圆的认识教学设计

时间:2024-09-09 00:52:13 教学设计 我要投稿

圆的认识教学设计汇编15篇

  作为一名优秀的教育工作者,就有可能用到教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。那么你有了解过教学设计吗?下面是小编收集整理的圆的认识教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

圆的认识教学设计汇编15篇

圆的认识教学设计1

  学生分析:

  学生在日常生活中经常接触到圆形物体,在低年级也已经有初步的认识过程,但都是直观的表象的认识。

  教学目标:

  1.知识与技能:使学生认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系。初步学会用圆规画圆。

  2.过程与方法:通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念。

  3.情感与价值观:通过学习,提高学生对数学的好奇心与求知欲,初步认识数学与人类生活的密切联系,体验数学活动的意义和作用。

  教学重点:

  掌握圆的特征,同一个圆里直径和半径的关系。

  教学难点:

  掌握圆的特征并理解其在生活中的运用,用圆规按要求画圆。

  教具准备:

  多媒体课件一套。

  学具准备:

  圆形纸片、圆规、直尺、三角板、彩笔、硬币、图、线。

  教学过程:

  一、师生谈话,导入本课知识

  师:同学们这节课老师给大家带来一些美丽的图案,你们想看吗?

  生:想看。

  师:看时请同学们认真观察这些图案有什么共同特征?

  生:这些图案都是由圆形组成的'。

  师:对!这么美的图案你们能画出来吗?(不能)这节课我们就一起研究有关圆的知识,相信大家不但学会圆的许多知识,还能画出比老师还要美的图案。

  生:从生活中寻找自己所认为的圆,有可能会回答:①自行车汽车的轮子是圆的;②篮球乒乓球是圆的;③硬币是圆的……

  (第一次自主探索:画一画。)

  二、自主探索,折一折

  师:看来大家掌握得确实不错,生活中,车的轮子为什么制成圆的,车轴应该装在什么位置?下面请同学们拿出这样的圆形纸片,我们一起来研究圆。

  1、把一个圆对折、再对折,你发现什么?

  生折一折,找一找,画一画,反馈。

  学生观察反馈:

  ①留下一条折痕;

  ②折痕刚好通过圆心;

  ③折痕将圆平均分成了两半;

  生:

  ①各条折痕的交点刚好在圆心上;

  ②通过圆心可以折无数条直径和无数条半径;

  2、认识圆心,直径,半径。

  师小结后学生找出它的圆心、半径和直径,并把它画出来。

  师:同学们真棒,你还能从刚才折的小圆片中发现什么知识吗?

  3、理解半径直径的特点及关系。

  同圆中所有半径都相等,所有直径都相等。

  直径是半径的2倍;

  教师根据学生回答板书:d=2rr=d÷2

  师出示两个大小不同的圆让学生比较直径半径的倍数关系成立的条件。

  让学生明确:应在同圆或等圆内。

  三、用圆规画圆

  师介绍:用圆规画圆最方便。

  因为学生在认识圆之前,已经对圆有大量的生活经验,所以让学生想出各种办法得到圆,就能使学生感受到圆其实离我们生活很近,它就在我们的身边。通过全方位的学习活动,促进学生知识与能力的协同发展。第二次尝试画一画——用圆规画圆。

  师:那请用学们用圆规自已尝试画一个圆。

  没有画成功的同学把图案展示,我们愿意帮助你寻找原因。

  生:(1、画移位的,2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?

  学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。

  师:学生根据老师的讲解独立画圆。

  师:大家画的圆的位置都一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为刚针戳的位置不一样,(或点的位置不一样)

  师:看来这个点能决定圆的位置,(板能决定圆的位置)

  师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为我们圆规的开口大小不一样。

  生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)

  (放音乐,让学生动手操作去发现去总结让学生感受到成功的喜悦。)

  四、课堂练习,巩固深化

  师:同学们掌握得真好,下面让我们来完成几道挑战题

  (见课件)

  1、判断直径和半径。

  2、填空。

  3、你能用今天学习的知识来解释一下为什么车轮子要设计成圆形而不设计成方形或其它形状吗?3

  五、创作:

  画出任意大小的圆,组合自己心中最美丽的图案!(学生在创作的过程中,播放轻音乐。)创作完成后在实物展台上展示

  六、总结:

  通过这节课的学习,你有什么收获吗?

圆的认识教学设计2

  1. 例1。

  编写意图

  例1是让学生想办法在纸上画圆,直观感受圆的曲线特征,同时为后面探究圆的基本性质做好准备。教材共呈现了3名学生用不同的实物来描摹画圆的方法,这种方法简单,且学生以前有基础,但因受实物所限,画出的圆大小是固定的,不能随意变化,从而为后面教学用圆规画圆做了铺垫。

  教学建议

  教学时,教师应在课前备好相应的学具,如茶杯盖、圆柱等用来画圆的物品,以便于学生活动。实际教学中,学生也可能会提出用圆规画圆的方法,教师不用回避,说明这种方法将在后面学习。

  2. 例2及“做一做”。

  编写意图

  例2教学圆的认识和画法。

  圆的认识主要是认识圆的各部分名称及特征。分三个层次编排:首先让学生将画好的圆反复对折,发现折痕相交于一点,引出圆心的概念。然后由圆心出发,定义半径和直径,并让学生探索出在同一个圆内,半径和直径都有无数条。最后通过测量比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且半径的长度是直径的1/2。

  教材对用圆规画圆的编排是先让学生自主探索,然后小组交流,最后由教师归纳总结出画圆的基本方法。

  “做一做”的第1题主要是巩固学生对半径和直径的认识。第2题重点在于画出一个确定大小的圆;第3题让学生找出圆的圆心和直径,由于这两个圆都是画在纸上的,无法通过折叠的方法来确定,所以较难。可以引导学生借助正方形的对称性来找圆心,只要连接正方形的对角线即可。第4题主要说明圆形物体具有易滚动这一特性,故车轮常做成圆形的,而车轴之所以装在圆心的位置,则是因为圆心到圆上任意一点的距离都相等,故只有把车轴装在圆心处,当车轮滚动时方可使行进的车辆保持平稳状态。

  教学建议

  教材注重学生动手操作来探究圆的基本特征,故教学时应放手让学生活动,通过折、画、量等方式来寻找规律。在学生活动中,教师可适时用问题引导探究的内容。如“同一个圆里,有多少条半径呢?”“半径和直径的长度有什么关系?”……最后,教师应在学生探究的基础上,对圆的有关概念和基本特征进行归纳和整理,以使学生形成系统、科学的`认识。

  教学用圆规画圆时,应先让学生自己在纸上画一画,然后小组交流画法。在此基础上,教师可归纳总结出画圆的基本步骤和方法,主要应说明两点:一是圆的位置和大小分别是由圆心和半径决定的,故画圆时应先确定圆心,然后按照指定的长度为半径来画圆;二是圆的大小取决于半径的长短,与圆心的位置无关。然后再让学生按照要求画几个圆,逐步掌握用圆规画圆的方法。

  3. 例3及“做一做”。

  编写意图

  例3在前面所学的成轴对称的平面图形的基础上,教学认识圆的对称性。使学生认识到圆是轴对称图形,且对称轴有无数条。

  教学建议

  教学时可分两个层次:一是让学生回顾以前学过的轴对称图形,复习对称特点及明确对称轴,然后说明以前学过的长方形、正方形等都有对称轴,这些图形都是轴对称图形;二是引导学生认识到圆也是轴对称图形,并且每条直径所在的直线都是圆的对称轴。这部分内容应让学生动手画一画,折一折,在实际操作中联系直径的含义来体会圆的对称轴有无数条这一特性。

  “做一做”的第1题是总结性题目,在学过的轴对称图形中,等腰三角形和等腰梯形只有1条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴;第2题是根据对称轴画出轴对称图形的另一半,教学时应引导学生利用方格纸先描出对应点,再连线构成图形。

  4. 关于练习十四中一些习题的说明和教学建议。

  第2题,第3幅图是一个圆内切于一个正方形,则正方形的边长就是圆的直径,故r=5 cm;第4幅图以梯形的上底为直径作出的半圆内切于梯形的下底,则梯形的高即为半圆的半径,故d=7 cm。

  第3题,使学生知道两端都在圆上的线段,直径是最长的一条。

  第4题,这两种方法都是利用第3题的结论,通过移动尺子或用两个三角板同时夹住圆并垂直于刻度尺来测量出圆内“最长的线段”,也就是直径。

  第6题,可先固定一点,然后以此为圆心,用长为5 m的绳子绕此点旋转一周即可画出。

  第8题,最本质的区别在于圆是曲线图形,而三角形和四边形是直线构成的图形。

圆的认识教学设计3

  教学目标

  1、给合生活实际,通过观察、操作等活动认识圆,认识到同一个圆中半径都相等、直径都相等,体会圆的特征及圆心和半径的作用,会用圆规画圆。

  2、通过观察、操作、想象等活动,发展空间观念。

  教材分析

  重点

  在观察、操作中体会圆的特征。知道半径和直径的概念。

  难点

  圆的特征的认识及空间观念的发展。

  教具

  教学圆规

  电化教具

  课件

  教学过程:

  一、 观察思考

  1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。

  2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的`距离也不一样导致也不公平。

  3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)

  4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。

  二、画圆

  1、你们谁能画出圆来吗?动手试一试。

  2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。

  3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)

  三、认一认

  1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。

  2、半径和直径的辨认。

  3、

  四、画一画,想一想

  1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直

  径呢?(放动画)

  2、以点A为圆心画两个大小不同的圆。

  3、画两个半径都是2厘米的圆。

  4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗?

  五、应用提高

  讨论:圆的位置和什么有关系?圆的大小和什么有关系?

