倒数的认识教学设计

时间:2024-09-12 16:26:37 教学设计 我要投稿

倒数的认识教学设计(15篇)

  作为一名默默奉献的教育工作者,时常需要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么问题来了,教学设计应该怎么写?下面是小编精心整理的倒数的认识教学设计,仅供参考,希望能够帮助到大家。

倒数的认识教学设计(15篇)

倒数的认识教学设计1

  教学内容:

  新人教版六年级数学上册第28页的例1。

  教学目标:

  1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

  2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

  3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

  教学重点:

  理解倒数的意义,学会求倒数的方法。

  教学难点:

  熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

  教学准备:

  多媒体课件。

  教学过程:

  一、猜字游戏导入,揭示课题。

  上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

  如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。

  师:谁还能说出这样的数?(课件出示)

  象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)

  二、出示学习目标:

  1、理解倒数的意义。

  2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

  三、自主探究新知

  (一)探究讨论,理解倒数的意义。

  1、(课件出示教材第24页例1的四个算式。)

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)

  生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

  3、你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?

  (二)深化理解。

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)

  2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

  例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)

  3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  (三)运用概念。

  1、讨论求一个数的倒数的方法。

  出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置---5/3 7/2的分子分母调换位置---2/7

  所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

  2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)

  师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

  3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  四、堂堂清作业

  (一)填一填。(出示课件)

  1、乘积是()的()个数()倒数。

  2、a和b互为倒数,那a的倒数是(),b的倒数是()。

  3、只有当假分数为()时,它与它的'倒数相等;而()是没有倒数。

  4、一个真分数的倒数一定是()。

  (二)判断题。(演示课件)

  1、5/3是倒数。()

  2、因为3/4×4/3=,所以4/3是倒数。()

  3、真分数的倒数大于1,假分数的倒数小于1。()

  4、因为1/4+3/4=1,所以1/4和/4互为倒数。()

  (三)说一说。(课本第29页的第3题)

  五、课堂小结:

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。

  2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

  求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

倒数的认识教学设计2

  学情分析:

  本班级学生在学习本课时内容时,已经学会了分数乘法的计算,在具备分数乘法计算能力的基础上进行学习《倒数的认识》,我相信本班级学生能顺利地完成这一课时内容的学习,且学会这一课时也将为以后学习分数除法打下坚实的基础。

  教学目标:

  1、理解倒数的意义,掌握求倒数的方法,并能正确、熟练地求出一个数的倒数。

  2、在充分的观察、思考、分析、讨论活动中,培养学生的思维能力和灵活解决问题的能力。

  3、通过本节课的学习,激发学生学习数学的兴趣,让学生体验成功的快乐。

  教学重难点:

  重点:倒数的意义与求法。

  难点:1、0的倒数,整数、小数、带分数的倒数的求法。

  教具准备:课件(或练习张贴纸)

  教学过程:

  一、揭示倒数的意义

  同学们,我们已经学会了分数乘法的计算。这节课我们将运用分数乘法的知识去解决新的问题,大家有信心学好吗?请看大屏幕。课件依次展示(一).(二):

  (一)同学们认识以下各组汉字吗?请仔细观察每组汉字,你有何发现?

  吴——吞杏——呆干——士

  (二)仔细观察下列各组算式,再进行计算。

  (三)计算过后,你们发现了什么?

  (四)指出今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

  答后组织学生进行一场写乘积是1的任意两个数的算式的比赛。(限时1分钟)

  (五)学生汇报,教师有选择地进行板书。

  对学生的学习成果加以肯定表扬。进而追问:

  1,如果给你们充足的时间,你们还能写出多少个这样的乘法算式?(指名让学生回答)

  2,那么你们是根据什么条件写出这么多的算式呢?(思考后指名让学生回答并集体交流订正。)

  (六)揭示倒数的意义:刚才同学们所写的两个数的乘积都是1。像这样乘积是1的两个数,我们把它们称之为互为倒数。

  板书:乘积是1的两个数叫做互为倒数。(生齐读,师让生划出关键词进行交流熟记。)

  (七)举例说明倒数的意义。

  1,黑板上所写的两个数的乘积都是1,所以它们互为倒数。比如和乘积是1,我们就说和互为倒数,或的倒数是、是的倒数。

  板出:和互为倒数的倒数是是的'倒数

  2,为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?(思考后指名学生回答)

