小数的意义教学设计

时间:2024-07-31 07:14:45 教学设计 我要投稿

小数的意义教学设计

  作为一名教师,就不得不需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么写教学设计需要注意哪些问题呢?以下是小编精心整理的小数的意义教学设计,欢迎阅读与收藏。

小数的意义教学设计

小数的意义教学设计1

  教学内容:本节课教学内容是新人教版本四年级下册第四单元P32页。

  1、教材分析

  教学主要内容:

  一位、两位、三位小数的意义。小数的计数单位,每相邻两个计数单位之间的进率是10.

  教材编写特点:

  简化了小数意义的叙述重视了对小数意义的理解加强了小数与实际生活的联系在探究的过程中注重给学生创设自主研究的空间。

  教学的重点、难点:

  理解一位、两位、三位小数的意义,知道相邻的两个计数单位之间的进率是10。

  教学关键:

  理解一位、两位、三位小数的意义。

  基本活动经验:

  在老师引导下,重视学生实际动手操作的能力、合理安排引导给学生自主探索的空间、借助学生已有知识经验的迁移,促进学生自主学习。

  二、学情分析

  小数的意义是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。

  学生学习该内容可能的困难:

  教学时,学生必须依托分数和整数的相关知识,借助分数理解小数的意义,借助整数掌握小数的结构特征。理解每相邻两个计数单位之间的进率是10时,必须联系生活中的货币、长度或者重量等理解小数之间的关系。

  学习方式:

  充分的运用演示、操作、观察等直观的手段,把基本概念的本质属性和普遍意义形象地展示出来,是学生在头脑中建立起这些内容的丰富表象,再组织学生进行分析、讨论,加深这些知识概念的感性认识;最后对表象进一步加工,形成概念,从而实现对概念的深刻理解。

  3、教学目标

  知识与技能

  1使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。借助熟悉的十进制关系的显示原型多角度的理解小数与分数之间的关系,理解计数单位0.1、0.01、0.001。

  2明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几.....知道相邻两个计数单位间的进率是10。

  过程与方法

  充分的运用演示、操作、观察等直观的手段,引导学生经历从直观到抽象、概括的心理活动过程,实现“动作表征”、“直观表征”、“符号表征”的循序渐进发展,进而培养学生发现和构建知识的能力、迁移和类推能力。

  情感态度与价值观

  培养学生的抽象、概括、归纳的思维能力和应用数学的能力。

  4、教学过程

  1、已知导入、情境感知

  师:(出示教室场景图)同学们看,这个地方熟悉吗?

  生:熟悉

  师:是哪?

  生:我们的教室

  师:我们的教室,这是黑板的高度,讲台的长度,课桌的长度(课件出示)。

  师:我们已经知道黑板的高度是1米(课件出示黑板的高度是1米),你有办法知道课桌和讲台的长度吗?

  生:我知道了,讲台的长度、课桌的长度有1米多。

  生:我知道讲台的长度跟1米差不多。

  生:可以用重叠法

  生:可以把黑板的高度那里,对直画一根虚线下来,再看

  师:课桌的长度是1米多,具体多多少呢?你有办法吗?

  2、展开,认识一位小数的意义

  生:先测量出1米,多余的`部分截取下来,再接着去测量。

  师:谁还来说说......

  生:先测量出1米,多余的部分截取下来,再拿多余部分去跟1米比较(边说边用手比划)。

  师:你们看看,是这样的吗?(课件演示,将多余的部分截取下来,放在1米的下面测量)

  生:是的。

  师:接下来,谁有办法?

  生:用多余部分去比,看看1米里面有几个那么长。

  生:将1米平均分成10份,再比较。

  师:比不出来啊,谁有办法?

  生:1个1个去比,看看几个那么长正好是1米。就用除法解决。

  师:是这样的吗?(课件演示)

  生:是的

  师:我们一起来数数

  生:1个,2个,3个......正好10个这么长是1米。

  (在出现问题的时候,想解决问题的办法:我们可以把已经知道的1米的刻度标记出来,再继续测量,先用多余部分去比较,发现正好10个那么长就是1米。所以多余部分是10份中的1份,也就是说将1米平均分成10份,这样的1份,它的长度正好是多余部分,所以多余部分可以用十分之一米表示;十分之一米用小数表示是0.1米。在测量或者计算时,我们往往不能正好得到整数的结果,这时,可以用分数或者小数表示。

  师:那现在知道怎么具体表示了吗?说说我们刚才的思路。

  生:因为老师在操作的时候,我们可以发现10个多余部分的长度正好是1米,也就是说每个多余部分的长度是1米的1/10,也就是1/10米。写成小数的话是0.1米。还可以用1分米表示。

  生:根据观察我们发现,将1米平均分成10份,多余部分正好是10份中的1份,可以用分数1/10米表示,还可以用小数0.1米表示。

  生:将1米平均分成10份,多余部分是1米的1/10,也就是1/10米,用小数表示是0.1米。

  师:我们一起来说说:将1米平均分成10份,多余的部分正好是这10份中的1份,也就是1/10,1米的1/10是1/10米,也可以用小数表示为0.1米。

  师:这就是我们这节课要研究的“小数的意义”(板书课题)

  师:那你们知道小数0.1的意义了吗?