  六、作业

  1、教材第5页练一练

  2、在平面上先确定两个不同的点A和B,再画一个圆,使这个圆同时经过点A和点B(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)

  训练学生的观察能力,发现问题的能力

  不直接说出圆,把思考的空间留给学生

  在画图中体会圆的特征

  思考共同之处时再一次体会圆的特征

  通过正反例的练习,加深对半径和直径的理解

  动手操作,理解画圆的关键是定圆心(位置)和半径(大小)

  巩固提高,满足不同学生要求

  板书设计

  圆的认识(一)

  圆(本质特征):圆上各点到定点(半径)的距离都相等。

  圆的画法:

  圆的相关概念:圆心,半径,直径

  同一个圆中,有无数条半径,它们都相等;同一个圆中有无数条直径,它们也都相等。

  教学后记

  在学生已认识圆的基础上,深入的了解圆的各部份名称。学生对圆心与圆

  的半径的作用能理解,掌握了本课的重点内容。

圆的认识教学设计4

  学习目标:

  1、认识圆,知道圆各部分的名称;掌握圆的特征,理解直径和半径的相互关系;初步学会用圆规画圆。

  2、通过小组学习,动手操作等活动,体验小组合作学习、分享学习成果的乐趣。

  3、感受圆在生活中的广泛应用,体验数学与生活的密切联系。

  学习重点:探索出圆各部分的名称、特征及关系,学会用圆规画圆的方法。

  习难点:通过动手操作体会圆的特征及画法。

  学具准备:圆形纸片、圆形物体、直尺、圆规、线、剪刀等。

  学习过程:

  【纵横生活设疑激趣】

  图图是个爱动脑筋的孩子,今天他坐车去上学,他发现汽车的轮子都是圆形的,他想为什么轮子都要做成圆形,而不做成正方形、长方形或三角形呢?生活中还有哪些物体也是圆形的?

  【动手实践自主探究】

  活动一:探究圆各部分的名称与特征

  1、画一画:你能想办法在纸上画一个圆吗?

  说一说你是怎么画的?

  2、剪一剪:把你画的圆剪下来?

  圆与我们过去认识的长方形、正方形、三角形等平面图形有什么不一样?(圆是由曲线围成的平面图形)

  3、折一折:先把圆对折打开,换个方向,再对折,再打开……这样反复折几次。

  仔细观察:折过若干次后,你发现了什么?(结合书理解)

  在动手实验与合作交流中得出圆心、半径、直径的概念:在圆内出现了许多折痕,它们都相交于一点,这一点就是(),圆心一般用字母()表示。连接圆心和圆上任意一点的线段叫做(),半径一般用字母()表示。通过圆心并且两端都在圆上的线段叫做()。直径一般用字母()表示。

  4、找一找:在同一个圆里,有多少条半径、多少条直径?

  在同一个圆里,半径有()条,直径有()。

  5、量一量:自己用尺子量一量同一个圆里的几条半径和几条直径,看一看,你有什么发现?

  在同一个圆里,半径有()条,所有的半径都(),直径有()条,所有的直径都(),半径是直径的(),直径是半径的()。

  活动二:探究圆的画法

  1、想一想,画一画:怎样才能画出任意大小的圆?圆的位置和大小和谁有关?

  看看书上的理解是不是和你想的一样,试用圆规画一个半径是2CM的圆。

  2、思考:图图想在操场上画一个圆做游戏,没有那么大的圆规怎么办?

  【巩固提高内化新知】

  1、用圆规画一个半径是3cm的圆,并用字母O、r、d标出它的圆心、半径和直径。

  2、用圆规画圆,如果半径是4cm,圆规两脚之间的距离取()cm,如果要画直径是10cm的圆,圆规两脚之间的距离取()cm。

  【解惑释疑应用拓展】

  思考:车轮为什么是圆形的?车轴应装在什么位置?

  板书设计:圆

  圆心:o

  直径:d

  半径:r

  达标测评

  一、填空

  1.圆中心的一点叫做(),用字母( )表示。

  2.通过(),并且两端都在圆上的(),叫做圆的直径。用字母( )表示。

  3.从()到()任意一点的线段叫半径。用字母( )表示。

  4.圆是平面上的一种()图形。将一张圆形纸片至少对折( )次可以得到这个圆的圆心。

  5.在同一圆所有的线段中,()最长。

  6.在同一个圆里,所有的半径(),所有的()也都相等,直径等于半径的()。

  7.在同一个圆里,半径是5厘米,直径是()厘米。

  8.画圆时,圆规两脚间的距离是圆的'( )。

  9.()确定圆的位置,()确定圆的大小。

  10.在一个直径是8分米的圆里,半径是()厘米。

  11.用圆规画一个直径20厘米的圆,圆规两脚步间的距离是()厘米。

  二、判断

  1.所有的半径长度都相等,所有的直径长度都相等。()

  2.直径是半径长度的2倍。()

  3.两个圆的直径相等,它们的半径也一定相等。()

  4.半径是射线,直径是线段。()

  5.经过一个点可以画无数个圆。()

  6.两端都在圆上的线段就是直径。()

  7.画一个直径是4厘米的圆,圆规两脚应叉开4厘米。()

  8.在画圆时,把圆规的两脚张开6厘米,这个圆的直径是12厘米。()

  9.半径能决定圆的大小,圆心能决定圆的位置。()

圆的认识教学设计5

  学习内容

  人民教育出版社六年级数学上册第56-57页 例1 例2

  学习目标

  (1)认识圆,知道圆的各部分名称。

  (2)掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

  (3)初步学会用圆规画圆。

  (4)通过探究活动,发展学生的空间观念和初步探索的能力。

  学习重难点

  重点:掌握圆的特征,会使用圆规画圆。

  难点:会使用圆规画圆。

  学习过程

  一激趣定标

  (一)复习导入

  在数学王国里,住着许许多多的平面图形。现在请同学们回忆一下,我们都认识了哪些平面图形?(投影出示长方形,正方形,三角形,平行四边形,梯形)今天,老师就再次带领大家走入我们的平面图形世界,并认识一个新的朋友-圆。

  (二)板书课题

  圆的认识

  (三)出示学习目标

  1.认识圆,知道圆的各部分名称。

  2.掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

  3.初步学会用圆规画圆。

  二、自学互动(适时点拨)

  活动(一)

  1.找圆

  在我们的生活中,那些物体是圆形的?

  2.感受圆的曲线特性

  (课件出示圆,正方形,长方形,三角形,平行四边形,梯形)

  观察,比较圆和其他平面图形的异同点。

  3.用物体画圆

  利用含圆的小物体在之上画圆,并用剪刀剪下来。

  活动(二)

  1.认识圆的特征

  (1)认识圆各部分的名称

  A.认识圆心

  a.( 将剪好的圆,对折,打开,再换个方向对折,再打开)

  让学生说一说自己的发现。

  b.小结圆心的概念

  B.认识直径

  a.( 用彩色笔将其中一条折痕描出来)

  让学生观察所描出来的线段,说一说自己的发现。

  b.小结直径的概念

  C.认识半径

  (在圆上任取一点,并与圆心连接)

  教师介绍半径,并让学生在圆纸片上画出一条半径。

  (2)认识同一圆内半径和直径的关系

  小组讨论:在同一圆内,有多少条半径?多少条直径?直径和半径的长度有什么关系?

  A.学生动手操作,讨论交流,教师巡视指导。

  B.反馈交流结果,并归纳总结。

  活动(三)

  1.用圆规画圆

  (1)师介绍圆规并示范画圆。

  (2)学生尝试画圆。

  (3)交流画圆的'方法和经验。

  (4)思考:圆的位置由什么确定?圆的大小由什么决定?

  2.适时点拨

  (1)圆心的概念:将圆反复对折,所有折痕相交于圆中心的一 点,这一点叫做圆心。

  一般用字母O表示。

  (2)半径的概念:连接圆心和圆上任意一点的线段。

  (3)直径的概念:通过圆心并且两端都在圆上的线段。

  (4)半径,直径的特征及关系:一个圆内,有无数条半径,所有半径都相等.

  有无数条直径,所有直径都相等。

  直径是半径的2倍,半径是直径的一半。

  用字母表示为:d=2r或r=d÷2(同一个圆内)

  (5)用圆规画圆的方法:把圆规两脚分开,定好两脚间的距离(即半径),

  把有针脚的一脚固定在圆心上,把装有铅笔芯的一

  脚旋转一周,就能画出一个圆。

  (定点,定长,旋转一周)

  四、测评训练

  1.填一填。

  (1)圆中心的一点叫做(),用字母( )表示,

  它到圆上任意一点的距离都( )。

  (2)()叫做半径,用字母()表示。

  (3)()叫做直径,用字母()表示。

  (4)在一个圆里,有()条半径、有( )条直径。

  (5)()确定圆的位置,( )确定圆的大小。

  2.画一画.。

  分别用圆规画出半径为2厘米,4厘米的圆。

  五、课堂小结

  今天我们学习了哪些内容?把你的收获和同学说一说,好吗?

圆的认识教学设计6

  教学目标

  1.使学生在观察、操作、交流中认识圆的各部分名称与感受圆的基本特征,会用圆

  规画指定大小的圆;能应用圆的知识解释生活中的现象。

  2.活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。

  3.进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习

  的兴趣和学好数学的信心。

  重点难点

  1.认识圆的各部分名称。

  2.感受圆的基本特征。

  3.会用圆规画指定大小的圆。

  教学难点:应用圆的知识解释生活中的现象。

  教学准备:课件、各种不同的含有圆形的实物、剪刀、直尺、圆规。

  教学过程

  教学例1。

  (一)感知生活中的圆。听,一滴雨水滴在平静的水面上,荡起一层层涟漪,看,是什么形状?

  出示图片,问:这些物体上也都有圆,谁来指一指。生活中哪些地方还能看到圆?

  圆在生活中随处可见,扮演着重要角色。有必要进一步研究——圆

  (二)自主画圆。先请你想办法画出一个圆,并在小组里交流你是用什么画的?

  (三)交流感受。你觉得圆和以前学过的平面图形有什么不同?