  3,指出倒数是表示两个数之间的关系,它们是相互依存的,所以必须说一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?(预设:约数和倍数。)

  4,举例引导学生认识今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。5和的积是1,我们就说……(生说)× =1,这两个数的关系可以怎么说?(生说)

  5,同学们都学得不错,现在老师要考考大家是不是真正理解了倒数的意义。

  (八)课件出示测试题。

  1、判断

  1.得数是1的两个数叫做互为倒数。 ()

  2.因为10× =1,所以10是倒数,是倒数。 ()

  3.因为+ =1,所以是的倒数。 ()

  2、口答练习。

  1×()=1 ×()=1×()=1 ×()=1

  下面哪两个数互为倒数。(连线)注:以下为例7学习内容。

  二、探索求一个数的倒数的方法。

  (一)引导观察,发现特征:

  1,我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起观察一下刚才的这些例子,看有何发现?(观察后指名学生回答)

  2、指出分子和分母调换了位置,相乘时分子和分母就可以完全约分,得到乘积是1。

  3、根据这一特点你能写出一个数的倒数吗?

  4、试一试:写出、的倒数。(完后指名板演,集体交流订正)

  5、引导小结:求一个数的倒数的方法,只要把分数分子分母调换位置。

  (二)思考讨论,延伸运用:1,除了真假分数外,其它数的倒数你们能写出来吗?

  2,课件出示讨论题:

  (1)18的倒数是什么?1的倒数是什么?0的倒数呢?

  (2)的倒数是什么?

  (3)0.2的倒数是什么?

  3,练习:写出下列各数的倒数:

  8 37 0.3 1.2

  4,我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。(生思后指名说)。

  5,引导总结:求一个分数的倒数,只要把分子分母调换位置。如果是求一个带分数的倒数时要先化成假分数;求一个小数的倒数时要先化成分数(最简分数);求一个整数(0除外)的倒数时,可以把这个整数看成分母是1的分数;然后再调换分子分母的位置。(让生齐读)

  三、练习巩固,加深认识。

  1、请打开课本P50阅看,把你认为重要的划起来读一读。

  2、完成“练一练”。

  写出下面各数的倒数。

  8

  (1)完后问学生的倒数可以这样写吗?= 。(预设:1除外互为倒数的两个数是不会相等的。)

  (2)师:我们在书写时要写清谁是谁的倒数,或谁的倒数是谁。

  3、先说说下面每组数的倒数,再看看你能发现什么?

  (1)的倒数是();的倒数是();的倒数是();

  (2)的倒数是();的倒数是();的倒数是();

  (3)的倒数是();的倒数是();的倒数是();

  (4)3的倒数是();9的倒数是();14的倒数是();

  4、填空。

  7×()= ×()=()× =0.17×()=1

  5、独立完成课本P51练习十第1-6题,师巡视。完后师问生答进行对照,共同订正。

  四、课堂总结:今天我们学会了什么知识?还有不理解的地方吗?

  五、布置作业:练习十第2、3题。

倒数的认识教学设计3

  教学内容:

  数学第十一册19页----倒数的认识。

  教学目标:

  (1)知识目标:理解倒数的意义,掌握求倒数的方法。

  (2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。

  教学重点:

  理解倒数的意义和怎样求一个数的倒数。

  教学难点:

  正确理解倒数的意义及0为何没有倒数。

  一、游戏导入

  教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)

  二、探究意义

  1.找特点

  师:请同学们观察黑板上四组数都有什么特点。

  (生:分子、分母互相颠倒 )

  师:请同学们把每一组中的两个数相乘,看乘积是多少?

  (生:每一组中的两个数乘积都是1 )师及时板书

  师:谁还能很快说出乘积是1的两个数吗?

  (生回答)

  师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?

  (生:两个数分子分母颠倒位置乘积是1)

  师:那么乘积是1 的两个数数学给它起个什么名呢?

  (生回答,师板书:乘积是1 的两个数叫互为倒数)

  师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。

  重点讲解“互为”的意思,就是互相是的意思。例如:

  3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。

  师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。

  (指名叙述)

  师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的.关系,是相对两个数而言,不能孤立的说某一个数是倒数。

  三、探究求倒数的方法。

  师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。

  出示:3/5 7/2 8/6 5/12 10/4

  (指名回答师板书)

  师:你们是怎么找出每个数的倒数的?

