比的意义教学设计

时间:2024-08-09 05:23:03 教学设计 我要投稿

比的意义教学设计

  作为一位优秀的人民教师,总不可避免地需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么什么样的教学设计才是好的呢?以下是小编整理的比的意义教学设计,仅供参考,大家一起来看看吧。

比的意义教学设计

比的意义教学设计1

  知识与技能:

  结合学生生活实际,借助学生的生活经验,使学生理解和掌握百分数的概念,知道百分数与分数之间的区别,会正确读、写百分数,会解释日常生活中常见的百分数。

  过程与方法:

  在理解百分数的意义的过程中,培养学生的分析比较能力和抽象概括能力。情感、态度、价值观:通过搜集学习材料并进行一系列的讨论和研究,使学生体验数学与日常生活的联系,激发学生学习数学的兴趣,树立学好数学的信心。

  教学重点:

  理解和掌握百分数的意义。

  教学难点:

  正确理解百分数和分数的区别

  课前准备:

  学生搜集身边或日常生活中的百分数。

  教学过程:

  一、创设情境,生成问题

  1、回答:

  (1)7米是10米的几分之几?

  (2)51千克是100千克的几分之几?

  2、说出下面各个分数的意义,并指出哪个分数表示具体数量,哪个分数表示倍比关系。

  (1)一张桌子的高度是xx米。

  (2)一张桌子的高度是长度的xx。

  (引导学生说出:xx米表示0.81米,是一具体的数量表示把长度平均分成100份,桌子高度占81份,表示倍比的关系。)

  二、探索交流,解决问题

  1、教师举几个百分数的例子:这次半期考,全班同学的及格率为100%,优秀率超过了50%;体检的结果显示,我校的近视人数占全校总人数的64%??像100%、50%、64%这样的数叫做“百分数”。

  2、同学们能举出几个百分数的例子吗?说说在生活中你们还在哪些地方见到百分数?

  3、举例说说百分数表示什么,并归纳出百分数的意义。(表示一个数是另一个数的百分之几的'数,叫做百分数,也可以叫做百分率或百分比。)

  4、讨论百分数和分数的联系及区别:分数既可以表示一个数,又可以表示两个数的关系。而百分数只表示两个数的关系,它的后面不能写单位名称。

  5、教学百分数的写法:通常不写成分数形式,而是在原来分子后面加上百分号“%”来表示。如:

  百分之九十写作:90%;

  百分之六十四写作:64%;

  百分之一百零八点五写作:108.5%。

  (写百分号时,两个圆圈要写得小一些,以免和数字混淆)

  6、教学百分数的读法:百分数的读法和分数的读法大体相同,也是先读分母,后读分子。

  三、巩固应用,内化提高

  1、完成P83“做一做”第二题:读出下面的分数。

  2、完成P83“做一做”第一题:直接在书上的横线上写出对应的百分数。

  3、P86练习十八第4题:读出或写出报栏中的百分数。

  4、“做一做”第三题:学生根据自己的理解,说说分数和百分数在意义上有何不同。

  四、回顾整理,反思提升。

  思考题:某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。五、六年级的三好学生的百分率各是多少?哪个年级的三好学生的百分率高?

  课后作业:

  练习十八第1~3题。

  板书设计:

  百分数的认识

  百分数表示一个数是另一个数的百分之几。百分数也叫百分率或百分比

  百分之九十写作:90%;百分之六十四写作:64%;百分之一百零八点五写作:108.5%。

比的意义教学设计2

  教学目标

  1、结合操作活动使学生初步理解方程的意义。

  2、会用含有未知数的等式表示等量关系。

  3、感受方程与现实生活的密切联系,体验数学活动的探索性

  教学重点:结合具体情境理解方程的意义,能用方程表示简单的等量关系。教学难点:能用方程表示简单的.等量关系。

  教学过程

  活动一:

  谈话导入:同学们,你们知道我们国家的国宝是什么吗?对,大熊猫是我国一级保护动物,更是我国外交活动中表示友好的形象大使。动物园的叔叔正在科学的喂养大熊猫呢!

  出示信息窗一,引导学生观察情境图,阅读文字信息。

  学生观察主题图,认真阅读信息。

  活动二:借助天平理解等式。

  分组实验:①天平左盘放一个10克的砝码,右盘放一个20克的砝码,天平不平衡,可以用式子10<20表示;②在左盘再放上1个10克的砝码,天平平衡了,用等式10克+10克=20克表示。

  分组实验:天平左盘放一个20克的砝码和一个不知重量的方木块,右盘放一个50克的砝码,一成天平平衡,用等式20+=50表示。

  小结:等式表示相等的关系。

  活动三:概括方程的意义。

  师:观察黑板上的三个式子:+20=70、2=150、3+10=100,你有什么发现?

  学生自由谈想法??