  二、圆规画圆,认识圆的各部分名称。

  教学例2。

  (一)圆规画圆。

  1.认识圆规。如果要画一个更大、更小或指定大小的`圆,借助你手里物品上的圆还行吗?得有一个能调节大小的画圆工具——圆规。谁能给大家介绍介绍它?

  2.尝试画圆。你能试着用圆规画一个圆吗?试试看。(师同步在黑板上画圆)

  3.展示作品,归纳画法。

  (1)展示完美作品。问:你是怎样用圆规画圆的?课件出示画圆步骤:

  ①把圆规的两脚分开,定好两脚间的距离;

  ②把有针尖的一脚固定在一点上;

  ③把装有笔尖的一只脚旋转一周。

  (2)展示问题作品。强调画圆时的注意点。(定点,定长)

  4.规范画圆。如果让你重新画一个圆,有信心画得更好吗?要让全班同学画的圆一样大,该怎么办呢?(脚距?厘米)

  (二)认识圆的各部分名称。

  1.圆心。师:画圆时,针尖固定的这一点,在圆的什么位置?你猜这一点叫什么?(板书:圆心)通常用大写字母O表示。(生标O)

  2.半径。你能在圆内画一条线段表示圆规两脚间的距离吗?试一试。(指名板演)

  小组交流:你是从哪画到哪的?(辨别圆内、圆上、圆外)

  其实,连接圆心和圆上任意一点的线段是圆的半径,通常用小写字母r表示。板书:半径,r。(生标r)刚才画的圆半径是几厘米?如果要求画一个半径5厘米的圆,圆规两脚间的距离应为多少?

  3.直径。

  你能在圆内画一条线段将这个圆平均分成两份吗?画画看。(指名板演)。画好后在小组内说说你是怎样画的?

  像这样通过圆心并且两端都在圆上的线段是圆的直径,通常用小写字母d表示。板书:直径,d。(生标d)刚才画的圆直径是几厘米?如果要求画一个直径5厘米的圆,圆规脚距应定为多少?(2.5厘米)。

  4.练一练第1题。(课件出示)(以毫米作单位,要精确。)

  三、合作探究,揭示圆的特征。

  教学例3。

  我们认识了圆心、半径、直径,其实,关于半径和直径还有许多奥秘呢,一起来探索好吗?

  (一)合作探究:出示例3

  师:先任意画一个圆,把它剪下来。(2分钟够不够?)

  示:画一画,量一量,折一折,在小组里讨论:

  (1)在同一个圆里可以画多少条半径?多少条直径?(课件反馈)

  (2)在同一个圆里半径的长度都相等吗?直径呢?

  (3)在同一个圆里半径与直径有什么关系?(课件反馈)

  (4)圆是轴对称图形吗?它有几条对称轴?(对折引伸)

  (二)汇报。(略)根据学生汇报板书。无数条,都相等,d=2r,r=

  (三)你还有什么发现?在小组里交流。(你觉得对折时的折痕就是圆的什么?直径所在的直线就是圆的对称轴。)

  五、回顾总结,赏析提升。

  (一)通过这节课的学习,你有哪些收获?

  (二)视频欣赏。后问:圆在建筑物中,艺术品中被广泛运用,大自然中也随处可见圆的身影。圆美吗?板书:圆

  圆心(O)

  同圆中半径(r)——无数条,分别都相等,d=2rr=d

  直径(d)

  作业实践活动

  (四)练习:1.判断。

  2.练习十七第1题。(说说是怎样想、怎样算的)。

  3.练习十七第2题。(提醒:要在圆中标出相关条件。)

  四、拓展延伸,感受生活中的数学。

  请大家看动画片,高兴不?

  为什么车轮要做成圆形?车轴要装在哪儿?

圆的认识教学设计7

  一、课题引入

  1、课件出示:圆 这样一个圆让你联想到生活中的什么物体?(月饼、月亮、硬币、钟面……)

  2、老师也收集了一组,瞧(出示图片)连大自然对圆也是情有独钟!(欣赏)

  3、有什么感受?难怪20xx多年前,伟大的古希腊数学家毕达哥拉斯在研究完大量的平面图形后,发出这样的感慨:在一切平面图形中,圆最美。

  4、圆看起来很美,究竟是什么内在原因使得圆看起来那么美?现在就来研究圆的奥秘。

  二、在画圆中,解读“圆”的概念

  1、师:你能试着在纸上画一个圆吗?

  预设:利用圆形物体描圆;利用工具画圆(有小孔的木条、绳子、圆规)

  如果有学生用物体描圆,师则引导假如我们身边没有这些圆形物体,你准备怎么办?学生一下子想不出来,则课件出示:有小孔的木条、绳子。

  2、学生说说利用工具怎样画圆,可以请学生演示。

  3、其实,很多同学知道还有专门的工具:圆规,请同学们用圆规在纸上画圆。大胆地猜一猜,这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?

  4、师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆。这是什么道理?

  (预设:都绕了360度;都有一个中心点;两者画圆的原理是一样的。运动时与中心点的距离是一样的。)

  5、看到们画的这么好老师也想画一个圆,师作图,(教师画完半个圆后,停下。)想象一下,照这样画下去,会画出一会儿凹、一会儿凸的平面图形吗?

  预设:因为圆规两脚间的距离没有变;就是从这儿(手指圆上的点)到这儿(手指圆心)的距离没有变。只要距离不变,就不会画出一会儿凹、一会儿凸的`平面图形了。

  6、自学圆的各部分名称及关系

  生看书自学 反馈 给黑板上(或自己画的圆画出一条半径、直径,再标上字母)

  7、学生画制定的圆:分别画r=2cm, d=2cm的圆

  三、在运用中体验圆与半径、圆心的关系

  让大家在一张正方形纸上画一个最大的圆,怎么画?

  学生思考后动手操作、反馈

  预设:学生有不成功的作品,则让大家一起分析;有成功的作品让他说方法。引导学生理解在正方形画最大圆的关键:①如何找到圆心(圆的位置)②如何确定半径(圆的大小)

  师:(借助PPT动态演示找正方形中心点的过程)这就是圆心。接着确定半径,有了圆心和半径,就可以画出一个最大的圆。(让学生修正自己的作品)

  四、拓展与延伸

  师:其实,今天我们对圆的认识还是很初步,关于圆你还想学习知道些什么?(生说)

  师:圆与正方形有什么不同?为什么汽车的车轮要用圆的,不用方的呢?这些问题,同学们课后去思考。

圆的认识教学设计8

  单元教材分析:

  这一单元的内容是圆,在这个单元中,教材安排了“圆的认识” 、“圆的周长和面积” 三个具体的内容,这三个内容由易到难,层层深入。

  本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。

  学生将在这个单元中,结合动手操作、比较、测量等多种数学活动,更深入的理解、掌握圆的特点,进一步发展空间观念。

  单元教学目标:

  1.学生认识圆,掌握圆的特征;理解直径半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

  2.探索圆的周长与面积的计算方法中,获得探索问题成功的体验。

  3.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

  4.通过以上一系列的学习活动,激发学生的学习兴趣,培养主动探索的欲望和创新精神。

  5.培养学生观察、比较、想象等能力,进一步发展学生的空间观念。

  单元教学重点:

  1.学生认识圆,知道圆的各部分名称。

  2.掌握圆的特征及在同一个圆里半径和直径的关系。

  3.初步学会用圆规画圆,培养学生的作图能力。

  4.亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

  圆的认识(一)

  教学目标:

  1.使学生认识圆,掌握圆的各部分名称。

  2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。

  3.初步学会用圆规画圆,培养学生的作图能力。

  4.培养学生观察、分析、抽象、概括等思维能力。

  教学重点:

  在动手操作中掌握圆的特征,学会用圆规画圆的方法。

  教学难点:

  理解圆上的概念,归纳圆的特征。

  教材分析:

  教材首先说明什么是圆,并结合周围物体说一说,这样调动了学生已有的生活经验,再通过画圆、折圆、测量等活动,展现圆的特征,其目的在于让学生通过观察、操作理解圆中的各部分关系,从而掌握圆的特征并解释生活中相关问题。

  学情分析:

  圆是在学生学过了直线图形以及圆的初步认识的基础上进行教学的。圆这一平面上的曲线图形,学生在生活中经常看到,它到底有什么特征呢?是本节课学生学习的重点,在学习圆的认识时,学生通过观察、操作,自己获取一些有关圆的`特征的知识,这样回大大提高学生的学习兴趣,发挥学生的主体性。

  教学过程:

  活动一:演示操作,揭示课题

  师:一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来。

  1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)

  2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识。(板书课题:圆的认识)

  活动二、动手操作,探究新知

  (一)教师让学生举例说明周围哪些物体上有圆。

  (二)认识圆的各部分名称和圆的特征。

  1.学生拿出圆的学具。

  2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)

  教师说明:圆是平面上的一种曲线图形。

  3.通过具体操作,来认识一下圆的各部分名称和圆的特征。

  (1)先把圆对折、打开,换个方向,再对折,再打开??这样反复折几次。 教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)

  仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)

  教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。

  教师板书:圆心

  (2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么? (圆心到圆上任意一点的距离都相等)

  教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。(教师在圆内画出一条半径,并板书:半径 )

  教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

  在同一个圆里可以画多少条半径?

  所有半径的长度都相等吗?

  教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。

  (3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

  教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母 d来表示。(教师在圆内画出一条直径,并板书:直径)

  教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

  在同一个圆里可以画出多少条直径?

  自己用尺子量一量同一

  个圆里的几条直径,看一看,所有直径的长度都相等吗? 教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。

  (4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。

  (5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

  如何用字母表示这种关系?

  反过来,在同一个圆里,半径的长度是直径的几分之几?