  生:0.1表示的是十分之一。

  师:你还能在1米(用手比划)中找到其他的小数吗?并说说它的意义。

  生:0.3米(学生说,老师点课件,并根据课件演示,学生说意义)

  师:那0.3里面有几个0.1呢?表示什么

  生:0.3里面有3个0.表示十分之三。

  师:还找到了其他的小数吗?

  生:0.7米(老师点课件,学生说意义)0.7里面有7个0.1

  师:那1米里面有多少个0.1呢?

  生:1米里面有10个0.1米

  师:10个0.1是1

  仔细观察这些小数和分数(用手比划并引导学生观察分数),你发现了什么?

  生:这些小数都表示十分之几。

  生:这些分数的分母都是10,小数都是一位小数

  生:分母是10的分数可以写成一起小数

  生:10个0.1是1

  师:说得非常好。一位小数表示十分之几。分母是10的分数可以写成一位小数,10个0.1就是1。一位小数,它的计数单位是十分之一,写作0.1。

  我们一起把这句话小声齐读:分母是10的分数可以写成一位小数,一位小数的计数单位是十分之一,写作0.1。

  师:我们在这个1米中找到了很多的小数,是不是只能在这里找到小数呢?

  (出示数轴图)你能在这里找到小数吗?

  生:能(学生上台寻找并说明理由。)

  师:为什么是这里呢?

  生:因为0-1之间分成了10份,每一份是0.1,表示十分之一。

  生:0.1还可以表示刻度。也就是说:这里的每个刻度依次是0.1、0.2、0.3......

  师:我们在学习数轴的时候知道数是按照从小到大的顺序依次排列的,所以0.1在这里。

  师:那你能找到0.8吗?

  生:某一个点,某一个范围(指出0.8的具体位置)

  师:你是怎么找到0.8的?

  生:数8个0.1(10份中数出其中的8份)

  生:从1开始往左边数2个0.1(10-2=8)

  师:那数轴上还有其他的小数吗?

  生:有,学生说小数

  师:如果将数轴无限的延长,这样的小数说得完吗?

  生:说不完。

  师:回归到米尺中,理清我们刚刚的思路:我们知道多余的这个部分—可以用分数十分之一米表示,用小数0.1米表示。所以课桌的长度是1.1米。

  3、推进,认识两位小数的意义

  师:课桌的长度已经具体的表示出来了,黑板的高度呢?

  生:还是拿红色部分进行重叠,多余的部分截取下来。继续用红色部分测量(课件演示)。

  师:遇到了什么问题?

  生:测量时,多余的部分不够1米,

  生:那就用蓝色部分比较。(学生边说,课件演示)也不够1分米。

  师:那怎么办?

  生:用刚刚的方法去比,看多少个紫色部分有是一个蓝色部分。用分米的下一个单位厘米表示。

  师:(课件演示)我们发现......

  生:我们发现10个紫色部分的长度就是蓝色部分

  生:把蓝色部分平均分成10份,紫色部分是其中的1份

  生:是1厘米

  师:把蓝色部分平均分成了10份,那1米里面会有多少个这样的紫色部分呢?

  生:有100个这样的紫色部分。

  师:那就是说:将1米平均分成100份,其中的1份表示的长度就是紫色部分,可以用分数1/100米表示

  生:还可以用0.01米表示。

  师:对的,1/100米写成小数是0.01米。

  师:那红色部分有多少个0.01米蓝色部分呢?

  生:1米里面有100个0.01米。1分米里面有10个0.01米

  师:那这样的4份呢?可以怎么表示?

  生:4/100米,写成小数0.04米

  师:请同学们拿出抽屉中的软尺。

  师:这根软尺长度是多少?

  生:1米、10分米、100厘米、1000毫米。

  师:看来长度单位的换算学的很好哦。

  操作:拿出软尺,在软尺上找到1米,1分米,1厘米,1毫米。以米为单位,找出一个可以用小数表示的地方,跟同桌说一说,并将它写在练习纸上)。

  学生汇报

  生1:我找到的是0-99厘米。是99厘米,用分数表示是99/100米,用小数表示是0.99米。

  生2:我找到的是0-20厘米。是20厘米,用分数表示是20/100米,用小数表示是0.20米。

  生:老师对于生2找的还有表示方法,我可以用分数2/10米,用小数表示是0.2米。

  师:(副板书20/100米=0.20米,2/10米=0.2米。)对于这两种表示方式,谁来说说他们的意义?

  生:一个是表示把1米平均分成100份,取其中的20份,是20/100米=0.20米;一个是表示把1米平均分成10份,取其中的2份,是2/10米=0.2米。

  生:它们表示的长度是一样的,但是它们表示的意义是不同的。

  师:仔细观察这些小数,你又有什么发现呢?

  生:这些分数的分母都是100,小数都是两位小数

  生:分母是100的分数可以写成两位小数

  生:100个0.01是1

  师:说得非常好。两位小数表示百分之几,它的计数单位是百分之一,写作0.01。

  (课件出示:分母是100的分数可以写成两位小数,两位小数的计数单位是百分之一,写作0.01。)

  师:通过我们刚才的探究,我们知道黑板高度中1米之外多余的这个部分—1厘米,可以用分数百分之一米表示,用小数0.01米表示。所以讲台的长度是1.01米。

  4、拓展,认识三位小数、四位小数的意义

  师:(出示课件显示1毫米)这是多长?

  生:1毫米

  师:你是怎么知道的?