  (说自己的方法)

  师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。

  出示:6 0.5 2 7/8 1

  (生回答,师板书)并说说你是怎样求的?

  师:是不是所有的数都有倒数呢?同桌讨论

  0为什么没有倒数?(0和任何数相乘都不得1)

  师:通过同学们的练习,谁来总结求一个数的倒数的方法?

  (生总结,师板书)

  四、小结并揭示课题

  同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。

  五、巩固练习。

  1、填空

  1、乘积是()的两个数叫()倒数。

  2、因为7/15 x 15/7 =1 所以7/15和15/7( )

  3、 5的倒数是( )。 0.2的倒数是( )。

  4、()的倒数是它本身。()没有倒数。

  5、8×()=1 0.25×()= 1

  ()×2/3=1 7/2×( )=( )×8=( )×0.15 =1

  2、当把小医生。

  1、得数是1的两个数叫互为倒数。()

  2a是一个整数,它的倒数一定是 1/a 。()

  3、因为2/3×3/2=1,所以2/3是倒数。()

  4、1的倒数是1,所以0的倒数是0。()

  5、真分数的倒数都大于1。()

  6、2.5和0.4 互为倒数。()

  7、任何真分数的倒数都是假分数。()

  8、任何假分数的倒数都是真分数。()

  3、面各数的倒数

  2.5 4 1/8 2 6/7 0.12

  4、列式计算

  1、7/6加上它的倒数的和乘2/3,积是多少?

  2、 1减去它的倒数后除以0.12,商是多少?

  3、已知A×3/2=B×3/5,(A、B都是不为0的数)

  求A、B的大小

  六、教学反思:

  倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

  “倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。

  今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。

倒数的认识教学设计4

  教学目标:

  1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。

  2、通过互助活动,培养学生与人合作、与人交流的习惯。

  3、通过自行设计方案,培养学生自主探索和创新的意识。

  教学重点:

  理解倒数的含义,掌握求倒数的方法。

  教学难点:

  掌握求倒数的方法。

  教学过程:

  一、导入

  1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。

  2、按照上面的规律填数。

  3、揭示课题。今天,我们就来研究这样的数——倒数。

  二、教学实施

  1、师:关于倒数,你想知道什么?

  2、学习倒数的含义。

  (1)学生观察教材第28页主题图。

  (2)学生根据所举的例子进行思考,还可以与老师共同探讨。

  (3)学生反馈,老师板书。

  学生可能发现:

  每组中的两个数相乘的积是1。

  每组中两个数的分子和分母的位置互相颠倒。

  每组中两个数有相互依存的关系。

  (4)举例验证。

  (5)学生辩论:看谁说得对。

  (6)归纳:乘积是1的两个数会为倒数。

  3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。

  4、求倒数的方法。

  (1)出示例1、

  (2)归纳方法:你是怎样求一个数的.倒数的?板书:分子和分母调换位置。

  5、反馈练习。

  (1)完成教材第28页的“做一做”。学生独立解答,老师巡视。

  (2)完成教材第29页练习六的第1—5题。

  三、课堂作业设计

  1、找一找下列各数中哪两个数互为倒数。

  2、填空。

  (1)三分之四的倒数是(),()的倒数是六分之七。

  (2)10的倒数是(),()的倒数是1。

  (3)二分之一的倒数是(),()没有倒数。

倒数的认识教学设计5

  教学内容:北师大版小学五年级数学下册第31~32页

  教学目标:

  1、能清楚地知道倒数的概念,能求一个数的倒数。

  2、培养学生动手动脑能力,以及判断、推理能力。

  3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活。

  教学重点:能求一个数的倒数。

  教学难点:在小组间交流合作的基础上,得出倒数的概念,并能求一个数的倒数。

  教学准备:多媒体课件

  教学过程

  一、用汉字作比喻引入

  1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

  2、提一个开放性的问题:看到这个课题,你们想到了什么?

