形进行测量,把数据和结论填入表格里,组长记录并计算,其他组员测量,最终求出一个平均值。

  (2)学生动手操作,教师巡视指导。(3)集体反馈数据(选取3~4组实验结果)2.发现规律,初步认识圆周率

  (1)看了几组同学的测算结果,你有什么发现?

  (2)虽然倍数不大一样,但周长大多数是直径的几倍?刚才同学们已经对大小不同的圆进行了比较准确的测算,能够得出一个什么结论?

  出示课件:三倍多一些。 3.介绍祖冲之,认识圆周率

  (1)到底是三倍多多少呢?早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,而这个值就是圆周率,知道他叫什么吗?请同学们看一段资料:

  出示关于圆周率的资料。

  (2)看后激励:同学们今天自己动手也发现了这一规律,老师相信同学当中将来也会产生像祖冲之一样伟大的科学家。(3)了解误差

  我们将为我们班有像祖冲之一样伟大的科学家而感到骄傲,可不知同学们想过没有,为什么我们现在的测算结果都不够精确呢?那是因为测量和计算过程中存在着误差:

  如:测量误差、读数误差、尺子刻度不一致、细线弹性不一致等等,通过这段文字资料你能确定圆周率的值了吗?圆周率是一个无限不循环小数,用希腊字母π表示,实际计算中π取近似值3.14。

  出示课件:圆周率用π表示,π=3.141592653……

  实际计算中π≈3.14 4.总结圆周长的计算公式

  (1)如果知道圆的直径,你能计算圆的周长吗?追问:那也就是说,圆的周长总是直径的多少倍?(π倍)

  出示课件:圆周长÷直径=π(圆周率)

  圆周长=直径×圆周率C

  =

  π d(2)如果知道圆的半径,又该怎样计算圆的周长呢?板书: C

  = 2πr (三)、巩固应用,形成能力1.判断

  a.圆周率就是圆的周长除以直径所得的商。()b.圆的直径越长,圆周率越大。()c.π=3.14()2.计算:出示课件:分别求d=4厘米、r=1.5分米圆的周长3.解决实际应用

  (1)一辆自行车车轮的直径是0.6米。车轮滚动一周,自行车前进多少米?

  (2)摩天轮的半径是5米,坐着它转动一周,大约在空中转过多少米?

  (3)一个木桩的横截面周长是37.68厘米。它的直径是多少厘米?(四)、课内小结,扎实掌握

  (1)通过今天的学习,你有什么收获?

  (2)现在知道老村长是怎么求出树的直径了吗?

  (五)、课外引申,拓展思维

  出示课件:小明的妈妈在自家的墙根下建了一个花坛(如图)。你能计算出花坛的周长吗?

圆的周长教学设计8

  教学目标:

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点:推导圆的周长的计算公式,准确计算圆的周长。

  教学难点:理解圆周率的意义。

  教具准备:圆片、铁圈、绳子、直尺。

  教学方法:观察、演示、小组合作交流

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

  (2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

  讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

  (3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  二、经历探究全程,验证猜想发现。

  一圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  二圆的周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的.周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

  三、感受数学文化,激发情感教育。

  1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  2、介绍计算机计算圆周率的情况。

  3、教学圆周率:π≈3.14。

  四、归纳圆的周长的计算公式。

  学生讨论:(1)求圆的周长必须知道哪些条件?

  (2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

  生回答,教师板书:C=πd或C=2πr

圆的周长教学设计9

  教学目标:

  ⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

  ⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

  ⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

  教学重点、难点

  教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

  教学过程设计

  一、创设情境,引发探究

  ⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

  ⒉揭示课题

  ⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

  ⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

  板书课题:圆的周长

  二、人人参与,探究新知

  (一)教具演示,直观感知,认识圆周长。

  教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

  (二)理解圆周率的意义

  活动一:测量圆的周长

  ⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

  ①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

  然后各组分工同桌合作,量出圆片的周长。

  ②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

  ⒉用"几何画板"《小球的轨迹》演示形成一个圆。

  提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

  ⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

  活动二:探究圆周长与直径的关系,认识圆周率。

  ⒈圆的周长与什么有关。

  ⑴启发思考

  正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

  ⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

  得出结论:圆的'周长与它的直径有关。

  ⒉圆的周长与直径有什么关系。

  ⑴学生动手测量,验证猜想。

  学生分组实验,并记下它们的周长、直径,填入书中的表格里。

  ⑵观察数据,对比发现。

  提问:观察一下,你发现了什么呢?