  生:.因为把1厘米平均分成了10份,其中的1份就是1毫米.....

  师:1米里面有多少个这样的1毫米呢?

  生:1000个(1米里面有1000个1毫米),因为1米=1000毫米

  出示课件

  师:将1米平均分成1000份,这样的1份是1毫米,这样的1份还可以怎么表示?

  生:1/1000米,0.001米。

  师:对的,把1米平均分成1000份,其中的1份是1/1000米,用小数表示为0.001米。

  师:那这里的7份可以怎么表示?米尺中的1厘米可以怎么表示呢?

  生:这里的7份可以用分数7/1000米表示,用小数表示为0.007米

  生:米尺中的1厘米是1000份中的10份,用分数千分之十米表示,用小数0.010米表示。

  生:1厘米也可以用分数百分之一米表示,用小数0.01表示。

  师:也就是说10个0.001等于1个0.01。

  师:观察这些小数,你发现了什么

  生:还可以知道,分母是1000的分数可以写成三位小数,三位小数的计数单位是千分分之一,写作0.001。1厘米中有10个1毫米,所以0.01里面有10个0.001;1米里面有1000个1毫米,所以1里面有1000个0.001。

  五、总结及应用

  (观察板书可以知道)

  分母是10.100.1000......的分数可以用小数表示。

  小数的计数单位是十分之一、百分之一、千分之一......写作0.1、0.01、0.001......

  每相邻两个计数单位之间的进率是( 10 )

  生:因为我们刚刚在黑板上标记了

  生:进率是100

  生:因为我们知道人民币1分钱是0.01元,1角钱是0.1元,10个1分钱等于1角,所以进率是10

  生:进率是10.看黑板我们知道0.1米是1分米,0.01米是1厘米,0.001米是1毫米。它们之间的关系是10毫米=1厘米,10厘米=1分米。所以相邻两个计数单位之间的进率是10.

  (学生根据小数的计数单位自己理解这句话,并且填空,说明理由。)

  写出合适的分数和小数

  说一说你的收获

  生:我知道了“小数的意义”

  生:我知道了分母是10.100.1000......这样的分数可以写成小数

  生:我知道了小数的计数单位

  ......

  是的,这些都是我们这节课的收获,希望大家在以后的生活或者学习中能够好好的运用这些知识。你们将会发现,原来数学与生活是息息相关的。

  板书设计

  1米 1 计数单位

  1/10米=0.1米 十分之一 0.1 一位小数

  1/100米=0.01米 百分之一 0.01 两位小数

  1/1000米=0.001米 千分之一 0.001 三位小数

  1/10000米=0.0001米 万分之一 0.0001 四位小数

  五、教学反思

  《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在动手、动脑、动口中理解知识,掌握方法,学会思考,获得积极的情感体验。

  一、运用多种手段,提高教学实效

  本节课中将现代化教学手段与常规教学手段相结合,提高了教学效率。从引入课题、讲授新课、反馈练习,大部分内容均制成多媒体课件,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启迪学生思维,增大了课堂容量,大大提高了课堂效率。在授新一位小数的意义时,扎扎实实的抓住了重难点,两位小数的意义学习时,让学生借助实物(软尺)进行操作:找小数,写小数,说小数的意义,从而加深了实际与理论的联系,强化了对理论知识的理解,三位小数的引入更是在已有的软尺基础上,复习了长度单位之间的关系,从而让学生能够理解三位小数的意义。同时,本节课又注重了常规教学手段的运用,课题、一位、二位、三位小数的几个关系式等,均由老师板书。提纲挈领的板书,帮助学生形成完整的知识结构。

  2、情景导入,回到最初

  借助教参中的情景导入,但是在设计时抛开了已有的尺子测量,让学生只根据已有的1米进行思考。也就是在遇到不能用整数表示的时候,要想其他的办法进行解决(如:想出一个新的名数单位,比如分米、厘米、毫米来解决问题;或者想到用分数表示,借助分数从而过度到小数),让学生明白知识不是原本就是这样的。是因为我们在实际的问题当中不能解决,必须借助新的知识来解决,就此重新回顾了小数的产生与发展。

  3、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。

  许多教师认为,小数的意义这一内容用传统的接受式教学方法比较恰当,因为小数的意义是约定术成的,新型的学习方式(动手实践、自主探究与合作交流)也只能是一种课堂的装饰。这种思想,是我在设计教学时考虑得最多,也是我最难突破的瓶颈。因此在本课的设计上,我以小数在生活中的实际意义为切入点,从学生的生活经验和知识背景出发,引导学生进行积极的体验。

  六、案例研讨

  《小数的意义》这一课。为我们诠释了如何让学生在基础数学的学习过程中,触及数学本质的深处,更深切的感受数学的精神、思维和方法的魅力。同时,本节课的教学不落俗套,特别是在教学设计上为我们展示了独有的环环相扣。

  1、回归本质,回到最初

  在第一个环节一位小数的意义的设计中,教师提出:“在没有测量工具的前提下,你能想办法知道课桌的长度吗”这个问题,学生想到了最为原始的办法:用非整数表示或者产生一个比米更小的名数来表示。这样的教学设计,让学生能触及数学本质。

  2、数与型结合,便于学生理解

  两位、三位小数的意义教学设计中,更是将实物——1米的软尺搬进课堂,让学生去观察、寻找“以米为单位可以用两位小数表示”的地方,从而让学生感受知识并不是凭空捏造的,而是有凭有据的,让学生理会到数学是一门严谨的学科。脱离实物过渡到三位小数时,让学生在操作、观察中感知,在感知后依据课件抽象、概括,在思维碰撞中提高认识的学习过程。

  3、概念性的教学是否可以全面放开,让学生自己去发现、去总结

  既然是教学,肯定会有不完美的地方,概念性质的教学多数都是教师满堂灌的形式。在主张把课堂还给学生的情况下,能否大胆的放手,让学生自己去发现、去找凭找据、去总结、去运用呢?