  教师板书:在同一个圆里,直径的长度是半径的2倍。

  (三)反馈练习。

  1.P58 1

  2.填表

  (四)圆的画法。

  1.学生自学,看书57页。

  2.学生试画。

  3.学生通过试画小结用圆规画圆的方法,注意的问题。

  4.教师归纳板书:1.定半径;2.定圆心;3.旋转一周。

  教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

  5.学生练习

  (五)教师提问

  为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置? 教师板书:半径决定圆的大小,圆心决定圆的位置。

  (六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

  活动三、实践与应用

  (一)判断

  1.画圆时,圆规两脚间的距离是半径的长度。( )

  2.两端都在圆上的线段,叫做直径。( )

  3.圆心到圆上任意一点的距离都相等。( )

  4.半径2厘米的圆比直径3厘米的圆大。( )

  5.所有圆的半径都相等。( )

  6.在同一个圆里,半径是直径的。( )

  7.在同一个圆里,所有直径的长度都相等。( )

  8.两条半径可以组成一条直径。( )

  (二)按下面的要求,用圆规画圆。

  1.半径2厘米。

  2.半径2.5厘米。

  3.直径8厘米。

  (三)怎样测量没有圆心的圆的直径?

  活动四、全课小结

  这节课我们学习了什么?通过这节课的学习你有什么收获?

  板书设计

  在同一个圆里有无数条半径,所有半径的长度都相等。

  在同一个圆里,直径的长度是半径的2倍。 半径决定圆的大小,圆心决定圆的位置。

圆的认识教学设计9

  教材分析:

  本节课要研究的“圆的认识”。是在学生学过了长方形、正方形、平行四边形、三角形、梯形等这些由线段围成的平面图形之后,新接触的一种由曲线围成的平面图形,以及在圆的初步感性认识的基础上进行教学的,它既是前面所学知识的延伸,又是后面学习圆的周长和面积的重要的预备知识,所以它在教材中处于非常重要的位置。此外,这节课通过引导学生多种感官参与学习活动,可以培养学生的观察能力、语言表达能力和抽象概括能力、发展学生的思维能力。因此,这节课无论在知识上还是对学生的能力能力培养上都起着举足轻重的作用。

  学情分析:

  圆的各部分名称学生容易明白,可是圆的特征比较抽象,需要多种感官参与学习活动,最后通过引导、归纳、概括而出,此外画圆是学生必须掌握的技能,所以本课的重点是:理解和掌握圆的特征,学会用圆规画圆的方法。学生很容易把圆内和圆的“上方”当作“圆上”,所以我把理解“圆上”的概念作为重点之一,归纳圆的特征也是本课的重点,同时也是难点。 教学内容:新人教版六年级数学上册56---58页

  教学目标:

  1、知识与技能:通过画一画、折一折、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。了解、掌握多种画圆的方法,并初步学会用圆规画圆。

  2、过程与方法:通过想象与验证、观察与分析、动手操作、合作交流等活动,使学生体会到圆的各点分布均匀性和广泛的对称性,同时获得思维的进一步发展与提升。

  3、情感态度价值观:结合具体的情境,体验数学与日常生活的紧密联系,并能用圆的知识来解释生活中的简单现象。

  教学重点:

  探索圆的各部分名称、特征和关系,体会圆的各点均匀性:到定点的距离等于定长。

  教学难点:

  通过实际的动手操作体会圆的特征及各点均匀性。

  教学方法:

  本节课我主要采用了一学生探究为主的学习方式,开展小组合作性学习,充分调动学生学习热情,活跃课堂气氛。通过引导学生动手操作、观察、比较、抽象、概括来完成所提出

  的问题,在此基础上归纳出圆的特征和用圆规画圆的方法,以突出重点;以小组合作讨论、并辅以游戏引趣、教师适时点拨等为手段来突破难点。

  教学过程

  一、铺垫孕伏

  1、检查家庭作业。

  提问:把你昨天剪好的圆举起来,说一说你是怎样得到手中圆的?

  2、交流画圆的方法。

  用实物画、用圆规画、用半圆仪画。

  3、说一说身边有哪些东西是圆形的?

  4、欣赏圆的图片,说一说有什么感受?

  生活中圆无处不在,圆很美,用途很多??

  5、小结导课 。

  车轮为什么要做成圆形的?圆到底有什么神秘之处能使他在生活中无处不在呢?今天我们来共同探究——圆的认识(板书课题)

  二、探究新知

  (一)圆的初步认识

  1、把手中的圆摸一摸,看一看,说说你的发现。

  面:平平的,边:光滑、弯曲

  2、出示立体图。

  圆能和它们放一组吗?为什么?(学生可能回答:不能,它们是立体图形,圆不是。)

  3、出示平面图形。

  圆能和它们放一组吗?为什么?圆和它们有什么不同?

  4、小结、圆是平面上的一种曲线图形。(板书:平面 曲线 )

  (二)认识圆心

  1、通过操作找圆心

  (1)学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开······这样反复几次。

  (2)提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)

  2、仔细观察一下,这些折痕总在圆的什么地方相交?(圆中心一点)教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o来表示。(板书:圆心o)

  3、学生在自己的圆里标出圆心并用字母o来表示。

  (三)认识半径 直径及二者的关系

  1、教师从上衣兜里神秘的掏出一个系着一段细绳的小球,用手拽着绳子的一段,将小球甩起来(教师演示),你们看小球画出一个什么图形?(学生很容易说出:小球画出了一个圆。)

  2、在黑板上展示小球成圆过程。

  讲解小球转动轨迹上有无数个点,这些点都在圆上。明确圆外、圆内、圆上的范围。尤其强调“圆上”的'概念,指圆的边缘上。

  3、说一说圆上有多少个点?(无数个)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?(通过测量引导学生发现:圆心到圆上任意一点的距离都相等。)

  4、教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(板书:半径) 提问:谁能说一说什么样的线段叫做半径?

  教师说明:半径一般用字母r来表示。(板书:r)教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。

  5、刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)

  学生回答后,教师指出:我们把这样的线段叫做直径。在圆内画出一条直径,并板书:直径)

  提问:谁能说一说,什么样的线段叫做直径?

  启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。教师说明:直径一般用字母d来表示。(板书:d)教师领学生读“d”,强调"d"的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。

  7、画一画、比一比、折一折,量一量,在小组里讨论:

  (1)、在同一个圆里可以画多少条半径?多少条直径?

  (2)、在同一个圆里,半径的长度都相等吗?

  (3)、同一个圆的直径和半径有什么关系?

  8、小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。

  师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2 。

  师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)

  (四)圆的画法

  1、在工农业生产和日常生活中我们经常需要画圆。那么,如何才能很好的画一个圆呢?下面我们就来学习用工具画圆的方法。

  2、介绍圆规,让学生看课本第87页有关画圆的知识,并尝试画一个圆。

  学生看书后指名回答画圆的方法。教师归纳板书:1、定半径;2、定圆心;3、旋转一周。

  3、为什么全班同学画的圆大小不一?怎样才能是全班同学画的圆一样大?你有什么发现?如果想把圆画在本子的右下角,你会怎么做?你有什么发现?半径决定圆的大小。圆心决定圆的位置。

  三、巩固发展

  (一)做“做一做”第1-4题

  1、第1-3题

  学生独立做,并集体订正。

  2、第4题

  先让学生在小组中讨论交流,再指名汇报。

  (二)、判断下面说法是否正确。

  1、两端都在圆上的线段叫做直径。

  2、圆的直径是半径的2倍。

  3、要画直径是4厘米的圆,圆规两脚间的距离是4厘米

  4、半径2厘米的圆比直径3厘米的圆大。

  (三)解决问题。

  1、一些学生正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?

  2、体育课上,老师想在操场上画一个大圆圈做游戏,可是,没有一个这么大的圆规怎么办?(用绳子画圆)

  四、全课小结:

  通过本节课的学习你有什么收获?

  五、布置作业:

  练习十四第1、2题。

  定点 d=2r 板书设计 决定 圆心 位置 决定 半径 大小 d2

  直径 在同一个圆或等圆里 O r

圆的认识教学设计10

  教学目标:

  (1)掌握圆的特征以及圆的各部分名称;初步学会用圆规画圆。

  (2)初步体会通过观察事物获得猜想,通过验证得出结论这样一种研究问题的方法。

  教具:

  圆规、直尺、小球、圆形纸片、磁铁、双面胶。

  学具:

  圆形物体、白纸、水彩笔、直尺、圆形纸片。

  教学过程:

  一、初步感受。

  (1)自然界中的圆

  同学们,我们已经初步学习了圆。今天我们进一步认识圆。(板书:圆的认识)你知道吗?自然现象中也有很多圆,你们看这是光环,这是水纹,这是向日葵。这些都很美。

  (2)生活中的圆。

  在日常生活中你见过哪些圆形的物体呢?你能举几个例子吗?

  (圆形的钟面。)

  (圆形的光盘。)

  (圆形的瓶盖、圆形的茶叶桶盖等)

  注意纠正学生的语言(篮球不是圆,它是球,不过它的切面是圆形的。) 车轮是圆的。这是车轴,这是钢丝。(电脑演示)

  小结:似乎圆在生活中随处可见。有的物体做成圆的是为了美观,而有的做成圆的,就有一定的道理,象这种自行车的车轮就一定要做成圆的,这是为什么呢?其中有什么道理呢?下面我们就用自行车车轮为对象来研究、探索圆的特征。

  二、探索圆的特征。

  1、画车轮简图。

  (1)抽象

  为了便于研究,我们把车轮进行简化。(电脑演示抽象化处理)

  (2)画图。

  这是一个车轮简图,你能很快地画一个车轮简图吗

  拿出一张长方形纸用桌面上的一些工具或物体(圆形物体、圆规、水彩笔和尺),很快地画一个车轮的简图。(展示4-6个。)

  你是怎么画车轮上的圆的呢?

  (依靠圆形物体画圆)

  (直接用手画圆)

  (用圆规画圆)

  (3)介绍圆规画圆。

  圆规是我们常用的画圆工具,用它来画圆,比较正确和方便。那我们先来认识圆规,它有两只脚,一只脚有针尖,另一脚可装铅笔尖。怎样用圆规规范地画圆呢?