  (圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

  ⑶出示"几何画板"《周长与直径的关系》演示。

  ⑷比较数据,揭示关系。

  正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

  学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

  提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

  ⒊认识圆周率

  ⑴揭示圆周率的概念。

  这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

  现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

  ⑵介绍π的读写法

  ⑶指导阅读,了解中国人引以为自豪的历史。

  提问:你知道了什么?

  (三)推导圆的周长计算公式。

  ⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

  请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

  ⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

  提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?

  学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

  三、应用新知,解决问题

  1、和自己的伙伴一起解答例1和做一做

  2、说出这两题用哪个公式比较好?

  四、实践应用,拓展创新。

  ⒈基础性练习:

  (1)求下列各圆的周长(几何画板)

  r=3厘米 d=4厘米

  (2)、我们现在有办法求唐老鸭跑的路程吗?

  ⒉、判断

  ①圆的周长是直径的π倍。

  ②大圆的圆周率小于小圆圆周率。

  3、提高练习

  在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

  五、总结评价,体验成功

  1、你学到了什么?

  2、你是怎么学到的?

圆的周长教学设计10

  一、创设情境,导入新课

  1、复习旧知(播放课件)

  师:同学们,你们知道正方形的周长与什么有关吗?(边长)那正方形的周长等于什么?

  2、揭示课题。

  师:现在,老师给你们变个魔术。(演示课件圆)

  师:有的同学反应可真快!什么是圆的周长呢?这也是我们这节课要研究的内容。(板书课题),谁能说一说什么叫圆的周长?有的同学已经举手了。

  生:围成圆的这条线的长就叫做圆的周长,

  师:这条线是什么形状的?

  生:曲线

  师:是曲线,那你能完整地说一遍吗?

  生:围成圆的曲线的长叫圆的周长。(演示课件)

  二、引导探索,探究新知

  1、测量圆的周长的不同方法

  师:老师这里有一个圆,那你们能告诉老师,“圆的周长指的是哪一部分的长”,同桌互相比画一下。

  师:你们能量出圆的周长吗?(能)拿出你们的圆动手量一量,看看哪一组最会动脑筋,测量得又快又好。(学生小组活动)

  师:老师看很多小组已经找到方法了,哪个小组愿意第一个到前面来把你们的方法告诉大家?(学生上台演示讲解)

  师:这种方法还真不错!还有没有不同的方法?(再请一位学生上台)真善于动脑筋!为了大家看的更清楚些,老师把这两种方法重新演示一遍,(演示课件1:球在直尺上滚动一周,直接量出球的周长。演示课件2:线绕圆一周,然后量出线的长度)请同学们看屏幕:

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出所有圆的周长呢?

  生:能!

  (播放课件)转动绑着绳子的小球形成一个圆:能用刚才的方法量出这个圆的周长吗?生:不能!

  师:那咱们能找到一种更简便、更科学的办法来解决这个问题吗?

  2、探讨圆的周长与直径的关系

  师:同学们真有信心!我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  师:你觉得是和直径有关系,说说理由好吗?

  师:现在请同学们观察大屏幕,(课件)你发现了什么?

  生:我发现圆的直径越长,它的周长就越长。

  师:观察得真仔细!那到底圆的周长与直径有怎样的关系呢?要解决这个问题,还请同学们继续测量,测量前先听好活动要求。(学生小组活动——测量)

  师:好,现在我们来交流一下你们的实验结果。

  (把学生的实验结果打在课件上)。

  师:大家仔细观察分析,看能发现什么?

  生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的比值都是三点一几。

  师:这个同学真是好眼力。其他小组还有什么不同的发现吗?

  生:所有圆的周长都是直径的3倍多一些。

  师:看来大家的发现都一样,那我们再来看看这几个圆是不是也有这样的规律?(课件直观展示三倍多一点)看屏幕,注意仔细观察,看能发现什么?