  附:评课老师简介

  何琴,小学高级教师,校级骨干教师。20xx年担任教育部“国培计划(20xx)”——中西部地区小学教师置换脱产研修项目培训导师,20xx年被聘为“第二批校级骨干教师”多篇教学论文获国家二等、省级二等、市级一等奖,多篇论文在《湖南教育》杂志上发表。曾代表长沙高新区参加“长沙市名优教师‘志愿支教、送教下乡’活动”,参加全国中小学“本色教育”说课比赛,荣获一等奖;在教育部“国培计划(20xx)——中西部农村小学骨干教师培训班上的示范课,曾经参加“长沙高新区小学数学教师素养比赛”荣获特等奖,参加“长沙市小学数学教师素养比赛”课堂教学竞赛荣获一等奖。工作理念:多一点鼓励,多一点期待,多一点平等,多一点沟通。教育理念:勤于好学才能乐于施教。

小数的意义教学设计2

  教学内容

  苏教版五年级上册第28-29页。

  教材分析

  在一至四年级,“数与代数”领域主要教学整数的知识,学生已经初步掌握了十进制计数法。三年级(下册)曾经教学了一位小数,初步体会了一位小数与十分之几的分数间的联系,这些都是本课基础。本课教材中例1、例2借助常用的元、角、分和米、厘米、毫米单位之间的换算,通过这样的感性认识,初步抽象出小数的意义。本课又是进一步教学小数性质、比较小数大小、改写大数目的基础,因此小数的意义是本单元教学的重点。

  学生分析:

  这一部分内容学生在三年级初步认识小数时其实已经有了学习的基础。学生有以元为单位的小数表示金额,以米为单位的小数表示长度的经验。如果本节课再把大量的时间放在这一方面,无异于原地转圈。对于五年的学生来讲,有了一定的学习能力,对数字语言、文字语言以及图形符号语言有了一定程度的认识和理解。所以,课前的预习,五年级孩子是可以胜任的。所以教师要充分发挥学生自主探索的能力,让学生自主运用已有的经验理解小数的意义,从而实现感性认识到理性认识的飞跃。

  设计意图:

  本节课是一次校级教研课,在第一次试教时按照例题教学,逐步去理解小数的意义。实施下来发现,学生思维就局限在这些单位换算中,而对小数意义的理解并不到位。于是备课组老师就讨论对于这样的概念课怎样才能达到高效呢?最后商量一致同意尝试学生先学后教,由学定教的教学方式,将本节课的设计分成三大板块。

  (1)前置学习,初步感悟。课前通过引导题,让学生自学例1、例2,在常用的价钱和长度单位换算之间,初步感悟分数与小数的联系。同时通过检测题了解学生是否真正理解它们之间的换算,理解分母是10、100、1000……的分数可以用一位小数、两位小数、三位小数……表示。

  (2)课中操作,沟通联系。小数的意义是在分数意义的基础上建立起来的。这符合认知建构的理论观点:学习者对新知识的理解程度与他们内在的认知结构息息相关。布鲁纳说得更清楚:“获得的知识如果没有完整的结构把它们连在一起,那是一种多半会遗忘的知识。”学习一个概念,需要在心理上组织起适当的认知结构,并使之成为个人内部知识网络的一部分。沟通小数与十进分数的内在联系,是引导学生理解小数意义的关键。怎样让学生主动建构小数与十进分数之间的联系?我们借鉴了特级教师朱国荣老师的设计。用一张正方形纸表示整数“1”,让学生根据自己的理解,表示0.1的大小,在此基础上认识0.9、0.2、0.8……从而理解1里面有10个0.1.继续拓展,认识两位小数、三位小数……

  (3)分层练习,实质理解。第一,基本练习,对口令;第二,看图写小数;第三,结合数轴找小数。这三组练习题,层层递进,检测学生能否从本质上真正理解小数的意义。

  实施过程

  一、前置学习,初步感悟。

  1.揭题:今天这节课,我们学习新的一单元,一起读一读。在三年级我们已经初步认识了小数。今天我们重点来研究小数的意义。

  2.课前大家对今天学习的内容已经进行了预习,小组交流,把你的错误向小组里的同学请教一下。(自学学习材料附后)

  3.全班汇报:

  第一层次:角改写成元作单位可以用一位小数表示,分改写成元作单位可以用两位小数表示。

  第二层次:分米改写成米作单位就是十分之几米,也可以写成一位小数,厘米改写成米作单位就是百分之几米,也可以写成两位小数,毫米写成米作单位就是千分之几米,也可以写成三位小数。

  二、课中操作,沟通联系。

  1.理解一位小数的意义

  (1).刚才我们通过课前研究,初步感知了小数和分数的联系,那你能根据自己的理解说一说0.1的意义是什么吗?