  (1)先把圆规的两脚分开,定好两脚间的长度。

  (2)把有针尖的一只脚固定在一点上。

  (3)把另一只脚旋转一周,就画出了一个圆。

  如果圆规的两脚之间的距离大一点,那画出来的圆就(大),那这样画出来的圆就(小)。

  你会了吗?请你拿出另外一张纸,用圆规画一个大小合适的圆。

  2、原型启发,进行猜想。

  (1)观察、比较。

  同学们画出了大小不同,颜色各异的车轮简图,请你仔细观察,这些图形有些什么共同点?你能根据这些共同点,猜想一下:圆可能会有哪些特征呢?

  请把你的猜想和同桌交流一下。

  (2)交流、汇报。

  你有哪些猜想呢?

  (圆形物体可以滚动,没有角)

  (圆都有一个中心)

  (圆的中心到圆的边缘的距离相等)

  (3)小结:

  刚才我们猜想圆可能有这样一些特征,但这只是猜想,到底对不对呢?我们还要通过进一步思考和验证啊。

  3、验证

  (1)下面我们来验证一下。

  先来验证第一个猜想。

  你感觉圆会有中心吗?

  会有有几个中心呢?

  会有两个中心吗?

  圆的中心在哪儿呢?

  你能准确地找到这个圆形纸片的中心吗?

  请大家拿出事先剪好的圆片。自己想办法来找一找。

  找到了吗?你是怎样找到的呢?

  (用尺量的。)

  (用圆规找的。)

  (用对折的方法找的。)的确,把这个圆反复对折几次,获得了一些折痕,这些折痕的交点就是圆的中心。

  圆中心的这一点就是我们用圆规画圆时针尖的位置,也叫做圆心,用小写字母o表示。(圆的中心改成圆心)。

  (3)下面我们来验证第二个猜想。(圆的中心到曲线上的距离相等) 因为圆的中心叫圆心,所以这个猜想也可以说成圆心到曲线上的距离相等。

  这里的`曲线上我们给它个名称叫圆上。(改成圆上)

  圆心到圆上的距离相等。

  这点在圆上吗?(在圆上);这点在(圆上),这点在圆上吗?(在圆外);这点在圆上吗?(在圆内);这点在(圆上),这点在(圆上),圆上到底有多少个点?(无数个)。

  那我们要验证这个猜想,不就是要验证圆心到圆上任意一点的距离都相等吗?(板书加任意一点)

  真的都相等吗?

  你能验证吗?(请同学拿出刚才的圆片,自己想办法来验证一下。) 巡视(你是用量的办法,那你多量几条,增强点信心,把每条的长度记下来。)

  学生介绍验证的方法。

  量的方法;

  折的方法。

  你折了几次?

  折了4次,现在有八条线段等相等了,那我再折一次呢?(16条)再折一次呢?(32条)我再折一次,再折一次,再折一次,折无数次呢?(无数条从圆心到圆上任意一点的线段都相等了)这样,我们就能确定这个猜想是对的了。

  (4)小结:刚才我们通过试验验证了猜想是正确的,这样我们通过对车轮这个具体事物的仔细观察,获得一些猜想,再通过验证,从而证实圆确实有这些特征(板书:验证),得出了结论,这是一种重要的研究方法,同学们要仔细地体会掌握。

  4、进一步体会圆的本质。

  下面我们来做个游戏,进一步感受一下圆的特征。

  (1)线上的小球转动。

  我这儿有一个小球,系在一根线上,如果我捏住线的一端进行转动,假设手的位置不动,小球划出的图形是什么?

  我们用电脑模拟。

  (2)橡皮筋上的小球转动。

  我这儿还有一个同样的小球,系在一根橡皮筋上,同样来转动,看看这时小球划出的图形是什么?

  我们用电脑模拟一下;

  小球划出的是什么图形?

  (电脑演示)是圆吗?

  为什么第一小球划出的是圆,第二个小球划出的就不是圆呢?

  (因为第一个小球在转动时,手和小球的距离是始终保持不变的,所以划出的是圆。而第二个小球在转动时,手和小球的距离是在变化的,所以小球划出就的不是圆。)

  小结:通过这个小球游戏,我们进一步感受了,在一个圆中,圆心到圆上任意一点的距离都相等,如果距离在变化,那小球划出的就不是一个圆。

  5、认识半径、直径。

  刚才我们认识了圆的特征,那数学家又是用哪些概念来描述圆的呢?请同学拿出教材,自学书本p116页到117页。看书的时候,你可以把重要的概念划一划、圈一圈、书后的问题可以试着想一想,答一答,有不懂的还可以问一问。

  有哪些概念啊?

  什么是半径?半径的两个端点在什么地方啊?那你在圆片上画一条半径,用小写字母r表示。

  有几条半径呢?为什么?这无数条都相等吗?

  什么直径?那你在圆片上画一条半径,用小写字母d表示。

  有几条半径呢?为什么?这无数条都相等吗?

  直径和半径之间有什么样的关系呢?

  判断直径(电脑演示)

  5.判断题:

  (1)从圆心到圆上任意一点的距离都相等。

  (2)所有半径都相等,所有的直径也相等。

  (3)半径3厘米的圆比直径5厘米的圆要小。

  (4)直径的两个端点在圆上,那么两个端点在圆上的线段就是一条直径。

  三、解释与运用。

  大家学得很好,你能用今天学到的知识来解释:自行车车轮为什么做成圆的吗?

  为了更好地解释这一现象,我们来做一个对比实验。

  现在有两种自行车,一种车轮做成圆的,另一种车轮做成椭圆的,来看他们的运动情况。

  请大家想象一下,你坐在这两种不同的车上,会有什么不同的感觉?为什么?

  (因为第一种车上,车轴到地面的距离不变)

  (在第二种车上,车轴到地面的距离在变化。)

  为什么在圆形车轮中,车轴到地面的距离始终不变化?

  (因为在同一个圆里,所有的半径都相等。)

  看来生活中的很多现象,都蕴含着丰富的道理,需要我们不断地探索,来认识它,解释它、运用它。

  请你能运用今天学到的知识用圆规画一个直径4厘米的圆,并标上圆心,直径和半径。

圆的认识教学设计11

  一、教学目标的设计。

  1、教材分析

  本节课的教学内容是人教版数学第十一册第五单元《圆》的第一节内容。《圆的认识》主要内容有:用圆规画圆、了解圆各部分名称、掌握圆的特征等,它是在学生掌握了直线图形的周长和面积计算,并且对圆已有初步认识的基础上进行教学的。从学习直线图形到学习曲线图形,不论是内容本身,还是研究问题的方法,都有所变化,教材通过对圆的研究,使学生初步认识研究曲线图形的基本方法,同时也渗透了曲线图形与直线图形的内在联系。

  2、学情分析

  在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低,小组合作意识不强,鉴于以前学习的长方形、正方形、三角形等是直线平面图形时,而圆是平面曲线图形,学生在动手操作、合作探究方面会存在一些困难。

  3、课标要求

  学生的学习过程是一个主动建构的过程,教学中力求发挥学生的主体作用,淡化教师的主观影响,激活学生的已有知识经验,激发学生学习热情,让学生自己在实践中产生问题,自己探究、尝试,修正错误、总结规律,从而使学生在经历、体验和运用中真正感悟知识,主动获取知识。

  本节课我以学生亲自动手制作的圆形纸片为主线,采用操作、探究、讨论、发现等教学方法,有目的、有意识地安排了让学生折一折、画一画、指一指、比一比、量一量、议议等数学实践活动,启发学生用眼观察、动脑思考、用耳辨析、小组讨论,让学生主动探索、主动交流、主动提问,并通过多媒体将演示、观察、操作、思维与语言表达结合在一起,使学生在动手中认识圆的各部分名称,理解圆的特征,以及教学圆的画法。

  4、教学目标

  基于以上的分析,我确定本节课的教学目标是:

  (1)通过引导学生观察、实验、猜想等数学活动,认识圆,知道圆的.各部分名称。掌握圆的特征,理解直径与半径的关系。初步学会用圆规画圆。

  (2)通过创设情境,学生从生活中认识圆,借助动手操作活动,发现规律,培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。

  (3)渗透“理论来源于实践又服务于实践”唯物主义观念,通过操作、研讨,培养学生独立探索的能力和创新精神。

  【教学重点】认识圆,掌握圆的特征,了解画圆的步骤和方法。

  【教学难点】理解圆的半径与直径间的关系。

  【教学用具】学生:圆规、剪的圆形纸片、彩笔、直尺、三角板。老师:圆规、圆形纸、直尺、彩笔、课件。

  二、教学活动设计

  (一)、创设情境,观察积累。

  1.课件出示三种车轮不同的赛车:“猜一猜,哪辆赛车会胜出?”(课件演示)、如果让你选乘其中的一辆车,你会乘坐那一辆呢?为什么?除了快之外还有别的原因吗?是什么原因,第三辆车跑的又快又稳?课件显示车轮渐渐变为圆。其实圆在日常生活中有着广泛的应用,你在那儿见过圆?把车轮做成圆形,车子就跑的又快又稳,有什么科学根据吗?在圆形里会藏着那些秘密呢?这节课我们就来学习圆的初步认识。板书:圆的初步认识

  2.其实在前面的学习中我们已经接触过圆这种图形,除了圆你还认识那此图形?