  生:圆不论大小,它的周长都是直径的三倍多一些.。

  3、认识圆周率:

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些.这是个固定不变的数,你们的这个发现和许多大数学家的发现是一样的,人们通常把圆的周长和直径的这个比值叫做圆周率,用字母π表示。(板书)

  师:好,现在请同学们打开书63页,找出圆周率的概念,全班齐读。

  师:圆的周长和它的直径的比值叫什么?用什么来表示?

  师:老师收集了一些有关圆周率的.资料,大家想看吗?看屏幕。(课件)

  师:看了这些资料后,你了解到了什么?

  师:我国古代人民真了不起!我相信:各位同学只要努力学习,将来一定会让我们中国成为世界上最强大的国家!

  4、推导圆的周长的计算公式:

  师:刚才我们用圆的周长除以直径求出了圆周率,那么谁能说一说到底怎样求圆的周长?能得出一个什么样的公式呢?

  板书:C=πd

  师:如果知道半径怎么求周长呢?

  板书:C=2πr

  师:这2个公式都可以来计算圆的周长,要求圆的周长必须知道什么条件?

  生:圆的直径或半径。

  5、现在我们就用我们推导出来的公式来解决问题,请看大屏幕。

  三、初步运用,巩固新知

  1、已知直径、半径求圆的周长

  2、判断

  3、已知周长求直径和半径

  4、提问:小猴甩小球形成的圆的周长你会求吗?(课件)

  四、小结

  1、组织学生说说收获:

  这节课你们学到了什么?

  师:同学们从圆的周长、直径的变化中,看出了圆周率始终不变。如果我们长期坚持这样从变化中看出不变,你们就会变得越来越聪明。

圆的周长教学设计11

  教学目的:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:

  1、理解圆周率的意义。

  2、推导并总结出圆的周长的计算公式并能够正确计算。

  教学难点:

  深入理解圆周率的意义。

  教学过程:

  一、复习准备:

  (一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?

  (二)创设情境:龟兔赛跑。

  第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

  二、新授教学。

  (一)定义。

  1、小乌龟跑的路程就是正方形的什么?小白兔呢?

  2、什么是圆的周长?请你摸一摸你手中圆的周长。

  3、今天我们就来研究圆的周长。

  (二)推导圆的周长公式。

  1、学生讨论。

  (1)正方形的周长和谁有关系?有什么关系?

  (2)你认为圆的周长和谁有关系?

  2、猜测。

  看图后讨论:圆的周长大约是直径的.几倍?为什么?

  小结:通过观察大家都已经注意到了圆的周长肯定是直径的2-3倍,那到底是多少倍呢?你有什么好办法吗?

  3、实践操作。

  (1)目的:用不完全归纳法得出圆的周长约是直径的几倍。

  (2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。

  (3)填写表格。

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  (4)汇报小结

  看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?

  (三)认识圆周率、介绍祖冲之。

  1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。

  2、介绍祖冲之。

  (四)总结圆的周长公式。

  1、怎样求周的长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  教师板书:C=d

  2、圆的周长还可以怎样求?

  教师板书:C=2r

  3、圆的周长分别是直径与半径的几倍?

  (五)课堂反馈。

  你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

  三、巩固练习。

  (一)判断。

  1、=3.14()

  2、计算圆的周长必须知道圆的直径。()

  3、只要知道圆的半径或直径,就可以求圆的周长。()

  (二)选择。

  1、较大的圆的圆周率()较小的圆的圆周率。

  a大于b小于c等于

  2、半圆的周长()圆周长。

  a大于b小于c等于

  (三)实践操作。

  请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。

  四、课堂小结:

  通过这堂课的学习,你有什么收获?你还有什么问题吗?

  五、课后作业。

  (一)求下面各圆的周长。

  1、d=2米

  2、d=1.5厘米3.d=4分米

  (二)求下面各圆的周长.

  1、r=6分米

  2、r=1.5厘米

  3、r=3米

  六、板书设计。

  圆的周长

  C=dC=2r

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  活动要求:

  1、各个组成部分面积分配合理,布局合理。

  2、要体现不同年龄阶段儿童需要.大致分为:1----4岁;5---8岁;9----12岁。

  3、要有娱乐活动场所、休息场所、小路。

  4、算出各个部分的面积。

圆的周长教学设计12

  教学目的:

  1.让学生知道什么是圆的周长.

