- 相关推荐
分数的意义和性质教学设计
作为一位兢兢业业的人民教师,常常要根据教学需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计应该怎么写呢?下面是小编精心整理的分数的意义和性质教学设计,仅供参考,欢迎大家阅读。
分数的意义和性质教学设计1
一、教学内容
分数与除法
教材第66页的例3及做一做。
二、教学目标
1.使学生掌握分数与除法的关系。
2,培养学生的应用意识。
三、重点难点
1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备
圆片。
五、教学过程
(一)引入。
老师:5除以9,商是多少?(板书:5÷9=)如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。
板书课题:分数与除法的关系
(二)教学实施
1.学习例3。
(1)板书例题。
小新家养鹅7只,养鸭10只。养鹅的只数是鸭的几分之几?
(2)指名读题,理解题意并列出算式。板书:7÷10
(3)利用除法和分数的关系得出结果。
7÷10=
所以养鹅的只数是鸭的。
(三)思维训练
1.把8米长的绳子平均分成13段,每段长多少米?
2.把一个5平方米的圆形花坛分成大小相同的6块,每一块是多少平方米?(用分数表示)
(四)课堂小结
通过今天这节课的观察、操作,同学们发现了分数与除法之间的关系。分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数的分数线。
2.真分数和假分数
第一课时
一教学内容
真分数和假分数
教材第69页的例1、例2及第70页的“做一做”。
二教学目标
1.使学生理解真分数和假分数的意义及特征,并能辨别真分数和假分数。
2.培养学生观察、比较、概括的能力。
3.培养学生数形结合的数学思想。
三重点难点
理解真分数和假分数的意义及特征。
四教具准备
例1及例2中图形的教具。
五教学过程
(一)导入
1.复习:什么叫分数?
2.用分数表示出下面各图的涂色部分。(出示教具)
请学生分别说出每个分数的意义。
(二)教学实施
1.提问:比较上面三个分数的'分子与分母的大小?这些分数比1大还是比1小?并说明理由。
2.学生观察后,试着回答。
学生:(第一个圆)平均分成了3份,这样的3份也就是一个整圆,表示1,而阴影部分只有1份,所以比1小。
再请学生分别说出另外两个分数。
3.老师指出:像上面的3个分数都是真分数。我们过去接触过的分数,大都是真分数。那么,你能说说什么叫真分数吗?
4.让学生独立思考后,与同桌交流一下,再指名回答。
5.小结:分子比分母小的分数叫做真分数。真分数小于1。
6.老师再出示例2中图形的教具。
7.请学生分别用分数表示每组图形中的阴影部分。
提问:第一幅图中,把一个圆平均分成几份?表示有这样的几份?怎样用分数表示?
老师强调:第二组图和第三组图中每个圆都表示“1”。
8.比较,,的分子和分母的大小,再与1比较。学生观察图,试着进行比较,与同桌交流。老师指名回答:所表示的阴影部分占据了整个圆,所以等于1;所表示的阴影部分占据了1个圆还多,所表示的阴影部分占据了2个圆还多,所以和都比1大。
9.老师指出:像,,这样的分数,叫做假分数。假分数大于1或等于1。
请学生举出一些假分数的例子,引导学生多举一些分子和分母相等的假分数。
10.引导学生完成教材第70页的“做一做”。
(1)学生先独立完成第1题,然后订正。
(2)学生再独立完成第2题,引导学生观察:表示真分数的点和表示假分数的点,分别在直线的哪一段上?
(四)思维训练
1.在分数中,当a小于()时,它是真分数;当a大于或等于()时,它是假分数。
2.在分数(a>0)中,当a小于或等于()时,它是假分数;当a大于()时,它是真分数。
3.分数单位是的最小真分数是(),最小假分数是()。
4.写出两个大于的真分数()和()。
(五)课堂小结
通过本节课的学习,我们认识了真分数和假分数的特征,真分数的分子比分母小,真分数小于1;假分数的分子比分母大或分子和分数相等,假分数大于或等于1。通过学习,要会正确区分哪个分数是真分数,哪个分数是假分数,并会正确应用概念灵活解题。
第二课时
一教学内容
假分数
教材第70页的例3。
二教学目标
1.使学生认识带分数,学会把假分数化成整数或带分数的方法。
2.进一步培养学生的数感。
三重点难点
掌握把假分数化成整数或带分数的方法。
四教具准备
分数的意义和性质教学设计2
一、教学目标
(一)知识与技能
通过整理和复习,帮助学生巩固对分数的意义、基本性质以及分数加减法的认识理解,提高学生对这些知识的掌握水平,增强知识的运用能力。
(二)过程与方法
结合整理和复习,回顾学习过程和方法,体会将知识条理化的作用,逐步养成整理和反思的习惯。
(三)情感态度和价值观
培养学生良好的学习习惯,增强学习数学的兴趣和信心。
二、教学重难点
教学重点:分数的基本性质。
教学难点:分数的意义,分数的加减法运算的算理、算法。
三、教学准备
多媒体课件。
四、教学过程
(一)知识整理,整体回顾
1、知识梳理。
教师:关于分数,本学期我们学习了哪些知识?你能说一说、写一写吗?