  生:长方形、正方形、三角形、平形四边形、、梯形、圆柱、长方体、正方体、球体……

  你你能给这些图形分分类吗?(课件演示)分成立体图形和平面图形,还有不同的分法吗?把平面图形再分成平面直线图形和平面曲线图形。板书:圆是平面上的曲线图形。

  【利用学生比较感兴趣的赛车游戏,让学生去观察,发现其中的数学知识,进而抽出——圆,目的在于激发学生探究新知的浓厚兴趣,并为学习新知积累学生的知识表象。生活中,你在那见过圆形的物品?使学生感受到生活中处处有数学。回顾以前所学的有关平面图形和立体图形,进行分类,为学习新知作铺垫】。

  (二)、组织学生,操作发现。

  1.教学圆各部分的名称及关系。

  (1)做圆的方法:昨天我给同学们布置了一个任务,让大家在纸上想办法画一个圆,然后把在纸上画好的圆剪下来,谁愿意告诉大家你是怎么做的?(用圆规或用圆形物印)

  (2)折纸:拿出你剪的圆形纸片,跟老师一起对折---打开---出现一条折痕,为了看得清楚,用直尺和彩笔画出折痕。换个方向再折再画一条。别停下来,继续折,继续画,比比谁折得快、画得多。

  师:还能折吗?画得完吗?你发现了什么?这样的折痕有无数条所有的折痕都相交于圆中心的一点。这一点叫做圆心,一般用字母O表示。什么是圆心?(老师帖圆形纸,板书—)

  (3)认识半径、直径及其关系

  其实在折痕里还藏有很多有关圆的知识,下面请大家以小组为单位,通过议一议、量一量、看看书、组内交流等办法来寻找圆的知识。比比看哪个小组发现得多。

  小组交流汇报有关直径、半径、直径与半径关系的知识。(配合学生汇报,教师进行动画演示。)

  小组:我们发现这些折痕都通过了圆心并且两端都在圆上,而且这此折痕长度都相等。你是怎么知道这些折痕都想等的?师:我们把圆里面象这样的线段叫直径,你能用自己的话说一说什么叫直径?直径都有什么特点?(老师课件演示)为什么要说在同一个圆里?(老师用学生中的大小不同的圆举例说明。)

  小组:我们组发现从圆心到圆上可以连接无数条线段,这些线段也都相等。师:我们把圆里象这样的线段就叫做半径。你能用自己的话说一说什么叫半径?半径都有什么特点?(老师课件演示)为什么要说在同一个圆里?(老师用学生中的大小不同的圆举例说明。)

  )在同一个圆里直径的长度和半径有什么关系呢?猜一猜?要想知道我们猜的对不对,怎么办?(检验)请大家检验自己的猜测是否正确。你是怎样检验的?(课件演示)你觉得这句话里那几个字非常重要?为什么?

  图中哪些是半径?哪些是直径?哪些不是?为什么?

  【用"情境激趣--自主探究--归纳总结--应用深化"的活动化教学模式,使学生在了解圆各部分名称的基础上,自己发现圆的各部分特征。教师把自己定位于数学学习的组织者、引导者、合作者的位置,通过创设情境、激励等手段,不断引导学生自己发现问题、提出问题、分析问题、解决问题。让学生在主动建构的过程中掌握数学的一些思想方法,发挥学生学习的主动性、独立性、合作性,培养了学生的实践能力和创新意识。】

  2.学习画圆的方法

  画一个3厘米的圆,并标出圆心、半径和直径。(如果你有困难,可以看课本57页中用圆规画圆的方法,也可以向组内的同学请教)

  1.自学并尝试画圆。

  2.交流画法。(定圆心、定半径、画圆)

  3.了解半径确定圆的大小,圆心确定圆的位置。

  4.画一个直径是10厘米的圆。

  (三)、引导学生,总结归纳

  同学们,这节课有什么收获?

  【评析:让学生回顾本堂课的收获,给学生提供了自我感悟、自我评价的时间与空间,有利于培养学生的反思意识。】

  三、布置作业

  完成课本练习二十的1、2题。

圆的认识教学设计12

  【教学内容】

  《义务教育课程标准实验教科书数学(人教版)》六年级上册第56、57页。

  【教学目标】

  1、通过观察思考,动手操作等活动,学生能认识圆,掌握圆的特征,理解在同圆中直径与半径的关系,并且学会用圆规正确画圆。

  2、通过直观教学和动手操作,学生在充分感知的基础上,理解并形成圆的概念,培养学生的动手操作能力,观察能力,空间想象能力以及抽象概括能力,并能把所学知识运用与生活实际中。

  3、通过本课,学生再一次感受到数学是与生活息息相关的。并能用圆的知识来解释生活中的简单现象。

  【教材分析】

  圆的认识是小学数学第11册第四单元圆中较为重要的内容。它是学生在学过了平面直线图形的认识和圆的初步认识的基础上进行教学的,是研究曲线图形的开始,也是学生认识发展的又一次飞跃。本课内容是进一步学习圆的周长和面积的重要基础,同时对发展学生的空间观念也很重要。

  【学情分析】

  小学六年级的学生年龄在11—12岁。他们开始对“有用”的数学更感兴趣。此时,学习素材的选取与呈现以及学习活动的安排更应当关

  注数学在学生的学习和生活中的应用,是他们感觉到数学就在自己的身边,而且学数学是有用的、必要的,从而愿意并且想学数学。对于本节课教学的圆学生在生活中有大量的接触,有了一定的知识、经验基础,同时学生具备了很强的动手操作能力,有较强的交流与表达的愿望,使课堂教学引导学生主动探究,开展小组合作学习,培养创新意识和实践能力成为可能。

  【教学重难点】

  1、感知并了解圆的特征和用圆规画圆。

  2、掌握圆的特征,能熟练地画圆。

  【教具、学具准备】

  课件、圆规、圆形纸片、三角板。

  【教学过程】

  一、创设生活情景,引入新课

  1、学生欣赏图片。

  师:老师给大家带来了许多漂亮的图片,想不想看一看?(出示课件,学生边看边说)这些图片的上面有一个共同的特点你发现了吗?(上面都有圆)

  2、感受生活中的圆。

  那么你能找出生活中有圆的例子吗?(生举例)

  老师也用课件出示几个生活中有圆的例子,让学生体会到生活中到处都有圆以及圆很美。

  【评析:充分关注学生的经验,从贴近学生生活的情境入手,唤起学

  生已有的生活经验,激活学生学习的“兴奋点”。用心捕捉圆在生活中的原型,调动学生的积极性,激发学生的学习兴趣。课件展示精美的图片,学生例举生活中的圆形物体,体会到圆的无处不在,激励学生探寻圆的奥秘。】

  3、设出疑问揭示课题。

  选中汽车和自行车这张幻灯片问:你知道车轮为什么设计成圆形的、而不是正方形和圆形的吗?(生答)

  【评析:以"自行车的车轮为什么要做成圆的"为疑,只能引起学生用浮浅的知识来回答,怎样用科学的道理来解释呢?学生急于想知道,这样可激发学生探索知识的兴趣与热情。】

  关于圆的知识有很多,这节课咱们就走进圆的王国去看一看。(板书课题)

  二、认识圆及各部分名称

  1、曲线图形。

  (课件出示一个圆)圆是平面图形还是立体图形? 以前还学过哪些平面图形?

  你能把这些平面图形分类吗?(圆是曲线图形)

  【评析:由物体是圆的,到抽象出圆的几何图形,以及与长方形、正方形、平行四边形、梯形、三角形比较,初步认识圆是平面上的曲线图形。这些知识只有在教师的层层引导下,才能步步加深认识。这样安排教学活动,教师的主导作用发挥得好。】

  2、初步画圆。

  老师徒手画圆,画的不是真正的圆,怎么才能画出真正的圆?(学生开动脑筋,想出各种方法)

  圆规是画圆的专用工具,请学生观察圆规并向同学介绍圆规各部分名称及作用。

  尝试用圆规画圆,边画边思考用圆规画圆要注意什么。

  老师在黑板上示范画圆。

  【评析:让学生用圆规试着画圆,尊重学生的画圆经验,经历圆规画圆的过程。形成实践的体验后发现用圆规画圆的方法及要注意的问题,再交流画圆的方法及用圆规画圆的注意点,并互相提醒,充分体现了探索性的学习方式。】

  3、认识半径和直径。

  (指黑板上的圆)固定的一点在圆的中心,这个点叫做圆的圆心,圆心一般用字母o来表示。(出示课件上的圆)认识圆内的点,圆外的点,圆上的点。

  师:如果把圆心和圆上的点连起来就成了一条线段,这条线段就是圆的半径。想一想半径什么样子,是连接那两个点的线段?圆上有多少个这样的点?连接圆心和圆上任意一点的线段有几条?也就是说圆的半径有无数条。

  谁能用自己的话说说什么是半径?(生说,然后出示半径的定义并读一读)半径一般用字母r来表示。

  现在继续画线段,这次经过圆心画一条线段,并且线段的两个端点在圆上,这样的'线段叫圆的直径。想一想,直径什么样子?(过圆

  心,两端在圆上)这样的线段能画几条?(无数条)也就是说圆的直径有无数条。谁能用自己的话说一说什么叫直径。(生答,接着课件出示直径的定义,生齐读)直径一般用字母d来表示。

  4、小练习。

  知道了什么是直径和半径,下面找一找直径和半径。(课件出示)

  (1) 那些线段是直径?为什么?

  (2) 那些是半径,哪些是直径?

  【评析:本环节通过图形的辨析,使学生认识圆中的哪些线段是半径、直径,什么样的线段不是半径、直径,进一步理解圆的半径、直径两个概念。】

  你能在这个圆上(指黑板上画的圆)画出一条直径和半径吗?(一生上台画)其余学生在刚才画的圆上也画出直经和半径,并用字母标出来。

  【评析:本环节设计了让学生在自己画出的圆中分别画出圆的直径和半径,无需教师过多的解释,学生在自己动手操作的过程中已将圆心、半径、直径这三个重要的概念的和外延,做出了非常清晰明确的界定。】

  三、动手操作探究圆的特征

  圆的半径决定圆的大小,圆心决定圆的位置

  现在老师有个问题想请教同学们,我要画一个比黑板上的圆还要大的圆,怎么办?(把圆规两脚间的距离拉大)还要小的圆呢?(把圆规两脚间的距离变小)两脚的距离是什么?圆的大小与什么有关系?