  小结:像+20=70、2=150、3+10=100这样含有未知数的等式,叫做方程。

  活动四:方程与等式的关系

  想一想,等式和方程之间有什么关系?

  小组讨论

  小结:方程的范围比较小,等式的范围比较大,方程只是等式的一部分。活动七:自主练习

  1、判断哪些式子是方程。

  师:你认为一个式子是方程必须具备哪些条件?

  小结:同时具备“含有未知数”、“相等的式子”这两个条件才是方程。学生独立完成自主练习第1题。(引导学生在判断对错的同时,说出判断的依据。)

  2、看图列方程。完成自主练习第2题。要求学生先找出图中数量间的相等关系,再独立列出方程。(集体交流)

  3、完成自主练习第3题。(让学生独立写出等量关系式并列出方程,再进行交流。)

  活动五:全课总结:

  引导学生谈谈这节课有什么收获?

  学生谈收获,并找出不懂的地方。

比的意义教学设计3

  教学内容:

  义务教育课程标准实验教科书数学六年级下册P43“练一练”和练习十的1~4题

  教学目标:

  1、使学生认识比例的“项”以及“内项”和“外项”。

  2、理解并掌握比例的基本性质。

  3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。

  教学重点:

  理解并掌握比例的基本性质。

  教学难点:

  探究发现比例的基本性质。

  设计理念:

  本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。

  教学步骤教师活动学生活动

  一、复习引新

  导入新课

  1、找找比比:

  (判断下面的比,哪些能组成比例?把组成的比例写出来。)

  3:518:300.4:0.21.8:0.9

  5/8:1/47.5:32:89:27

  学生独立完成,重点说说判断过程。

  2、今天我们继续研究比例的有关知识。

  学生练习

  学生回顾判断两个比能否组成比例的方法

  二、认识比例

  探索规律1、认识比例各部分的名称

  (1)介绍“项”:组成比例的四个数,叫做比例的项。

  (2)3:5=18:30学生尝试起名。

  师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。

  3:5=18:30

  内项

  外项

  (3)如果把比例写成分数的形式,你还能指出它的内、外项吗?

  出示:3/5=18/30

  (4)已经知道了比例各部分名称,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  2、教学例4

  (1)理解题意,信息搜索:

  提问:你能根据图中的数据写出比例吗?

  (2)、学生写不同比例:

  引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。

  引导思考:仔细观察写出的这些比例式,你能否发现有没有什么相同的特点或规律呢?

  (3)、学生探索规律

  学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的`积。)

  (4)、写比例,验证规律:

  是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。

  (5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。

  4、练习:“试一试”判断能否组成比例。

  出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。

  提问:2.6:1.8和0.5:0.25能组成比例吗?根据比例的基本性质,能判断两个比能不能组成比例吗?

  学生练习:找出比例中的内项和外项

  6:5=36:30

  4:7=21:49

  学生自主表达,图中有哪些数据信息?

  学生独立思考,再小组交流

  学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()

  学生分析哪两个数是外项,哪两个数是内项。

  比较理解比例的基本性质

  学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

  三、巩固练习

  拓展提高

  1、做“练一练”

  使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。

  2、在()里填上合适的数。

  5:3=():6

  4:()=():5

  3、做练习十第1、2题学生尝试练习后交流讨论

  先让学生尝试填写,再交流明确思考方法。

  四、全课小结

  总结反馈通过今天的学习,你有哪些收获?

  把你发现规律的方法介绍给朋友、亲人。

  五、课堂作业练习十3、4题

比的意义教学设计4

  教学目标:

  1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

  2.经历探索小数意义的过程,体会小数与生活的联系,培养归纳能力。

  3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

  教学重点:

  理解小数的意义。

  教学难点:

  理解小数的计数单位。

  教学过程:

  一、创设情境,复习引入

  1.师:同学们,你们在日常生活中,都见过哪些种类的蛋呢?……看来大家见过的蛋还真不少。接下来,咱们一起走进《蛋的世界》,看看里面有多奇妙,好不好!这节课我们一起来探究小数的意义。(板书:小数的意义)

  请同学们先回想一下,对于小数,你已有那些认识?……谁能举出一些小数的例子?并说说它表示的意义吗?

  生1:0.2表示把一正方形平均分成10份,取其中的2份,是十分之二也就是0.2。

  师:说得很好,谁再来说一个?

  生2:0.5表示十分之五,

  生3:0.4表示十分之四。

  师:像这样的小数同学们都能说出来吧!(根据学生的回答,教师板书一组一位小数:0.2、0.5、0.4……,并说明一位小数表示十分之几)现在老师如果让你把这些小数用画图的方式表示出来,你能行吗?

  生:能!

  师:下面请同学们从这三个小数中,选择你喜欢的一个用画图的方式表示出来?好吗?

  生:好!