  (2).那么老师这里有一张正方形纸,如果把这张正方形的.纸看作1,怎么在这张纸上表示0.1的大小。

  拿出正方形纸,分一分,涂一涂表示0.1的大小。

  展示交流,看看这些同学的作品,发表你的意见。

  那谁能很自信地确定你表示的是正确的?介绍你的想法。还有不一样的吗?

  虽然形状不一样,但所表示的都是把一个正方形平均分成10份,涂了其中的一份。

  (3).课件演示,这样表示0.1吗?要表示0.1还需要涂出一份。再说一说0.1表示什么意义。

  (4).仔细看,你除了看到0.1还看到那个小数?你是怎么看到0.9的?写成分数是什么?0.9和0.1合起来是多少?1里面有几个0.1。

  (5).这里你能看到哪2个小数,写成分数是多少。合在一起是几?

  (6).把1平均分成十份,我们认识了0.1、0.9、0.2、0.8外还可以表示那些小数。

  这些小数都是一位小数,一位小数表示什么意义呢?

  把1平均分成10份,表示其中的几份,也就是表示十分之几。

  2.理解两位小数的意义

  (1).那0.01的意义是什么呢?

  (2).如果还是把这张正方形纸看成1,要在这张正方形纸上表示0.01,你准备怎么表示。

  把这张正方形纸平均分成100份,涂其中的1份表示0.01。

  (3).课件演示,0.01可以表示哪个分数。仔细观察你除了看到0.01,你还能看到那个小数。

  0.99写成分数是多少?0.99里有几个0.01。0.01和0.99合在一起是多少。1里有多少个0.01

  (4).课件出示,你看到哪2个小数,分数是什么?

  0.28和0.72合在一起是多少。

  这些小数都是两位小数,两位小数表示什么意义。

  把1平均分成100份,取其中的几份,也就是表示百分之几。

  3.理解三位小数的意义

  (1).照这样看三位小数表示?千分之几。

  (2).三位小数最小的是谁?0.001表示什么意义。写成分数是什么?你能写一个最大的三位小数吗?0.999表示什么意义。0.001和0.999合在一起是多少。1里面有多少个0.001。

  0.012写成分数是多少?写成小数是多少?

  4.拓展四位小数、五位小数

  (1).那四位小数表示什么呢?0.0123表示哪个分数。

  (2).五位小数表示什么意义?写成小数是什么?

  5.概括小数的意义

  那什么是小数的意义呢?

  引导学生归纳:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  三、分层练习,实质理解。

  1.对口令

  看来大家对小数的意义都已经基本掌握了,那我们一起来玩一个游戏,看谁学得扎实。

  规则:老师出示小数,请你快速说出分数,老师出示分数,请你快速说出小数。

  结合有单位的题目,0.80元、厘米、0.006米说一说表示的意义。

  2.写小数

  刚才我们在一张平面的正方形中找到了小数,看,在这个正方体中,涂色的部分能用哪个小数表示呢?

  这个图形又可以用哪个小数表示?如果要表示2.43怎么办?

  3.数轴上得小数

  看、这是一条数轴,这两个点可以用哪个小数表示。

  把数轴延伸,这两个点可以用哪个小数表示。2.35在哪里?从0向左看你还能找到哪些数。

  4.通过本节课的学习你有什么收获?

  虽然我们感觉掌握的还不错,但是伟大的数学家高斯曾说过“给我最大快乐的,不是已懂得的知识,而是不断的学习。”希望大家课后继续研究小数的其他知识

小数的意义教学设计3

  教学目标:

  1、在现实情境中认识两位小数、三位小数等,从而理解小数的意义,体会小数和分数的联系,会正确读写小数。

  2、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。

  教学过程:

  一、回顾导入:

  1、师:在三年级时我们一起认识了小数,你还记得吗?

  (稍作停顿,学生回忆小数知识)

  你对小数有了哪些了解?(生独立发言)

  (可以是读写方法、意义、一位小数、组成部分、使用情况等)

  2、师(板书:0.3):会读吗?(生齐读)

  你是怎样理解0.3的?

  3、揭题:今天起我们将继续学习小数的相关知识。

  (出示课题:小数的意义和读写方法)

  二、展开新授:

  1、教学例1:

  (1) 课件播放例1:

  师:你能读出这三种物品的价格吗?

  (个别读,师板书价格及读法)

  0.05:请两生个别读再齐读,这个读法与以前学过的数的读法有什么不同?

  小数部分依次直接读出数字就可以了。

  (2) 用角或分做单位,说出这些物品的价钱。

  生答师追问:

  3角为什么可以写成0.3元?

  5分为什么写成0.05元呢?

  (1元=?分,1分是一元的几分之几?可以写成多少元?

  5分是一元的几分之几,可以写成多少元?)

  4角8分是一元的几分之几,可以写成多少元?

  书p25/1(1)课件出示,直接口答。

  (2) 齐读0.05、0.48:

  0.05、0.48分别是一元的几分之几?

  与以前认识的小数有什么不同?

  揭示两位小数、一位小数的概念。

  2、教学例2:

  (1) 师:用分作单位的数是一元的百分之几,可以写成两位小数。生活中还有很多用到两位小数的情景。

  (出示一把米尺):把一米平均分成100份,每份长多少?

  1厘米是1米的几分之几?