(1)学生在自己的本子上写一写,组内交流。
(2)学生汇报,老师补充并同时在黑板上整理,形成下图。
【设计意图】总复习是对一个学期所学知识的全面整理和巩固,帮助学生梳理知识,形成完整、系统的知识网络。这样既有利于学生更好地理解和掌握已学的知识内容,也有利于培养学生良好的复习整理习惯。
2、概念回顾。
(1)复习分数的意义。
教师:分数的意义是什么?
学生:一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。把单位“1”平均分成若干份,这样的一份或几份可以用分数表示,表示其中一份的数叫分数单位。
教师:单位“1”与分数单位有什么不同?请举例说明。
学生:把一块月饼平均分给5个同学,每位同学分到这块月饼的。这块月饼就是单位“1”,就是分数单位。
教师:分数与除法有什么关系?
(2)复习真分数和假分数。
教师:什么是真分数和假分数?
学生1:分子比分母小的分数叫做真分数,分子比分母大或分子和分母相等的分数叫做假分数。
学生2:真分数小于1,假分数大于或等于1。
学生3:假分数可以转化为整数或带分数。
(3)复习分数的基本性质。
教师:什么是分数的基本性质?它与什么相似?
学生:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。它与商不变性质相似。
教师:如果的分子加6,要使分数的大小不变,分母应该怎么办?为什么?
学生:分母应该加16,因为分子加6之后扩大到原来的3倍,分母也要相应地扩大到原来的3倍,所以应该加16。
(4)复习约分和通分。
教师:什么叫约分?什么叫通分?它们分别有什么作用?
学生1:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。约分可以把一个分数化成最简分数。
学生2:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分便于比较异分母分数的大小,也便于异分母分数相加减。
教师:什么是最简分数?
学生:分子和分母只有公因数1,这样的分数叫做最简分数。
(5)复习分数和小数的相互转化。
教师:分数如何化成小数?小数如何化成分数?
学生:分数化小数,可以用分子除以分母,除不尽按要求取近似数;小数化分数,一位小数就是十分之几,二位小数就是百分之几……
教师:怎样的最简分数可以化成有限小数?为什么?
学生:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数。因为分母只含有质因数2和5,可以通过分数的基本性质把分子、分母同时乘若干个2或5,使分母变成整十或整百、整千等,一定可以化成有限小数。
(6)复习分数的'加减法。
教师:分数的加减法运算要注意什么?