  2.理解圆周率的意义.

  3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

  教学重点:

  推导圆的周长计算公式.

  教学难点:

  理解圆周率的意义.

  教具学具:

  1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

  2.电脑软件及演示教具.

  教学过程:

  一、复习:

  上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

  二、导入:

  这节课我们继续研究圆的周长(板书课题).

  1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

  2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

  问:什么是圆的周长?

  板书:围成圆的曲线的长是圆的周长.

  3.你能测量出这个圆的周长吗?(能)

  4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

  5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

  回答:不能.

  想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

  三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

  四、学生动手测量、教师巡视指导.

  五、统计测量结果.

  观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

  六、电脑演示

  (几个大小不同的圆,它们的周长都是直径的.3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.

  七、看书后回答问题:

  1.是谁把圆周率的值精确计算到6位小数?

  2.什么叫圆周率?

  3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

  4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?

  现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)

  八、出示例1:

  一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

  (得数保留两位小数)

  请同学们想一想:车轮滚动一周的距离实际指的是什么?

  解:d=1.95 单位:米

  c=πd

  =3.14×1.95

  =6.123

  ≈6.12(米)

  答:车轮滚动一周约前进6.12米.

  九、课堂练习:

  1.投影:计算下面图形的周长.

  2.判断下面各题(正确的出示“√”,错误的出示“×”)

  (1)圆周率就是圆的周长除以它的直径所得的商.

  (2)圆的直径越大,圆周率越大.

  (3)圆的半径是3厘米,周长是9.42厘米.

  3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)

  如果速度相同,两人同时出发,谁先回到出发地点?为什么?

  小明的路线长:20×3.14+20×3.14

  =62.8+62.8

  =125.6(米)

  爷爷的路线长:3.14×(20+20)

  =3.14×40

  =125.6(米)

  两条路线一样长,两人应同时回到出发点.

  4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.

  结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.

  小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识。

圆的周长教学设计13

  【微课简介】

  《圆的周长公式推导》一课是小学数学新人教版六年级上册的一个知识点,适用于对圆的各部分名称已有初步认识并将学习计算圆的周长公式的学生学习。在这个知识点学习中,学生应用互动软件《圆的工具》辅助学习,通过小组合作的探究活动,对比、分析、概括出圆的周长与直径、半径的关系,推导出圆的周长公式。

  【教学背景】

  数学是一门需要思维的学科,在学习过程中,有些学生会出现囫囵吞枣的现象,知其然而不知其所以然。圆的周长公式推导是关于圆的知识学习中的一个重难点,理解圆的公式推导过程是帮助学生学习圆周长公式的关键。由于本班学生已经是六年级的学生,在平时的训练中体现出良好的信息技术能力,于是将公式推导这一部分设计为学生应用互动学习软件,在预设的任务中以同桌俩俩合作和四人小组合作的方式进行探究式的学习活动。这样的自主学习活动更注重于学生学习内容的获取过程,让学生在学习过程中自主、积极地去探究,通过“再发现”、“再创造”,建构数学模型,从而对所获得的知识有更深刻的理解和掌握,并灵活应用所学知识解决实际问题,充分体现了“授之以鱼不如授之以渔”的'教学理念。而现代化技术的运用,则让学生在有限的时间里经历数学建构的过程,关注到学生的个体差异,为学生的学习创造了良好的环境,提高了学习效率,获得较好的教学效果。

  【教材分析】

  圆的周长公式推导是小学数学六年级上册的一个知识点。为了突破这个知识的重难点,应用学习互动软件《圆的工具》辅助学生进行探究活动,让学生自主探究圆周长与直径的关系,推导出圆的周长公式。学生在这一活动中,用交互工具建构数学模型,应用对比、分析、概括等去解决问题,在合作探究中获得能力发展。

  【学情分析】

  本班学生是六年级学生,具有良好的信息技术能力,在学生的知识系统中,对于圆的各部分名称有了初步的认识。在此基础上,本节课的学习任务是要学生借助学习软件,在给出的任务和要求中自主探究完成实验活动,从而归纳出圆的周长计算公式。