  二、新知探索:

  1.研究倒数的意义

  。乘积等于1的两个数叫做互为倒数。

  。倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  2.学生自主举例,推敲方法:

  (1)师:下面,请大家各自举例加以说明。

  (2)学生先独立思考,再交流。

  (a.以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)

  (b.以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)

  (c.以“带分数”为例;带分数的倒数是真分数。)

  (d.以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e.以“整数”为例;整数相当于分母是1的假分数)

  学生举例的过程同时将如何寻找倒数的方法也融入其中。

  3.讨论“0”、“1”的`情况:

  1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  4.总结方法:

  (除了0以外)你认为怎样可以很快求出一个数的倒数?

  三、反馈巩固:

  多媒体出示:

  1.写出下面各数的倒数:

  3/4、9/5、6、1、0、5、1.5这组数中,你最喜欢求哪个数的倒数?最不喜欢求哪个数的倒数?为什么?

  2.判断:

  (1)互为倒数的两个数的乘积一定等于1。()

  (2)2和它的倒数的和是?()

  (3)假分数的倒数是真分数。()

  (4)小数的倒数大于1。()

  (5)在8-7=1和3÷3=1中,8和7、3和3是互为倒数的。()

  (6)a的倒数是?()

  (让学生用手势判断,进行辨析,训练说理能力。)

  3.游戏:找朋友

  一名学生说出一个数,谁能又对又快地用一句话说出这个数的倒数,谁就和这名同学互为朋友。

  四、全课总结,自我评价。

  提问:通过这节课,你学到哪些知识?

倒数的认识教学设计6

  教学重点:

  认识倒数并掌握求倒数的方法

  教学难点:

  小数与整数求倒数的方法

  教学过程:

  一、基本训练

  口算:

  上面各式有什么特点?

  还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

  (板书:乘积是1,两个数)

  二、引入新课

  刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

  (板书:倒数)

  三、新课教学

  1、乘积是1的两个数存在着怎样的倒数关系呢?

  请看:那么我们就说xx是xx的倒数,反过来(引导学生说)

  xx是xx的倒数,也就是说和互为倒数。

  xx和xxx存在怎样的倒数关系呢?2和呢?

  2、深化理解

  提问:

  ①什么是互为倒数?怎样理解这句话?(举例说明)

  ②0有倒数吗?为什么?1有倒数吗?什么?

  3、求一个数的倒数

  教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

  ①出示例题

  例:写出、的`倒数

  学生试做讨论后,教师将过程板书如下:

  所以的倒数是,的倒数是。

  总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  ②深化

  你会求小数的倒数吗?

倒数的认识教学设计7

  教学内容

  人教版六年制小学数学课本第十一册《倒数的认识》。

  教学目标:

  1、智力目标:使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

  2、非智力目标:培养学生举例、观察、比较、抽象概括能力;通过自主学习获得成功的体验,提高学习数学的兴趣。

  教学想法:

  去年的毕业班,我在课堂教学进行“导师式”课堂教学模式的实践,把实践的感受撰写的论文获得长沙市论文评比一等奖。今年的毕业班,我尝试“三段式目标自主学习法”(自己瞎捏的名词)。课堂主要环节包括:接触课题,展开目标-----自主学习,到达目标-----反馈内化,延伸目标。总的思路是放手让每一个学生大胆亲近数学,根据自己的能力提出对数学的看法进行积极的学习,宗旨是全面提升学生对数学的态度和学习方法,从而提高课堂的效率。

  一、直接导入,展示目标。

  1.出示课题:倒数的认识。

  看到这个课题你能知道我们这节课的学习任务是什么?(借用三个英语单词做引路词:What? Why ? How?)。

  2.是否有哪些经验可以回答一点?(调查学生已有的知识经验和生活经验)

  二、研究学习,到达目标。边学边练

  1.自学教材5分钟,尝试做一下书本的练习题。教师巡视。

  把自己的收获,和你认为最有价值的句子写到黑板上。可以是书本上的,也可以是自己想的。写在课题下面。(鼓励学生板书,培养抽象知识的能力。)

  2.概括“倒数”的意义。

  下定义:乘积是1的两个数互为倒数。

  尝试表达:这些算式里哪两个数互为倒数?P24的几个例子,把机会留给学困生表达。

  3.怎样求一个数的倒数?

  你能找出与这些数互为倒数的数吗?

  4.穿插一个游戏,互说倒数,先叫一个学生上讲台与老师示范再同桌展开活动。

  小结方法:谁发现了求一个数的倒数的方法?