学生:要先把异分母分数化成同分母分数,计算结果要化成最简分数。能简算的要简算。
【设计意图】通过对概念的回顾与复习,可以加强知识间的联系。通过问答的形式帮助学生更好地理解与记忆分数的意义和性质、分数的加法和减法的相关内容。例如,约分与通分既有联系又有区别,它们都是依据分数的基本性质,保持分数的大小不变;它们的区别在于,约分只对一个分数进行,而通分至少要对两个分数进行。再比如,利用分数与除法的关系,既可以将假分数化成带分数,也可以解决分数化小数的问题(分数化小数既可以利用分数与除法的关系,也可以利用分数的基本性质)。
(二)应用拓展,发展技能
1、分数的意义与性质练习。
(1)分数单位是的最简真分数有();分子是3的假分数有(),其中最大的是(),最小的是()。
(2)把一条6米长的绳子平均分成8段,每段长()米,每段是全长的()。
(3)()÷()=0.6=()÷35。
(4)用直线上的点表示下面各数,估计一下哪个更接近2。
(5)先填空,再把各数按照从小到大的顺序排列。
(6)下面哪些数是最简分数,哪些数不是最简分数,把不是最简分数的化成最简分数。
【设计意图】第(1)小题至第(6)小题是关于分数的意义和性质的综合练习,其中第(4)小题用数轴上的点表示数,有助于进一步理解分数与小数的联系,并通过估计培养学生的数感;第(5)小题既能帮助学生复习分数的基本性质,还涉及分数的大小比较,其中与的大小比较需要学生选择合适的策略,是对学生思维灵活性的考查。
2、分数的加减法练习。
【设计意图】同时出现同分母分数加减法、异分母分数加减法以及加减混合运算,旨在帮助学生切实理解同分母分数加减法、异分母分数加减法的联系和区别。如果时间允许还可以适当增加简便运算的练习,提高学生计算的熟练程度和技巧。
3、拓展练习。
(1)为帮助四川地震灾区的小朋友,小红捐献了自己压岁钱的,小刚捐献了自己压岁钱的,小刚捐的钱一定比小红多吗?请说明理由。
(2)在等式=+的括号里填入适当的数,使等式成立。
【设计意图】第(1)小题旨在考查学生对单位“1”的掌握情况,为六年级学习分数乘除法解决问题做铺垫。第(2)小题重在考查学生对分数的基本性质掌握情况,培养学生思维的灵活性。如果括号里填相同的数,那么=+;如果括号里填不同的数,则有多种选择,=+=+=+=+。对五年级的学生而言,不需写出所有答案,只要能有意识地先将分子、分母乘以相同的数,再分成两部分,最后化简为最简分数即可。
(三)课堂小结,回顾反思
1、通过今天的复习,你有什么收获?在练习的过程中遇到什么困难,出现什么错误?
2、回忆今天复习的方法,对今后的复习有什么启示?
【设计意图】对于复习课,教师要关注两点:一是查漏补缺,发现问题是改进教学的起点,也是帮助学生进步的方向;二是关注反思,培养学生整理与复习的方法。
分数的意义和性质教学设计3
学习内容:
课本第76页例2及“做一做”第2题。
学习目标:
1.我能通过学习归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2.我能体会到数学知识间的内在联系,感受学习数学知识的价值。
学习重难点:
我能应用分数的基本性质解决简单的实际问题。
学习过程:
一、导入新课
二、合作探究、检查独学
1.自学教科书76页例2: 把和化成分母是12而大小不变的分数。
(1)思考:① 要把2/3化成分母是12的分数,我们就要把分母( )乘( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母3乘了个4,所以要使分数大小不变,就应该( )。最后分子分母都乘了个( ),就把2/3化成了分母是12的`分数( )。
② 要把10/24化成分母是12的分数,我们就要把分母( )除以( )才能得到12;分数的基本性质告诉我们,分数的分子和分母要同时乘或除以相同的数(0除外)时,分数的大小才不变,现在我们把分母24除以了个2,所以要使分数大小不变,就应该( )。最后分子分母都除以了个( ),就把10/24化成了分母是12的分数( )。
(2)结合我们上面的思考,把教科书75页例2中的几个方框填完整。
2.小组代表展示、汇报
3.总结升华
4.我能行: 完成课本第76页“做一做”第2题。
分数的意义和性质教学设计4
教学目标:
1.使学生初步理解单位“1”和分数单位的含义,进一步理解分数的意义;探索并理解分数与除法的关系,会用分数表示计量单位换算的结果,会求一个数是另一个数的几分之几的实际问题‘认识真分数和假分数,知道带分数是整数和真分数合成的数,会把假分数化成整数或带分数,会进行分数与小数的互化。
2.使学生探索并理解分数的基本性质,知道最简分数的含义,掌握约分和通分的方法,能正确进行约分和通分,会进行分数的大小比较。
3.使学生经历分数意义的抽象、概括过程以及分数与除法的关系、假分数化成整数或带分数、分数与小数互化的探索过程,进一步发展数感,培养观察、比较、抽象、概括等能力。
4.使学生初步了解分数在日常生活中的应用,增强自主探索与合作交流的意识,树立学好数学的信心。
教学重点、难点:
1.教学分数的含义,重点是建立单位“1”的概念。
2.以分数单位为新知识的生长点,教学真分数和假分数。
3.用分数表示同类两个数量的关系,扩展对分数意义的理解。
4.通过操作活动感受分数与除法的关系。
5.先特殊后一般,通过改写假分数,教学带分数。
6.优化小数与分数相互改写的教学。
7.理解分数的性质并进行通分和约分。
第1课时分数的意义
教学内容:
教材第52页例1和“练一练”,第58页练习八的第1~4题。
教学目标:
1.使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。
2.使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的'发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
教学重点:
认识和理解分数的意义。
教学难点:
认识和理解单位“1”。
教学方法:
探究合作法、讲解分析法、练习法等。
教学用具:
ppt。
教学过程:
一、谈话导入,唤醒已知
在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。
二、合作探索,理解意义
1.教学例1
出示例1中的一组图
请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。
学生汇报所填写的分数,你认为这些图中分别是把什么平均分的?