圆的认识教学设计13

  一、教学内容:

  人教版《义务教育课程标准实验教科书.数学》六年级上册56—58页

  二、教学目标

  1、在具体的情景中使学生认识圆,知道圆各部分的名称。

  2、通过观察,操作等活动探究圆的特征,理解在同一圆内直径和半径的关系。

  3、学会使用圆规,掌握用圆规画圆的方法。

  4、在观察操作过程中培养学生的创新意识和自主探究能力。发展学生的空间观念。

  三、教学重难

  教学重点:认识圆的特征,学会用圆规画圆。

  教学难点:明确圆心与圆的位置之间的关系,半径与直径、半径与圆的大小之间的关系。

  四、教学具准备

  教具准备:多媒体课件、圆规、直尺、圆片。

  学具准备:圆规、直尺、圆片。

  教学过程

  五、教学过程

  (一)情景创设,激情导入

  同学们喜欢骑自行车吗?(喜欢)那么你们一定知道自行车车轮是什么形状的?为什么车轮要设计成圆形?(出示图片)

  为什么车轮设计成圆呢?这里面有什么奥妙呢?学了今天的内容大家就会明白的。这节课我们就走进圆的世界去探寻其中的奥妙。板书课题:圆的认识

  [设计意图:通过生活中实际例子引入课题,一方面引起学生的学习兴趣,另一方面为学习新知识做了铺垫,从思想上吸引了学生主动参与学习的活动。

  (二)动手操作,探究新知

  1、联系生活,理解概念

  (1)师:除了车轮是圆形的,同学们在日常生活中还看见过哪些物体是圆形的?

  (2)学生举例。

  (3)老师也收集了一些关于圆的图片:请大家看屏幕(课件演示)。

  (4)师:同学们我们不仅用圆来装扮我们的生活,还将圆的一些特征巧妙的用于生活。

  (三)操作探究,认识圆各部分的名称及圆的特征。

  1、折一折,认识圆心。

  (1)让学生用老师准备好的圆形图片,对折后打开,换个方向后再对折打开,看有几条折痕,相交吗?再折几次,说说你发现了什么?学生相互交流自己的发现。(所有的折痕都相交于一点,这一点在圆的中心)

  (2)教师揭示:这一点我们把它叫做圆心,用字母“ο”表示。

  (3)课件演示后,学生自己在圆上标出圆心。

  2、连一连,认识半径、直径

  (1)连接圆心和圆上任意一点的线段叫做圆的半径,用字母“γ”表示。

  (2)课件演示。

  (3)让学生找出定义中的关键词

  (4)教师解释圆上、圆内、圆外

  (5)学生在自己的圆里画出一条半径,并用字母标出。

  (6)想一想:同一个圆里能画出多少条半径?这些半径的长度会有什么关系呢?学生通过思考、讨论和实际测量认识到在同一个圆里有无数条半径,所有的半径的长度都相等。

  (7)通过圆心并且两端都在圆上的线段叫做圆的直径,用字母“d”表示

  (8)课件演示

  (9)学生互相指一指直径,并在自己的圆里画出一条直径。

  (10)想一想:同一个圆里有多少条直径,所有的直径的长度都相等吗?学生通过思考、讨论和实际测量认识到在同一个圆里有无数条直径,所有的直径的长度都相等。

  3、比一比,掌握直径与半径的关系

  (1)刚才我们认识了圆心、半径、直径以及半径、直径的特征,那么在同一个圆里半径和直径之间会有什么关系呢?

  (2)学生自己先动手测量、比较,然后小组探讨交流。

  (3)小组代表发言,小组一:我们通过测量发现直径的长度是半径的2倍,小组二:我们把直径对折过去发现刚好是两个半径的长度,所以认为直径是半径的2倍。《圆的认识》教学设计 相关内容:《圆柱的体积》导学案《圆柱的表面积》教学反思把握教材特点优化课堂教学---- 谈分数乘法的教学人教版数学六上教案 百分数 折扣复习分数乘法的意义和计算《圆柱的表面积》教学设计圆柱表面积教学案例圆柱的体积教学设计查看更多>> 小学六年级数学教案

  (4)教师归纳小结:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示是:d=2r或r=d/2

  [设计意图:这一环节主要以动手操作为主线,通过折一折、量一量、指一指、比一比等活动,让学生自主参与,合作探究、分组交流,给予学生充分展示自我和展开探究活动的空间,让学生在自主探究中发现新知,学生学习的过程是感知的过程,是体验的'过程,是感悟的过程,学生在感知、体验、感悟中发现新知,掌握新知。]

  (四)动手操作,掌握圆的画法

  1、认识圆规,教师介绍圆规各部分的名称。

  2、教师在黑板上示范画圆

  3、学生用圆规画圆,指名学生演示画圆,并让学生边演示边归纳画圆的步骤和方法。

  4、画一个半径是3厘米的圆,并用字母标出圆心、半径和直径。画完后同桌互相检验。

  5、按要求画圆,并观察你发现了什么?(画3个同心圆,3个大小不等的非同心圆)让学生通过观察、讨论、比较归纳:圆心确定圆的位置,半径决定圆的大小。

  [设计意图:老师先示范画圆接着让学生试着用圆规画圆,画圆之后,让学生共同概括规律,是从感性到理性的一种提高。同时让学生反复画圆之后,结合画圆的过程体会圆心和半径的作用,便于学生深化对圆心和半径的认识。]

  六、实践应用,深化知识

  (1)、辨一辨。(对的在括号里打“√”,错的在括号里打“×”)

  1、两端都在圆上的线段叫做直径。( )

  2、画一个直径为4厘米的圆,圆规的两脚之间的距离应是4厘米。( )

  3、半径2厘米的圆比半径1.5厘米的圆大。( )

  4、圆的半径是射线。 ( )

  5、圆心到圆上任意一点的距离都相等。 ( )

  (2)、回放上课时车轮为什么是圆形的动画,谁能应用今天所学的知识解释车轮为什么要做成圆形?为什么车轴要装在圆心上?

  (3)、下面投球比赛中,那种游戏方式最公平?

  队列3

  队列2

  队列1

  [设计意图:通过拓展训练,进一步巩固所学的知识,同时了解学生对知识掌握情况。让学生亲眼看见圆的知识的应用,真正体会到数学知识就在身边。]

  七、总结新知 畅谈收获

  本节课你学习了什么知识?你有什么收获?

  师:其实生活中的很多现象都象圆一样蕴含着丰富的数学规律,需要我们在不断的探索中来认识它,理解它,应用它。老师相信你们在今后的学习中,经过自己的实践,一定会探索出大自然中的更多奥妙。

  板书设计:

  圆的认识

  圆 心 0 在同圆内:

  半 径 r r=d/2 或

  直 径 d d=2r

圆的认识教学设计14

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页“圆的认识一”。

  【教学目标】

  1、结合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。

  2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。

  3、通过观察、操作、想象等活动,发展空间观念。

  【教学重、难点】

  1、圆的特征。

  2、画圆的方法。

  【教具、学具准备】

  1、三角尺、直尺、圆规。

  2、教学课件。

  【教学设计】

  一、观察思考。

  1、欣赏生活中的圆:棋子、桌面、钟面、车轮、中国结。

  2、观察这些图形与我们以前学过的图形有什么不同?

  生活中还有哪些物体的面是圆形?

  做套圈游戏,哪种方式更公平?

  二、画一画。

  你能想办法画一个圆吗?

  用手比划着画圆。

  用一根线和一支笔画圆。

  用圆规画圆。

  2、教学用圆规画圆的方法。

  三、认一认。

  学生用圆规画一个圆。

  讨论:圆规的“尖”、圆规张开的两脚之间的长度所起的作用。

  告诉学生半径和圆心。

  四、画一画、想一想。

  要求学生画一个任意大小的圆,并画出它的半径和直径。

  观察比较得知:圆有无数条直径,无数条半径。

  在同一个圆内直径都相等,半径都相等。

  以点A为圆心,要求学生以A为圆心画两个大小不同的圆。

  画两个半径都是2厘米的圆。

  五、讨论。

  圆的位置与什么有关系?

  圆的大小与什么有关? 使学生通过观察日常生活中的`圆形物体,建立正确的圆的表象。

  使学生在动手操作中体会圆的本质特征。

  让学生进一步体会圆的本质特征。

  让学生认识到圆心决定圆的位置,圆的半径决定圆的大小。

  六、观察与思考。

  1、播放课件。

  动物王国自行车比赛。分别有圆形、椭圆形、正方形的车轮。

  思考:车轮为什么是圆形?

  操作:

  用硬纸板分别剪一个圆形、正方形、椭圆形。

  小组合作描出运动轨迹。

  七、练一练。

  课本练一练题目。

  八、全课小结。

  【教学反思】

  圆的认识是在学生已有知识的情况下进行的,所以学生很快能找到圆的主要特征,而且能从本节课里掌握圆的特征,掌握圆各部分的名称,以及直径半径等之间的关系。

圆的认识教学设计15

  课前与同学谈话省略

  师:今天上课我们学什么?大声地说“学什么”

  生齐:圆的认识

  师:从哪里看到的?只给我看,

  生指屏幕

  师:屏幕上有,还有呢?

  师:说,哪有?

  师:没错,圆片,还有吗?

  生:圆规

  师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

  生齐:想

  师出示一个信封,摸出一个圆片,师:是圆吗?

  生:是

  师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

  生齐:有

  师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

  师:好,现在看谁的反应最快?

  师从信封里摸出一个长方形

  生:长方形

  师:男孩的反应快,状态也不错。

  师从信封里摸出一个正方形

  生:正方形

  师:还有一个图形

  师从信封里摸出一个三角形

  生:三角形

  师:猜猜还有吗?

  师从信封里摸出一个平行四边形

  生:平行四边形

  师从信封里摸出一个梯形

  生:梯形

  师:行了行了,小朋友们,都别你们猜到了。

  教师课件演示各种图形,

  师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

  生齐:没有

  师:为什么?

  生:因为圆是由曲线围成。

  师:而其他图形呢?