  【教学目标】

  推导并总结出圆周长的计算公式。

  【教学重难点】

  推导出圆周长的计算公式。

  【教学方法】

  以引导探究为主的探究法。

  【学习环境与资源】

  1、学生分组,每一组至少有一台联网的计算机。

  2、探究工具软件《圆的工具》

  3、学生探究活动纸

  【教学过程】

  这一环节主要是进行实验探究,构建模型。

  一、出示实验任务,提出实验要求。

  1、把用来记录探究数据的学生活动纸分发给学生。

  2、介绍实验软件:圆的工具

  3、出示探究活动一的任务:

  二、学生应用软件开展数学实验

  1、同桌合作,轮流进行操作和记录;

  【软件使用说明】

  2、四人小组进一步协作整理数据,发现规律;

  学生应用软件探究圆的周长和直径的关系,将相关数据填入活动报告单,小组进行汇报交流,获得结论。

  当学生在完成作业纸时,根据需要可引导学生。例如,当问“圆的直径和周长之间有什么样的关系?圆的周长和直径的关系会不会随着周长的变化而变化”时,引导学生通过观察、对比、分析、归纳出圆周率是固定的一个数值,从而对圆周率有一定的认识,并推导出圆的周长计算公式。并让学生讨论并归纳:“根据圆的半径和直径的关系,如何用半径算出圆的周长?”

  这样的过程将探索圆周率的过程简单化,借助现代化技术提高了课堂效率,丰富了学生对圆的认识和理解。

  3、组间分享:通过组间的汇报,相互补充各组的发现,阅读相关资料,了解圆周率。

  三、建构数学模型

  1、通过实验和交流,发现圆的周长和直径的倍数关系,能用直径或半径计算圆的周长。

  2、学会按顺利整理数据的实验方法。

  【教学总结】

  圆的周长公式推导过程在教学中一直是个难点,以往都是让学生拿着圆形物体进行直径、周长的测量,从数据中去寻找周长与直径的关系。这样的操作过程既耗时又费力,且容易出现测量误差导致计算结果出现较大的差距等情况。因此,在设计这节课的时候,我采用了计算机软件的模拟操作,使得整个操作过程的数据精确化,学生借助计算机操作获得的一系列数据,既能获得活动探究所需的数据,又能节约很多操作时间,从而使得整节课的重心放在数据搜集、整理和分析上,学生在一系列精确的数据中获得感知,从而顺利推导出圆的周长公式,实现高效课堂的教学目的。

圆的周长教学设计14

  教学目标:

  ⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题;

  ⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。

  教学流程:

  一、揭示课题

  ⑴猜测这节课的学习内容。

  ⑵揭示课题——圆的周长。

  二、确定探索新知的方向。

  ⑴观察课前画在黑板上的两幅图。

  分别指出正方形、圆形和正六边形的周长。

  ⑵沟通联系。

  找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。

  ⑶比较周长的长短。

  以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的周长比它长;所以,圆形的周长在直径的3倍与4倍之间。

  ⑷确定探究方向。

  量出圆的周长和直径,算出它们之间的倍数。

  ⑸准备数据采集。

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  三、合作探究新知。

  ⑴学生操作活动。

  小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。

  教师观察:各组量周长和直径的情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的`知识已经迁移、内化为学生的技能。

  教师在分组活动中采集到的数据。(是后加的,时加的)

  序号

  周长(c)cm

  直径(d)cm

  周长是直径的几倍

  ⑵合理,得出公式,

  看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。

  ⑶介绍祖冲之。

  四、利用新知解决简单的数学问题。

  ⑴说出计算周长的算式。

  ⑵口答练习十八1~2。

  ⑶作业练习十八3~4。

圆的周长教学设计15

  教学目标:

  1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。

  2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。

  3.初步学会透过现象看本质的辨证思想方法。

  4.结合圆周率的学习,对学生进行爱国主义教育。

  学重点:正确计算圆的周长。

  教学难点:理解圆周率的意义,推导圆周长的计算公式。

  教具准备:多媒体课件、系绳的小球。

  学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳

  一、以旧引新,导入新课

  1.复习正方形的周长。

  ①复习周长的意义。什么叫周长?(学生汇报后,课件演示周长的意义)。

  ②复习正方形周长的意义。(课件演示小花狗围着正方形跑一圈正方形的周长闪动红色)要求小花狗所跑路程,实际上就是求这个正方形的什么?