一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。
左起第四个图形与前三个图形有什么不同?
一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
(1)在这几个图形中,分别把什么看成单位“1”的?
(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?
(3)从这些例子看,怎样的数叫作分数?
拿12根小棒自已创造一个分数
说说你是怎么做的?
如果老师要表示6根小棒可以用什么分数表示?
2.完成“练一练”
第1题各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。
每个分数的分数单位是多少?各有几个这样的分数单位?
第2题,观察直线上是把哪个部分看作“1”的?直线上表示是怎样想的?
引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。
让学生在( )里填上合适的分数。
交流:你是怎样填的?为什么这样填?
三、巧妙联系,深化理解
1.做练习八的第1题
先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。
同样是三分之二,为什么涂色桃子的个数不同?
2.做练习第2、3、4题。
第2题先读出每个分数,再说说每个分数的分数单位。
第3题让学生填,交流时说说是怎样填的。
第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”
四、全可总结,延伸拓展
这节课学习了哪些内容?
分数的意义和性质教学设计5
一、教学内容
假分数
教材第70页的例3。
二、教学目标
1.使学生认识带分数,学会把假分数化成整数或带分数的方法。
2.进一步培养学生的数感。
三、重点难点
掌握把假分数化成整数或带分数的方法。
四、教具准备
投影。
五、教学过程
(一)导入
提问:上节课我们学习了什么知识?什么叫真分数?什么叫假分数?
学生回忆并回答。
(二)教学实施
1.出示例3中的插图。
提问:从图中你知道了哪些分数信息?其中一个同学说:“我吃了一个半”,怎样用分数表示一个半?
老师随着提问,出示下图。
学生观察图,先独立思考,然后指名回答,“一个半”是1+的和。
老师提示:1+的和可以写成1。(板书:1)
2.再让学生观察插图中其他几个同学吃了多少个橙子?怎样用分数表示?
学生试着说一说,老师分另”板书:1,2,。
3.老师指出:像1,1,…这样的分数,叫带分数。观察这些带分数都是怎样组成的?你会读出这几个带分数吗?
4.请学生独立举出一两个带分数,让学生读一读。
5.老师小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。
6.指出:有时根据需要,要把假分数化成整数或带分数。
(三)思维训练
做同一种零件,王师傅2小时做15个,李师傅3小时做20个。谁做得快一些?(化成带分数再比较)
(四)课堂小结
通过本节课的学习,我们认识了什么是带分数,并会正确地把假分数化成带分数。
第三课时
一、教学内容
第71页的例4及“做一做”。
二、教学目标
1.进一步培养学生的数感。
2.培养学生应用数学知识解决问题的意识。
三、重点难点
掌握把假分数化成整数或带分数的方法。
四、教具准备
投影。
五、教学过程
(一)导入
(1)出示例4,请学生看图说出假分数。
老师指出:这里都把一个圆看作单位“1”。
提问:
(1)它们的分数单位分别是什么?它们各有几个这样的分数单位?
(2)怎样把这几个假分数化成带分数?
学生以小组为单位讨论第(2)个问题。
请小组代表发言:=1=2
请问:你是怎样得到这两个结果的?
学生汇报,可以从以下两个方面说:一种是看图直接得出=1=2,一种是根据分数与除法的关系得到结果。
老师强调指出:因为4个是1,而8÷4=2,所以8个是2,也就是=8÷4=2
提问:这两个结果都是什么数?你发现在什么情况下,假分数能化成整数了吗?
小结:当分子是分母的倍数时,假分数可以化成整数。
提问:的'分子还是分母的倍数吗?这种情况怎样化?学生回答:根据分数与除法的关系计算7÷3,商2表示7份中的6份,还剩1表示1份,是所以结果是2。
提问:化成带分数,怎样化?
学生独立完成,写在练习本上,然后集体订正。
=6÷5=1
(二)小结。
假分数化成整数或带分数的方法是什么?