  师:哪位同学展示一下你画的`小数?把你的想法和画法和同学们说一说?

  生1:先画一条线段,平均分成10份,取其中的5份,是十分之五,也就是0.5。

  师:老师想问问你,为什么取其中5份就是0.5?

  生1:因为其中一份是0.1,5份就是0.5。

  师:谁想再来展示一下?

  生2:我先画一个长方形平均分成10份,取其中的2份,是十分之二,也就是0.2。

  师:刚才同学们用自己喜欢的方法画出了自己喜欢的小数,看这些小数,它们都是几位小数?

  生:一位小数。

  师:一位小数他们画法虽然不同,但是有共同点。谁来说说这两种画法的共同之处?

  生:都是把一个物体平均分成10份,然后再取其中几份,来表示小数。

  2.谈话:看来同学们前面的知识掌握的不错,课前,老师从几种动物的蛋的质量中也搜集了一些小数,请同学们看大屏幕。(课件出示情境图)

  二、结合情境,探究新知

  1.学习小数的读写。

  (1)师:请同学们仔细观察情境图,你获得了那些数学信息?

  (学生根据情境图说出信息)

  师:这个小数读作?第二个小数读作?

  这位同学读得非常正确,谁想再来读一读?谁来说说读小数时应注意什么?

  (读小数时,小数点前面部分和整数读法一样,小数点后面部分依次读出每一个数。)

  (2)师:谁来读一读下面这两条信息?这两条信息中有两个小数,谁能到黑板上把这两个小数写出来,其他同学写在练习本上。谁来说说写小数时应注意什么?

  (写小数时,小数点前面部分和整数的写法一样,小数点后面部分依次写出每一个数。)

  2.学习两位小数的意义。

  (1)在正方形纸片上表示出0.25。

  这组信息给我们提供了4个小数,像0.25、0.06这样的小数在图上怎样表示呢?老师为每位同学准备了一张画有正方形的纸,现在请同学们从这两个小数中选择一个小数在这个正方形中表示出来。

  谁能到前面来说说你的想法和画法?

  学生到前面交流。

  师:你是把什么看作一个整体,平均分成()份,表示其中的()份,用分数表示是(),0.25里面有()个0.01。

  老师想问问你,为什么取6份(或25份)就表示0.06(或0.25),一格(份)就是0.01,6份(或25份)就是0.06(或0.25)。

比的意义教学设计5

  【教材分析】:

  小数的性质是一节概念课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则运算的基础。小数的性质实质上是研究在什么情况下两个小数相等的,它与分数的基本性质是相通的,但由于学生还没有学过分数的基本性质,所以教材通过直观和学生所熟悉的十进复名数来进行教学。

  【教学目标】:

  1.理解和掌握小数的意义。

  2.理解整数,分数,小数之间的联系,掌握相邻俩个计数单位间的进率。

  过程与方法:

  经历小数的发现,认识的过程,体验探究发现和迁移推理的学习方法。

  情感态度与价值观:

  了解数学知识的产生过程,激发学习兴趣,培养动手实践,合作探究的学习习惯。

  【教学重点】:

  理解和掌握小数的意义。

  【教学难点】:

  认识小数的计数单位并掌握它们之间的进率。

  【教学方法】

  教法:组织数学活动,引导学生思考。

  教学准备:多媒体课件,投影仪。

  【过程与方法】:

  一.激趣导入,引出小数的产生。

  师:同学们,最近我们学习简便运算,学习的过程有点枯燥,今天呢,我们在上课之前做个小游戏,游戏的名字叫做猜价格。老师手里有本课外书,谁能够猜对这本书的价格,老师就把这本书送给谁。给一点提示,这本书的价格在10-20之间。

  生:猜价格的过程中。

  师:那么老师还有一点问题要问问同学们,在这个价格中,19表示什么,8表示什么,0表示什么。

  生:19表示19元,8表示8角,0表示0分。

  师:回答的真好,这就是每个数字的含义,通过刚才这个小游戏,我们发现生活中,整数已经不能满足我们的需要了,所以我们还要对小数进行学习与理解,今天我们就学习第四章《小数的意义和性质》。那么对于小数,同学们你们想学习哪里知识呢?

  生1:小数表示什么。

  生2:小数的`读法与写法。

  生3:小数的性质。

  生4:小数的比较大小。

  师:同学们想了解的知识还真不少,今天我们就来学习小数的第一课,《小数的意义》(板书出示)

  (设计意图:以一个小游戏来调动课上气氛,让学生了解整数已经不能满足生活中很多事物的价格,让学生发现小数的产生,以开放性的问题让孩子们畅所欲言,为更好的学习这节课做铺垫。)

  二.探究新知,理解一位小数的意义。

  师:在货币单位中,我们发现很多价格不能得到整数,这时我们常常需要小数来表示,那么在长度单位是不是也需要呢?我们一起来分析一下。(出示课件)

  师:我们知道1米=(10)分米。

  那么把1米长的尺子平均分成10份,每一份的长度是多少分米?能够用几种形式来表示?并指一指每一份所对应的位置。

  师:用整数怎么表示?