  特例:0没有倒数?

  5.作业指导。求一个数的倒数的过程。

  求3/5的倒数,下面是小红和小明的作业本,你赞成谁的书写?

  小红:3/5=5/3

  小明:3/5的倒数是5/3。

  6.当堂作业:P24的做一做。P25的第4题。做在书上。

  三、拓展目标,巩固提高。

  1.判断:(对的在括号里打“√”,错的打“×”)

  2。开放性填空。(假定法)

  四、自主小结,延伸目标。

  谈谈自己的收获和学习体会。

  教后反思:

  1.教学流程顺利。学生的`学习过程按照平时训练的自主学习方式推进,每个人根据自身基础寻求不同程度的进步和发展。每个人都在参与,都在思维。

  2.体现自己的教学观和学生观。课堂是学生的课堂,备课固然要考虑教材的处理,但更重要的是要考虑学生的感受,考虑学生的学习心理。我设计的教学过程主要围绕学生学习活动推进,让学生自主学习。长期坚持,学生的自学能力能得到很好的培养。

  3.五分钟的遗憾。看手表还有五分钟时间,不想铃声却响了。还有一个提高拓展的环节没有完整,给听课者和自己一个残缺感,是个遗憾。没关系,教研是个话题,能通过一节课展示自己的想法和做法,供大家批评、商讨,也是一件好事。

倒数的认识教学设计8

  教材分析:

  这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

  设计理念:

  本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。

  教学目标:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  能力目标:

  培养学生观察、归纳、猜想、推理和概括的能力。

  情感目标:

  提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

  教学重点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学难点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学过程:

  一、课前谈话突破难点

  1、谈话——蕴含“两个”,突破“互为”

  师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)

  二、导入揭题,引导质疑

  师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)

  师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。

  预设:什么是倒数?怎样求倒数?……

  这节课一起来探究这些问题?

  三、创设活动情景,理解概念——“倒数是什么”

  师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。

  1、在分类中理解“是什么”

  ①5/8×8/5②0。25×4③3/4+1/4

  ④1。6—3/5⑤13/7×7/13⑥3/2×6/5×5/9

  计算后你有什么发现?

  师:如果请你将这六个算式分成两类,你准备怎么分?

  (学生汇报:乘积是1。)[适当处板书:乘积是1]

  归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。

  师:这三个算式有什么共同的特征吗?

  预设:乘积是1。

  2、举例感悟“怎么做”

  师:你还能举出这样的例子吗?

  还能举出与这些算式不同的例子吗?还能举出不同的算式吗?

  归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。

  5/8倒数是8/5,8/5倒数是5/8。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  ②0。25×4这两个数的关系可以怎么说?请您告诉你的同桌。

  (学生活动)

  ⑤13/7×7/13

  3、在思辨中深入理解

  师:能说3/4和1/4互为倒数吗?为什么?

  师:能说3/2、6/5和5/9互为倒数吗?为什么?

  四、运用概念,探究方法——“怎样求倒数”

  过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?

  (投影,出示例2)

  1、求下面各数的倒数

  3/5267/20。610。250

  学生尝试。

  回报交流。

  师:这组数中,你最喜欢求哪些数的倒数?为什么?

  预设:

  生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。

  生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。

  师:这组数中,你最不喜欢哪个数的倒数?

  预设:

  生1:我最不喜欢求0的`倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。

  生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。

  师:那你是怎样求26的倒数的呢?

  你是怎样求一个小数的倒数的呢?

  归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  2、强调书写格式

  师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)

  归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

  先说说下面每组数的倒数,再看看你能发现什么?

  (1)3/4的倒数是()(2)9/7的倒数是()

  2/5的倒数是()10/3的倒数是()

  4/7的倒数是()6/5的倒数是()

  (3)1/3的倒数是()(4)3的倒数是()

  1/10的倒数是()9的倒数是(

  nbsp;1/13的倒数是()14的倒数是()

  由学生说出各数的倒数。

  师:请你仔细观察,看能从中发现什么,发现得越多越好。

  师:小组间可以先互相说一说。

  汇报:

  预设:

  生1:我从第一组中发现真分数的倒数都是假分数。

  生2:我从第二组中发现假分数的倒数是真分数或者假分数。

  生3:真分数的倒数都小于1,假分数的倒数大于1。

  3、填空:

  7×()=15/2×()=()×0。25=0。17×()=1

倒数的认识教学设计9

  教材分析:

  这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

  设计理念:

  本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。

  教学目标:

  认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  能力目标:培养学生观察、归纳、猜想、推理和概括的能力。

  情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

  教学重点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学难点:

  使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

  教学过程:

  一、 创设活动情景,引入概念

  师:我们刚刚学习了分数的乘法,老师想考考大家掌握的怎么样,能不能经受住老师的考验?