(1)分子是分母的倍数时,化成整数,用分子除以分母,商是整数。
(2)分子不是分母倍数时,化成带分数,用分子除以分母,数的整数部分,余数是分数部分的分子,分母不变。
9.指导学生完成教材第71页的“做一做”。
学生口述方法及结果,全班同学判断。
(三)思维训练
在中,a是非0自然数。当a时,它是真分数;当a时,它是假分数;当a_时,它能化成整数。
第四课时
一、教学内容
真分数和假分数的练习课
教材第72一74页练习十三的第1一13题。
二、教学目标
1.通过教学,巩固学生对真分数、假分数和带分数的认识,并能正确地把假分数化成整数或带分数。
2.培养学生综合应用所学知识解题的能力。
3.培养学生复习的良好习惯。
三、重点难点
综合应用分数的意义及真分数、假分数和带分数的知识解题。
四、教具准备
投影。
五、教学过程
(一)导入
谈话:前几节课,我们研究了有关分数的哪些知识?
学生回忆并回答。
老师:今天,我们就来应用这些知识解题,看谁掌握得好。
(二)教学实施
1.完成教材第72页的第1题。
让学生在课本上填一填,并读一读。
2.完成教材第72页的第2题。
老师提示:把一个椭圆或一个六边形看作单位“1”。
让学生看图在课本上写出分数。
提问:还可以把谁看作单位“1"?涂色部分占几分之几?学生自己确定单位“1",再看图写出分数,集体交流。
分数的意义和性质教学设计6
一、教学内容
1.分数的意义、分数与除法的关系
2.真分数与假分数
3.分数的基本性质
4.最大公因数与约分
5.最小公倍数与通分
6.分数与小数的互化
二、教学目标
1.知道分数是怎样产生的,理解分数的.意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质,会比较分数的大小。
4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。
5.会进行分数与小数的互化。
三、编排特点
1.多侧面地展现了分数的来源。现实需要和数学需要。
2.把因数、倍数的有关知识与分数的相关知识结合起来教学。
3.关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。
4.部分内容作了适当的精简处理或编排调整。
四、教学建议
1. 充分利用教材资源,用好直观手段。
2. 及时抽象,在适当的抽象水平上,建构数学概念的意义。
3. 揭示知识与方法的内在联系,在理解的基础上掌握方法。
五、具体安排:略
分数的意义和性质教学设计7
一、在解决简单的实际问题中,沟通整数除法与分数的联系
1. 回顾整数除法的含义。
(1)幼儿园的马老师把6块小点心,平均分给3个小朋友,每个小朋友得到多少块?
(2)提问:你是怎么得到的?
预设:6÷3=2(块)
2. 回顾分数的意义
二、在解决稍复杂的实际问题中,深化对分数意义的理解
(一)借助问题解决完成分数意义的深化
1. 把3块月饼,平均分给4个人,每人分得多少块?
2. 要求:请你用手中的学具剪一剪、摆一摆,也可以在本上写一写、画一画。表示出平均每人分得多少块?
3. 汇报:一边摆一边说自己是怎么得到每人分的块数的`。
(二)巩固用分数表示商
请小组内交流想法
① 把这桶饼干平均放在5个保鲜盒中,平均每个保鲜盒放多少kg?
② 马腾从家到学校走了15分钟,他平均每分钟走多少km?
三、在理解分数意义的基础上,探究分数与除法的关系
1. 提问:观察这几个除法算式,你认为除法与分数有怎样的关系?
2. 提问:如果用a表示被除数,用b表示除数,这个关系式可以怎样写?
3. 提问: a、b可以是任何数,对吗?
4. 小结:在除法中,0不能做除数,分数中的分母,相当于除法中的除数,所以分母不能是0。
四、综合应用,巩固理解分数与除法的关系
1. 教材第50页,“做一做”。
在下面括号里填上适当的数。
2. 教材第51页练习十二,第1题。
这些葡萄干平均装在2个袋子里,每袋重多少千克?
平均装在3个袋子中呢?
【分数的意义和性质教学设计】相关文章:
《分数的意义和性质》教学反思03-09
分数的意义教学设计02-21
《分数的意义》教学设计03-01
《分数基本性质》教学设计04-25
分数的基本性质教学设计04-29
《小数的意义和性质》教学反思03-12
分数的意义教学设计15篇02-22
分数的性质教学反思12-15
《比例的意义和基本性质》教学反思03-12