  生:都是由直线,哎!线段围成。

  师:同意吗?

  师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

  生:角

  师:圆有角吗?

  生:没有。

  师:所以圆特别的?

  生:光滑

  师:说的真好

  师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

  生齐:曲线

  师:给它一个名称。

  生:曲线图形

  师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

  生齐:不难。

  师:谁让你们聪明呢?还有难的。

  师出师一个不规则图形

  师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

  生齐:不会

  师:为什么?

  师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

  生齐:丰满

  师:嘿!瞧,还有一个

  师出示一个椭圆,

  师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

  生:不会,

  师:为什么?

  师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

  生:瘦瘦的

  师:瘦瘦的。圆呢?

  教师出示圆形教具,转动。

  师:怎么样?

  生:一样

  师:怎么看到的一样?

  师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

  行,就你吧,近水楼台

  师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

  生:看不见了

  师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

  生:不是

  师:可以吗?

  生齐:可以

  师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

  生:不能

  师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

  生齐:ok!

  师:好,伸出你最拿手的一只手,右边,准备好了吗?

  生:准备好了

  生1:不是.

  师:对不对?

  生:对.

  生1:不是.

  师:对不对?

  生:对.

  生1:更不是.

  师:瞧,这更字用的多好.

  生1:更不是.

  师:小家伙厉害.

  生1:不是.

  生:对.

  生1:是.

  生:对.

  师:掌声鼓励一下.

  圆是曲线图形

  可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

  画圆

  张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

  生2:我认为是圆的半径变了.

  师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

  生:不能.

  师:除了这个地方改变以外,还有那些地方不能动?

  生3:圆心改变了.

  师:在画圆的过程中,针不能改变.

  画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

  生:能.

  师:先别动笔,边画边考虑.

  圆和什么有关系?

  生:圆心和半径.

  师:我知道你们说的半径是什么意思?

  谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

  生4(到黑板前画出远的半径)

  师:对不对?

  生:对.

  师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

  生:圆心.

  师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

  生:O.

  师:请在你刚才画的圆上,标出圆心,写出字母O.

  继续看这条线段,圆心的另一端在哪里?

  生;圆上.

  师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

  生:不是.

  师:那有多少个?

  生:无数个.

  师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

  生;不知道.

  师:不知道不怕,怕的是他人说这三个字:为什么?

  我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

  生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

  师:因为平滑,所以有无数条.

  生6:因为圆心到圆上的距离全部相等

  生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

  师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

  生:随便

  师:请问,在圆上有多少个这样随便的点?

  生:无数.

  师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

  生:为什么?

  师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

  生:相等.

  师:同意的请举手,我的三个字又来了.

  生:为什么.

  师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

  生:圆规.

  师:还有尺寸,尺寸让你们用来干什么的?

  生:量.

  师:现在就动手量一量.

  虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

  生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

  师:既然两角的距离没有变,那么两角的距离其实就是半径的.距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

  生:半径有无数条,长度都相等,都一样.

  师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

  生:得出来了.

  师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

  生:错.

  师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

  生:也有无数条,直径都相等.

  师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

  除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

  生9:因为我们知道所有的半径都相等.

  师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

  生:有.直径是半径的二倍.

  师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

  生:半径和直径都相等.

  师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

  生:四条.

  师:正五边形,有几条?

  生:五条.

  师:正六边形?

  生:六条.

  师:正八边形?

  生:八条.

  师:圆形?

  生:无数条.

  师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

  现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

  生:不一样.

  师:半径几厘米的圆比较大?

  生:5厘米.

  半径几厘米的圆比较小?

  生:3厘米.

  师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

  生:半径.

  师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

  生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

  师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

  生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

  师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

  生:不是.

  师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

  生12:用一个碗扣在白纸上,描一下.

  师:有可能,但不是.

  生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

  师:人造圆规.

  生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

  师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

  生15:少了宽度.

  师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

  生:不是.

  师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

  生:5厘米.

  师:4厘米呢?

  生:4厘米.

  师:假如半径是3厘米,那么直径呢?

  生:6厘米.

  师:是不是我把圆扯开6厘米,就可以画圆了/

  生;不是.要扯开3厘米.

  师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

  生:没有.

  师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

  生:近似一个圆,

  师:想一想,刚才我们旋转的是什么呀?

  生:中心.

  师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

  生:圆.

  师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

  课前与同学谈话省略

  师:今天上课我们学什么?大声地说“学什么”

  生齐:圆的认识

  师:从哪里看到的?只给我看,

  生指屏幕

  师:屏幕上有,还有呢?

  师:说,哪有?

  师:没错,圆片,还有吗?

  生:圆规

  师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

  生齐:想

  师出示一个信封,摸出一个圆片,师:是圆吗?

  生:是

  师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

  生齐:有

  师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

  师:好,现在看谁的反应最快?

  师从信封里摸出一个长方形

  生:长方形

  师:男孩的反应快,状态也不错。

  师从信封里摸出一个正方形

  生:正方形

  师:还有一个图形

  师从信封里摸出一个三角形

  生:三角形

  师:猜猜还有吗?

  师从信封里摸出一个平行四边形

  生:平行四边形

  师从信封里摸出一个梯形

  生:梯形

  师:行了行了,小朋友们,都别你们猜到了。

  教师课件演示各种图形,

  师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

  生齐:没有

  师:为什么?

  生:因为圆是由曲线围成。

  师:而其他图形呢?

  生:都是由直线,哎!线段围成。

  师:同意吗?

  师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

  生:角

  师:圆有角吗?

  生:没有。

  师:所以圆特别的?

  生:光滑

  师:说的真好

  师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

  生齐:曲线

  师:给它一个名称。

  生:曲线图形

  师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

  生齐:不难。

  师:谁让你们聪明呢?还有难的。

  师出师一个不规则图形

  师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

  生齐:不会

  师:为什么?

  师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

  生齐:丰满

  师:嘿!瞧,还有一个

  师出示一个椭圆,

  师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

  生:不会,

  师:为什么?

  师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

  生:瘦瘦的

  师:瘦瘦的。圆呢?

  教师出示圆形教具,转动。

  师:怎么样?

  生:一样

  师:怎么看到的一样?

  师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

  行,就你吧,近水楼台

  师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

  生:看不见了

  师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

  生:不是

  师:可以吗?

  生齐:可以

  师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

  生:不能

  师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

  生齐:ok!

  师:好,伸出你最拿手的一只手,右边,准备好了吗?

  生:准备好了

  生1:不是.

  师:对不对?

  生:对.

  生1:不是.

  师:对不对?

  生:对.

  生1:更不是.

  师:瞧,这更字用的多好.

  生1:更不是.

  师:小家伙厉害.

  生1:不是.

  生:对.

  生1:是.

  生:对.

  师:掌声鼓励一下.

  圆是曲线图形

  可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

  画圆

  张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

  生2:我认为是圆的半径变了.

  师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

  生:不能.

  师:除了这个地方改变以外,还有那些地方不能动?

  生3:圆心改变了.

  师:在画圆的过程中,针不能改变.

  画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

  生:能.

  师:先别动笔,边画边考虑.

  圆和什么有关系?

  生:圆心和半径.

  师:我知道你们说的半径是什么意思?

  谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

  生4(到黑板前画出远的半径)

  师:对不对?

  生:对.

  师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

  生:圆心.

  师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

  生:O.

  师:请在你刚才画的圆上,标出圆心,写出字母O.

  继续看这条线段,圆心的另一端在哪里?

  生;圆上.

  师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

  生:不是.

  师:那有多少个?

  生:无数个.

  师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

  生;不知道.

  师:不知道不怕,怕的是他人说这三个字:为什么?

  我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

  生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

  师:因为平滑,所以有无数条.

  生6:因为圆心到圆上的距离全部相等

  生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

  师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

  生:随便

  师:请问,在圆上有多少个这样随便的点?

  生:无数.

  师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

  生:为什么?

  师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

  生:相等.

  师:同意的请举手,我的三个字又来了.

  生:为什么.

  师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

  生:圆规.

  师:还有尺寸,尺寸让你们用来干什么的?

  生:量.

  师:现在就动手量一量.

  虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

  生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

  师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

  生:半径有无数条,长度都相等,都一样.

  师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

  生:得出来了.

  师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

  生:错.

  师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

  生:也有无数条,直径都相等.

  师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

  除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

  生9:因为我们知道所有的半径都相等.

  师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

  生:有.直径是半径的二倍.

  师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

  生:半径和直径都相等.

  师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

  生:四条.

  师:正五边形,有几条?

  生:五条.

  师:正六边形?

  生:六条.

  师:正八边形?

  生:八条.

  师:圆形?

  生:无数条.

  师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

  现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

  生:不一样.

  师:半径几厘米的圆比较大?

  生:5厘米.

  半径几厘米的圆比较小?

  生:3厘米.

  师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

  生:半径.

  师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

  生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

  师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

  生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

  师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

  生:不是.

  师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

  生12:用一个碗扣在白纸上,描一下.

  师:有可能,但不是.

  生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

  师:人造圆规.

  生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

  师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,

  正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

  生15:少了宽度.

  师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

  生:不是.

  师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

  生:5厘米.

  师:4厘米呢?

  生:4厘米.

  师:假如半径是3厘米,那么直径呢?

  生:6厘米.

  师:是不是我把圆扯开6厘米,就可以画圆了/

  生;不是.要扯开3厘米.

  师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

  生:没有.

  师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

  生:近似一个圆,

  师:想一想,刚才我们旋转的是什么呀?

  生:中心.

  师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

  生:圆.

  师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

【圆的认识教学设计】相关文章:

人教版圆的认识教学设计01-16

圆的认识教学设计人教版12-27

圆的认识教学设计2篇05-28

圆的认识教学设计(15篇)12-26

圆的认识教学设计15篇12-23

“圆的认识”教学反思05-01

《圆的认识》教学反思06-28

《认识圆》教学反思10-14

圆的初步认识教学反思09-15