  生(众):能!

  师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。

  题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12

  生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)

  (通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)

  师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。

  出示倒数的意义:乘积是1的两个数互为倒数。

  二、 探索研究,深入理解

  师:同学们能不能说说你对倒数的意义的理解?

  提示:“互为”是什么意思?

  生:指的'是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。

  师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。

  生:(争先恐后地)不对!

  师:那我该怎么说呢?

  生:3/4和4/3互为倒数。

  师:还有其他的说法吗?

  生:3/4是4/3的倒数,4/3是3/4的倒数。

  师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?

  生:能!

  师:好!我我来考考大家!

  三、 运用概念,探讨方法

  师:(投影,出示例2)

  3/5 6 7/2 5/3 1/6 1 2/7 0

  找一找,下面的哪两个数互为倒数?

  (小组探讨交流,并说说是怎样找的?汇报交流结果。)

  生:有两种方法来找一个数的倒数:

  1、看看两个分数的乘积是不是1;

  2、看两个分数的分子与分母是否分别颠倒了位置。

  师:(征求意见)大家同意他的说法吗?

  生:同意!

  师:大家认为哪一种方法更快呢?

  生:第二种。

  师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)

  四、 出示特例,深入理解

  师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?

  生:有!1和0。

  师:(提问)那1和0有没有倒数呢?如果有,是多少?

  小组讨论、汇报。

  1、 关于1的倒数。

  因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  2、 关于0的倒数。

  因为0与任何数相乘都不等于1,所以0没有倒数。

  五、 巩固练习

  (用多媒体投影出示下列各题,学生先做,再全班交流)

  1、 写出下列各数的倒数。

  4/11 16/9 35 7/8 4/15

  2、 下面说法对不对?为什么?

  (1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。

  (2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。

  (3)0的倒数还是0。

  (4)一个数的倒数一定比这个数校

  六、归纳小结,交流共享

  师:本节课你学到了什么,你有什么体会?

  生:我认识了什么叫倒数,还学会了怎样求倒数。

  七、布置作业:练习7第7题。

倒数的认识教学设计10

  教学内容

  教科书第28~29页例1、“做一做”及相关内容。

  教学目标

  1.使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。

  2.使学生体验找一个数的倒数的方法,会求一个数的倒数。

  3.在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。

  教学重点

  理解倒数的意义;求一个数的倒数。

  教学难点

  理解“互为倒数”的含义。

  教学准备

  教学课件、写算式的卡片。

  教学过程

  具体内容 修订

  基本训练,强化巩固。(3分钟)

  1.出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。

  2.学生独立完成上面几组题,小组内检查并订正。

  创设情境,激趣导入。(2分钟)

  请个别学生说说分数乘法的计算方法,突出分子与分母的`约分。

  提示目标,明确重点。(1分钟)

  通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。

  学生自学,教师巡视。(6分钟)

  1. 观察这些算式,如果将它们分成两类,怎样分?

  2.通过观察发现算式的特点。

  展示成果,体验成功。(4分钟)

  让学生说说乘积为1的算式有什么特点。

  学生讨论,教师点拨。(8分钟)

  1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。

  2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。

  3.引导学生思考:互为倒数的两个数有什么特点?

  4.探讨求倒数方法。

  (1)出示例题,让学生说说哪两个数互为倒数。

  (2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书

倒数的认识教学设计11

  教材分析:

  教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

  教学目标:

  (1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

  (2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

  (3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

  教学重点:知道倒数的意义和会求一个数的倒数

  教学难点:1、0的倒数的求法。

  教具准备:课件

  教学过程:

  一、课前谈话:

  师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

  生:好!

  师:那你想怎样表述我们的关系?