  可以写成小数是?

  (2) 播放例2的课件,师稍作讲解。生独立完成书上的尺子图。

  全班交流书写情况。

  29厘米呢?

  你想到了多少厘米,写成小数是多少米?

  (3) 师:把一米平均分成1000份,每份长多少呢?

  1毫米是1米的几分之几?可以写成小数是?

  播放课件,稍作讲解。生独立完成书上的尺子图。

  全班交流书写情况,并齐读这些小数,(指导:小数部分的零不能省略读)

  (4) 师:他们是几位小数?

  分别表示千分之几?

  有没有四位小数呢?你能举个例子吗?

  他表示多少分之多少?

  按照这样的方法还有五位小数、六位小数位数更多的小数。我们以后将学到的圆周率还是个无限小数呢。

  3、小结、揭示小数的意义:

  师:齐读黑板上小数和对应的.分数。

  黑板上的这些小数是由怎样的分数改写成的?

  你还发现了什么?

  课件出示:分母是10、100、1000的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几

  学生默读理解。

  师:两个省略号分别省略的什么?你能补充吗?

  三、巩固练习:

  1、试一试:(课件播放题目)

  师指导:第一幅图把正方形平均分成了几份?每一份是什么形状的?

  第二幅图能?

  第三幅图把什么看作整数1了?

  平均分成了几份?你是怎样看出来的?

  每一份是什么形状的?

  独立填书。

  全班交流,并结合图说说0.7、0.43、0.009分别表示什么?

  2、练一练第二题,独立完成在书上。

  全班交流。

  3、练习五第二题、第三题。

  独立练习,口头汇报。

  0.300表示什么?

  4、练习五第四、五题。

  独立练习,全班交流。

  四、总结:

  师:谁能来归纳一下今天我们的学习内容? 你有哪些收获?

小数的意义教学设计4

  教学目标

  1.使学生理解小数除法的意义.

  2.初步学会较容易的除法是整数的小数除法的计算方法.

  教学重点

  使学生学会除数是整数的小数除法的计算方法.

  教学难点

  理解商的小数点要和被除数的小数点对齐的道理.

  教学过程

  一、铺垫孕伏

  (一)列式计算:一筒奶粉500克,3筒奶粉多少克?

  教师板书:500×3=1500(克)

  (二)变式:

  1.3筒奶粉1500克,一筒奶粉多少克?

  2.一筒奶粉500克,几筒奶粉1500克?

  教师板书:1500÷3=500(克)

  1500÷500=3(筒)

  (三)小结:整数除法是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  二、探究新知

  (一)理解小数除法的意义.

  1.课件演示:小数除法的意义

  2.小结:小数除法的意义与整数除法的`意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  3.练习:根据小数除法的意义,写出下面两个除法算式的商.

  1.8×0.5=0.9

  0.9÷0.5= 0.9÷1.8=

  (二)教学小数除法的计算方法.

  例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

  1.理解题意,并列式:21.45÷15

  2.小组讨论,理解算理,尝试计算.

  3.课件演示:除数是整数的小数除法(例1)

  4.练习:68.8÷4 85.44÷16

  5.总结计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐.

  三、全课小结

  这节课你都学到了哪些知识?除数是整数的小数除法和整数除法有什么联系?又有什么区别?

  四、课堂练习

  (一)计算下面各题.

  42.84÷7 67.5÷15 289.8÷18

  (二)只列式不计算.

  1.两数的积是201.6,一个因数是72,另一个因数是多少?

  2.把86.4平均分成24份,每份是多少?

  3.64.6是17的多少倍?

  (三)判断下面各题是否正确.

  五、布置作业

  (一)计算下面各题.

  101.7÷9 79.2÷6 716.8÷7

  (二)一台拖拉机5小时耕5.55公顷地,平均每小时耕地多少公顷?

  六、板书设计

  小数除法的意义

  例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

小数的意义教学设计5

  教学目标:

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义。

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

  (三)培养学生的观察、分析、推理能力。

  教学重点和难点:

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及相邻单位间的进率,既是本课的重点,也是本课的难点.

  教学过程:

  一、小数的产生。

  1、谈话导入

  问:在三年级时我们初步认识了小数,你能说一个小数吗?

  (根据学生的回答,选一部分板书)

  问:你还知道小数的哪些知识?

  2、那小数是怎样产生的呢?(出示课件)

  ①先出示课件,让学生观察,哪些能用整数表示?哪些得不到整数的结果?

  ②小结:在测量时、计算时及物体的单价,有的能用整数表示,有的得不到整数的结果。像这样得不到整数结果的例子在生活和学习中有很多,聪明的人们于是想到了用分数、小数来表示,于是小数便产生了。(板书:小数产生)

  二、小数的意义。

  1、认识一位小数

  师: 0.1米 还可以怎么表示?

  生1:用分数表示是1/10米

  生2: 1分米

  师:你是怎么想的?

  生:把 1米 平均分成10份,每一份是1分米,用分数表示是1/10米,用小数表示是 0.1米 。

  师: 0.3米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)

  师: 0.8米 是几分米?用分数表示是多少米,用小数表示是多少米?(生略)

  师:像0.1、0.3、0.8……这样的小数,小数点后面只有一位数,这样的小数叫一位小数。

  (板书:一位小数)

  2、认识两位小数

  师: 0.01米 还可以怎么表示?