  生1:我可以用整数来表示,因为1米等于10分米,正好分成10份,每一份正好是1分米。

  师:我们之前学习过分数,谁能用分数把这个数表示出来?你根据的是什么?

  生2:我可以用分数来表示,把1米长的尺子平均分成10份,每一份正好是这个尺子的十分之一米。(根据分数的意义)

  师:那么十分之一米能不能用小数来表示呢?

  生3:我可以用小数表示,因为从刚才那个猜价格的游戏可以看出,3表示角,元和角之间的进率是10,可以用小数0.3元表示,那么尺子的一份是1分米,分米和米之间的进率也是10,所以可以用小数0.1米。(通过学生的预习很多同学能够说出0.1米,但是孩子们对于0.1米的理解还是有一定的问题的。)

  师:回答的真好,我们发现1分米是整数,十分之一米是分数,0.1米是小数,同学们能不能帮老师列一个恒等式呢?

  生:1分米=十分之一米=0.1米(板书出示)

  师:你们发现这个等式有什么特点?

  生:我发现整数,分数,小数它们之间可以互相转化。

  师:那么把一米的尺子平均分成10份,分别取其中的3份和7份又该怎么表示呢?同位之间互相说一说。并指一指它们的具体位置。

  生:3分米=十分之三米=0.3米

  7分米=十分之七米=0.7米

  师:我们一起观察这些等式,像0.1,0.3,0.7,0.8这样的小数它们有几位小数?

  生:一位小数。

  师:再认真观察这些小数对应的分数有什么共同特点?

  生:分数的分母都是10.

  师:那么什么样的分数可以写成一位小数呢?

  生:分母是10的分数,可以写成一位小数。

  师:教师总结:一位小数我们可以用分母是10的分数来表示,表示十分之几,这就是一位小数的意义。

  三.深入研究,理解俩位小数的意义。

  师:同学们我们刚才把1米的尺子平均分成了10份,那么如果平均分成100份呢?结合刚才学习一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学习,看哪一组能在最短的时间内完成任务。(出示课件)

  生1:1厘米。

  生2:百分之一米。用小数0.01米表示。

  生3:百分之三米,0.03米。百分之六米,0.06米。百分之十米,0.10米。

  师:嗯,那么对于这些像0.01,这样的小数,它们是几位小数?

  生:俩位小数。

  师:这些分数有什么共同的特点?

  生:分母都是100的分数。

  师:什么样的分数可以写成俩位小数?

  生:分母是100的分数,可以写成俩位小数。

  师:教师总结:俩位小数我们可以用分母是100的分数来表示,表示百分之几。这就是俩位小数的意义。

  (设计意图:让学生根据一位小数表示十分之几,通过小组讨论自己解决俩位小数和什么样的分数有关,有意识地促进迁移,让学生体验成功,培养学生的学习兴趣和信心。)

  四.探究三位小数的意义。

  师:以猜想的形式来呈现,如果把1米的尺子,平均分成1000份,其中的一份或几份怎么用分数表示,又怎么用小数表示?你能举例说明你的表示方法吗?

  生1:一份的,1毫米=千分之一米=0.001米。

  生2:六份的,6毫米=千分之六米=0.006米。

  生3:十三份的,13毫米=千分之十三米=0.013米。

  师:像0.001,这样的小数是几位小数?

  生:三位小数。

  师:什么样的分数可以写成三位小数?

  生:分母是1000的分数,可以写成三位小数。

  师:教师总结:三位小数可以用分母是1000的分数来表示,表示千分之几。这就是三位小数的意义。(并引出四位,五位小数意义的形成)

  五.小数的计数单位和之间的进率。

  师:小数的计数单位是十分之一,百分之一,千分之一,用小数可以分别写成0.1,……

  并简单说明小数相邻俩个计数单位之间的进率是10.只不过是除以10的关系。

  六.练习。

  七.板书设计

  小数的意义

  1分米=十分之一米=0.1米

  1厘米=百分之一米=0.01米

  1毫米=千分之一米=0.001米

  小数的计数单位是十分之一,百分之一,千分之一,用小数分别表示为0.1,0.01,0.001。

  在小数中,相邻的俩个计数单位之间的进率为10.

【比的意义教学设计】相关文章:

比例的意义教学设计05-10

《分数的意义》教学设计03-01

方程意义教学设计06-10

方程的意义教学设计08-27

分数的意义教学设计02-21

小数的意义教学设计15篇01-03

《小数的产生和意义》教学设计03-01

方程的意义教学设计15篇09-05

分数的意义和性质教学设计08-26