  2.揭示圆的周长。

  (1)(课件演示小白狗围绕圆形跑一圈圆形的周长闪动黄色)要求这只小白狗所跑的路程实际上又是求这个圆的什么?(圆的周长,揭示课题)你能说说什么叫圆的周长吗? (教师完成板书,学生读书)

  (2)同位用自己带来的圆形实物互相口述圆的周长。

  二、探索圆周长与直径的关系

  1、动手操作,合作交流。

  师问:我们知道了什么叫圆的周长,那么怎样测量圆的周长呢? 可以用什么工具来测量?

  ①请同学们拿出你们带来的测量工具,以四人小组为单位,想办法测量你手中圆的周长并做好填表记录,(边量边交流测量方法)让我看哪个小组做得最棒。(教师巡视操作过程)

  周长(C)直径(d)周长与直径的关系( )

  ②请四人小组上台演示操作过程,边操作边说方法。

  2、探索圆周长与直径的关系(课件演示填表)

  (1)请同学们看屏幕的表格,认真观察比较一下,想一想圆的周长跟什么有关系?

  (2)讨论:究竟圆的周长与它的直径有什么关系呢?

  (小组汇报)引出圆周率

  任何圆的周长总是它的直径长度的3倍多一些。(板书)

  3、揭示圆周率的概念。

  (1)师:科学家的大量准确测量和精确计算得出,表示这个3倍多一些的数,是一个固定不变的数,这个固定不变的数叫什么?请自学99页第二自然段。(叫做圆周率)什么叫圆周率呢?用哪个字母表示。谁能说一说(指导读写π。)

  (2)了解圆周率的历史。(课件演示圆周率的'历史,对学生进行思想教育和爱国主义教育。)

  关于圆周率还有一段历史呢。请同学们打开书看99页下面小的方字,想:通过看书你知道了什么? 我国古代著名数学家祖冲之在计算圆周率方面做出了什么贡献?这个结果比外国数学家得到这个结果整整早了一千多年,可见我国古代人民的智慧和力量。但随着科学技术发展,外国数学家利用计算机已经计算到小数点后一亿多位,我国现在又落后了。哪我们还有机会超过外国人吗?没错只要我们努力学习将来一定会让中国走在世界前列。

  (3)推导圆周长的计算公式。

  (1)师:通过刚才的探索,我们已经知道圆的周长与直径的关系了,你能推导出圆周长的计算公式吗?(小组讨论)

  (2)学生汇报讨论结果,板书:圆的周长=直径×圆周率

  那么要求圆的周长,你必须知道什么?(直径或半径)你会求吗?

  4. 应用圆的周长公式,解决简单的应际问题。

  出示例1(学生自学并独立完成)。教师检查自学情况,请一名同学上台板演。教师评点。

  5看书、质疑

  (1)若将例1的直径改为半径,会求它的周长吗?

  (2)及时反馈,完成第100页(练一练1、2)。

  三、运用新知,解决问题

  1.下面的说法对吗?并说明理由。

  (1)圆的周长是它直径的π倍。()

  (2)大圆的圆周率大于小圆的圆周率。()

  (3)π=3.14()

  2.解答练习二十一第2题(课件演示)

  3.测量一圆形实物直径,计算它的周长。

  4、扣展练习

  (1)画一个周长12.56厘米的圆

  (2)思考题。(课件出示两只蜜蜂分别在一个大圆和两个小圆上走一圈)大圆的周长和两个小圆的周长之和同样长吗?为什么?

  四、总结全课,学生互评。

  这节课你学到了什么?谁的表现最佳?

  板书设计:

  圆 的周长

  围成圆的曲线的长叫做圆的周长

  任何圆的周长总是直径的3倍多一些(圆周率)

  例1、一块圆形铝片的直径是5厘米,它的周长是多少?