  生1:用分数表示是1/100米

  生2: 1厘米

  师:你是怎么想的?

  生:把 1米 平均分成100份,每一份是 1厘米 ,用分数表示是1/100米,用小数表示是 0.01米 。

  师: 0.05米 是几厘米?用分数表示是多少米?(生略)

  师: 0.09米 是几厘米?用分数表示是多少米?(生略)

  师:像0.01、0.05、0.09……这样的小数,小数点后面有两位数,这样的小数叫(两位小数)。

  (板书:两位小数)

  3、认识三位小数

  师: 0.001米 还可以怎么表示?

  生1:用分数表示是1/100米

  生2: 1毫米

  师:你是怎么想的?

  生:把 1米 平均分成1000份,每一份是 1毫米 ,用分数表示是1/1000米,用分数表示是1/1000米。

  师: 0.007米 是几毫米?用分数表示是多少米?(生略)

  师: 0.012米 是几豪米?用分数表示是多少米?(生略)

  师:像0.001、0.007、0.012这样的小数,小数点后面有三位数,这样的小数叫(三位小数)。(板书:三位小数)

  师:分母是几的分数能写成四位小数?(1000)

  分母是几的分数能写成五位小数?(10000)

  师:依次类推(板书:......)

  4、概括小数的意义

  师:(结合板书)这些都是同学们刚刚写出的分数和小数,不同的分数可以写成相对应的小数,例如:1/10可以写成0.1;

  5/100可以写成0.05; 12/1000可以写成0.012。

  那么分数和小数之间的这种联系,谁能用自己的话来说一说呢?

  师:下面分小组说一说你们各自的想法。

  (汇报讨论结果。)

  组1:分母是10、100、1000的分数可以用小数来表示。

  组2:十分之几是一位小数,百分之几是两位小数,千分之几是三位小数……。

  组3:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……。

  组4:分母是10、100、1000的分数可以用小数来表示,比如说十分之几可以用一位小数来表示,百分之几可以用两位小数表示,千分之几可以用三位小数表示……。

  小结:我们一起来看板书,刚刚你们已经说到了分母是10的分数可以用一位小数来表示,分母是100的分数可以用两位小数来表示,分母是1000的分数可以用三位小数来表示,用一句话概括就是——分母是10、100、1000……的分数可以用小数表示。

  这就是。(板书:小数的意义)

  5、认识小数的计数单位。

  师:0.3里面有( )个0.1 0.8里面有( )个 0.1

  生1:0.3里面有( 3 )个0.1

  生2:0.8里面有( 8)个

  师:像0.3、0.8这样的一位小数都是由许多个 0.1 组成的,我们就说 0.1 是一位小数的'计数单位,用分数表示是十分之一。

  师:那么你们猜一猜,两位小数的计数单位是什么?

  生: 0.01 是两位小数的计数单位,用分数表示是百分之一。

  师:那三位小数的计数单位是(? )

  生:0.001(千分之一)

  师:那四位小数的计数单位是( ?)

  生:0.0001(万分之一)

  师:依次类推(板书:......)

  6、认识进率

  (结合板书)一位小数的计数单位是0.1,两位小数的计数单位是0.01,三位小数的计数单位是0.001,那0.1里面0.1有( )个0.01

  0.1里面有( )个0.001 (课件出示)

  生:0.1里面有( 10)个0.01

  0.01里面有( 10 )个0.001

  师:为什么0.1里面有( 10)个0.01,0.01里面有( 10 )个0.001,同学们可以结合板书去思考?(四人一小组进行讨论)

  生:讨论

  生:汇报

  生1: 0.1米 =1分米 0.01米 = 1厘米 1分米= 10厘米

  所以0.1里面0.1有( 10 )个0.01 ......

  师:0.1里面有( 10)个0.01,0.01里面有( 10 )个0.001 ,依次类推(板书:......)

  用一句话可以怎么概括?

  师:(课件出示) 每相邻两个计数单位之间的进率是10

  师:(结合板书)0.1里面有( 10)个0.01,0.01里面有( 10 )个0.001 ,那0.1里面有( )个0.001 ?

  生:0.1里面有( )个0.001 ?

  师:你们是怎么想的?生:......

  四、巩固练习。

  师:从上课开始到现在,我就发现同学们的推理能力特别强,那剩下的时间我们就一起去闯智慧关,有没有信心,接受挑战?(有)

  师:请看大屏幕,第一关(课件出示)

  1、填一填(书51页做一做)

  2、哪两只手套是一副?用线连一连。(书55页第2题)

  第二关

  3、在( )里可以填几

  ( )个0.01是0.1 0.8里面有( )个0.1

  0.35里面有( )个0.1和( )个0.01组成的

  0.2里面有( )个0.1,有( )个0.01,有( ), 个0.02

  4、想一想

  1元4角2分=( )元 2.56元=( )元( )角( )分

  35厘米=( )米=( )分米 0.68米 =( )分米=( )厘米

  第三关

  5、在括号里填上适当的分数和小数

  五、课堂小结。

  这一节课我和小朋友合作得非常成功,我相信每一个同学都有很多的收获,谁先来说一说?