  生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。

  二、揭示倒数的意义

  师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??

  师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

  生:(齐)能!

  师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

  准备好了吗?开始??

  师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

  (生读,师有选择的板书在黑板上。 )

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

  师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

  生:无数个

  出示例7

  师:那请你们来帮帮忙,找出乘积是1的两个数。

  (学生个别回答)

  师:你们找的这些与之前写的所有算式都有怎样的共同点?

  生:乘积都是1。

  师:你知道吗?揭示意义】 教师板书:乘积是1的两个数叫做互为倒数。生齐读。

  师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数) 【示范说】

  师:3/8和8/3互为倒数!我们还可以怎么说呢。

  生:3/8的倒数是8/3;8/3的倒数是3/8。

  师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

  生1:“互为”是指两个数的关系。

  生2:“互为”说明这两个数的关系是相互依存的。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?

  师:2/5和5/2的积是1,我们就说??(生齐说)

  师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

  (学生活动)

  (小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  探索求一个倒数的方法

  师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

  生1:互为倒数的两个数分子和分母调换了位置。

  师:同意吗?

  生:同意。

  师:根据这一特点你能写出一个数的倒数吗?

  生:能

  师:试一试!

  师在黑板上出示3/5 7/2 ,写出它们的倒数。

  师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?

  生:把5看成是分母是1的分数,再把分子分母调换位置。

  求小数的倒数的方法:小数 求带分数的倒数的方法:带分数

  三、 分数倒数。 倒数。 假分数

  师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)

  0的倒数呢?

  师:为什么?

  生1:因为0和任何数相乘都得0,不可能得1。

  师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

  生3:1 的倒数是1,0没有倒数。

  (生齐读求一个数倒数的方法。 )

  四、巩固练习

  1、打开书,阅读课本P34,把你认为重要的划起来。

  2、完成练一练。

  (1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

  (2)发现一学生书写有误,与该生交流。

  (3)用展台展示该生的错误。

  师:这样写可以吗?(4/11=11/4)

  生:不可以!

  师:为什么?

  生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

  (4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

  3、小游戏:同桌互相出一题,对方说出答案。

  4、先说说下面每组数的'倒数,再看看你能发现什么?

  (1)3/4的倒数是( ) (2)9/7的倒数是( )

  2/5的倒数是( )10/3的倒数是( )

  4/7的倒数是( ) 6/5的倒数是( )

  (3)1/3的倒数是( ) (4)3的倒数是( )

  1/10的倒数是( )9的倒数是( )

  1/13的倒数是( )14的倒数是( )

  由学生说出各数的倒数。然后

  师:请你仔细观察,看能从中发现什么,发现得越多越好。

  师:小组间可以先互相说一说。

  汇报:

  生1:我从第一组中发现真分数的倒数都是假分数。

  生2:我从第二组中发现假分数的倒数是真分数或者假分数。

  生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。

  4、填空:

  7×( )=15/2×( )=( )×3又2/3=0.17×( )=1

  五、课堂小结

  1、小结:今天我们学习了什么???

  2、学了倒数有什么用呢?

  大家课后可去思考一下。

  板书设计

  倒数的认识

  乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。

  0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。

  (0.1=1/10) (5=5/1) (1又1/8=9/8)

  求小数的倒数的方法: 求带分数的倒数的方法:带分数

  分数假分数 倒数。 倒数。

倒数的认识教学设计12

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:理解倒数的意义,求一个数的倒数。

  教学难点:从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0。25×4 2、

  计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

  如0。5、1。7 3、抽象概念,乘积是1的'两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的分子分母调了一下位置;

  师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1。2 0

  学生独立完成,然后交流。

倒数的认识教学设计13

  教学目标:

  1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

  2、培养学生的数学思维。

  教学重点:

  理解倒数的意义,求一个数的倒数。

  教学难点:

  从本质上理解倒数的意义。

  教学过程:

  一、呈现数据,先计算,再观察发现。

  1、出示:3/8×8/3 7/15×15/7 5×1/5 0.25×4

  2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

  二、交流思辨,抽象概念。

  1、汇报。乘积都是1。

  2、你能根据上面的观察写出乘积是1的另一个数吗?

  3/4×( )=1 ( )×9/7=1

  说说你是怎样写得,有什么窍门?

  你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

  如0.5、1.7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

  4、让学生说说上面的数(用两种说法)。

  5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

  学生讨论:分数的分子分母调了一下位置;

  师:那么5×1/5 0.2×5乘积也是1哟!怎么?把整数和小数也化成分数。

  6、沟通:分子分母倒一下跟乘积是1有联系吗?

  7、现在你对倒数有了怎样的认识?

  三、求一个数的倒数。

  1、找一个数的倒数。

  5/11的倒数是( ),( )的'倒数是4/7,( )和15是互为倒数。

  你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

  2、会找了吗?你能找到下列数的倒数吗?

  3/5 4/9 6 7/2 1 1.25 1.2 0

  学生独立完成,然后交流。

倒数的认识教学设计14

  教学目标

  1。通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  2。使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

  3。通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  教学重难点 :

  理解倒数的意义,学会求倒数的方法。

  教学难点:

  发现倒数的一些特征。

  教具准备

  课件

  设计意图

  通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

  一、猜字游戏引入新课

  找找下面文字的构成规律

  呆———杏 土———干 吞———吴

  按照上面的规律填数

  ——( ) ——( ) ——( )

  能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

  二、新知探究

  (一)探究讨论,理解倒数的意义。

  1.课件出示算式。

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。

  我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  2.出示倒数的意义:乘积是1的两个数互为倒数。

  3.你是怎样理解互为倒数的呢? 能举例吗?

  (二)深化理解。

  1.乘积是1的两个数存在着怎样的倒数关系呢?

  2.互为倒数的两个数有什么特点?

  3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  (三)运用概念。

  1.讨论求一个数的`倒数的方法。

  出示例2:写出其中3/5 、7/2 两个分数的倒数。

  学生试做讨论后,教师讲过程 。

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

  2。怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  三、巩固练习

  (一)完成教材第28页的“做一做”

  (二)完成教材第29页练习六的第1—5题。

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?

倒数的认识教学设计15

  教学目标:

  (1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

  (2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维

  (3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。

  教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。

  教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。

  教学准备:写有数的纸片。

  教学过程:

  一、导入新课。

  请同学们观察下面两组字:杏–呆,吴–吞。

  师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。

  学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。

  师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的'数,这样的两个数之间有什么联系呢?

  学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。

  师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)

  二、新知探究。

  (一)小组验证互为倒数的两个数的特点。

  师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。

  师:你们刚才写的所有算式都有怎样的共同点?

  学生:我们写的每组数的分子与分母的位置是调换了的。

  师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)

  板书:第一组:3/2+2/3=9/6﹢4/6=13/6

  6/5+5/6=36/30+25/30=61/30

  第二组:3/2-2/3=9/6-4/6=5/6

  6/5-5/6=36/30-25/30=11/30

  第三组和第四组:3/2×2/3=16/5×5/6=1

  师问:互为倒数的两个数相加、相减、相乘有何特点?

  学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。

  师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)

  指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……

  2、试下面数的倒数。

  2的倒数是0。2的倒数是0。25的倒数是

  让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。

  明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。

  (二)课堂练习:求一个数的倒数。

  1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。

  2、师:完成教材P45“填一填”

  5/87/462/310.8(补充)

  让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。

  3、讨论:0有倒数吗?学生交流。

  板书:0和任何数相乘都不能得到1,所以0没有倒数。

  4、完成P47课堂活动的对口令。

  汇报时让学生说一说谁是谁的倒数。

  (小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  5、出示判断:

  (1)得数为1的两个数互为倒数。()

  (2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()

  (3)互为倒数的两个数乘积一定是1。()

  (4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )

  (5)a是1/a的倒数,1/a是a的倒数。()

  (6)a/b是b/a的倒数,b/a是a/b的倒数。()

  6、探索求真分数和假分数的倒数的特点。

  学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。

  师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。

【倒数的认识教学设计】相关文章:

倒数的认识的教学设计12-17

《倒数的认识》教学设计01-30

倒数认识教学设计12-29

倒数的认识教学设计01-03

倒数的认识教学设计15篇01-31

倒数的认识教学设计(合集15篇)04-08

倒数的认识教学设计集锦15篇04-05

倒数的认识教学设计(集合15篇)04-05

数学倒数的认识教学反思04-16