小数的意义教学设计6

  小数的意义

  第一课时

  教学内容:

  义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。

  教学目标:

  1让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。

  2通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义。

  4感受数学与生活的紧密联系,体会小数在日常生活中的作用。

  教学重点:

  结合现实情境,认识小数及小数的计数单位。

  教学难点:

  理解小数的`意义及十进关系。

  教学准备:

  米尺、直尺等。

  教学过程:

  一、引入新知

  1量一量黑板的长,课桌长、高

  这些数是不是都是整米数?

  教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。

  2回忆、练习

  1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m

  教师:关于小数,同学们还想知道什么?

  板书课题:小数的意义

  二、探索新知

  1教学例1

  (1)填一填,说一说。

  (出示例1第1个图)

  ①此图用分数、小数该怎样表示?你是怎样想的?

  说一说:07表示把一个正方形平均分成()份,取其中()份。

  07里面有()个0.1。

  ②像0.1,0.3,0.5,0.7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。

  (2)同理说一说。(后面两幅图)

  ①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?

  ②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?

  2教学例2

  (认识三位小数)

  (1)看一看,填一填。

  ①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。

  (出示图)学生填分数和用小数表示。

  1mm=()1000m=()m;146mm=()1000m=()m②把一个正方体平均分成1000份。

  (第70页例2图)其中1份、25份,107份用分数和小数怎样表示?

  (2)说一说0.025,0.107分别表示什么以及它们的组成。

  (3)归纳:表示千分之几写成几位小数?三位小数表示几分之几?

  3讨论、归纳小数的意义

  学生讨论:什么是小数?小数的计数单位有哪些?

  归纳:像0.7,0.45,0.025,0.25,0.107……这样表示十分之几、百分之几、千分之几……的数叫小数。0.1,0.01,0.001……就是小数的计数单位。每相邻两个计数单位间的进率是“10”。

  学生自学数位顺序表。

  三、课堂活动

  完成课堂活动第1,3,4题。

  先学生独立完成,集体评议,让学生说说是怎样想的?

  四、课堂小结

  本节课学会了什么?还有什么困难?

  板书设计:

  小数的意义

  一位小数表示十分之几。

  两位小数表示百分之几。

  三位小数表示千分之几。

  每相邻两个计数单位间的进率是“10”。

  0.1,0.01,0.001……就是小数的计数单位。

小数的意义教学设计7

  教材简析:

  教材以两位小数的意义为主要研究对象,向前联系一位小数与整数,往后发展到三位小数和四位小数,逐渐形成比较完整的小数概念以及记数方法。例1从学生已有的经验切入,先教学两位小数的读法,再感受两位小数的含义,学生体会两位小数的意义不是很轻松的。而小数部分的读法与整数部分不同,又是他们初学时感到不习惯的。从有利于教学出发,例题先讲两位小数的读法,再让学生感受到两位小数的含义。例2通过数形结合,建立小数的概念。

  教学目标:

  1、通过学习使学生在分数的基础上认识小数,知道什么是小数,小数的意义,学会分数、小数的互化。

  2、培养学生的理解空间想象能力。

  3、训练学生思维的灵活性。

  教学重点与难点:

  小数的意义及小数与分数的联系。

  教学准备:

  多媒体课件

  教学过程:

  一、复习。

  用分数表示下面的数。

  1角=()元,1分米=()米。

  2角=()元,1厘米=()米。

  1分=()元,1毫米=()米。

  二、教学例1。

  1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。

  指名回答问题。注意学生回答问题时要完整。

  橡皮的单价0.3元是3角;信封的单价0.05元是5分;练习簿的单价0.48元是4角8分或48分。

  (联系学生的.已有经验,既使学生消除对这三个小数的陌生感,又为下面体会小数的意义埋下伏笔。)

  2、教学小数的读法:

  你能读出下面的小数吗?鼓励学生大胆尝试。

  0.05读作:零点零五;0.48读作:零点四八。

  引导学生总结读整数部分为0的小数的方法:

  从左往右依次读出各位上的数。

  3、初步感受两位小数的含义。

  想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?

  小组讨论交流。

  汇报:0.3元是1元的十分之三。

  (学生根据三年级的知识,完全可以回答出第一个问题。)

  0.05元是1元的百分之五。提问:为什么:

  (根据学生的回答情况,可以作如下的引导。)

  思路:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.05元是5分,是5个,也就是1元的_____。

  根据上面的思路,让学生说明0.48元是1元的。

  学生回答:1元=100分,1元平均分成100份,1份是1分,1分就是1元的_____;0.48元是48分,是48个,也就是1元的_____。

  观察板书:

  你发现了什么?

  引导学生看到0.05和0.48都是两位小数,都表示百分之几。

  4、“试一试”

  A、理解:1厘米是米,米可以写成0.01米。

  指名理解1厘米为什么是米。

  (1米=100厘米,1米平均分成100分,1份就是1厘米,1厘米也就是1米的,就是米。)

  B、用米为单位的分数和小数分别表示4厘米与9厘米。

  学生回答并说名理由。

  C、观察板书:

  这三个分数都是什么样的分数?(百分之几的分数)

  这三个小数呢?(两位小数)

  我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)

  三、数形结合,建立小数的概念。

  1、出示例2:

  把什么看作“1”?(正方形)

  看着图形将和写成小数。学生自主填空后回答。

  提问:0.1表示什么?0.01又表示什么?

小数的意义教学设计8

  教学目标:

  1、结合具体情境,结合实际操作,通过观察、类比等活动使学生理解小数的意义,小数的意义教学设计。

  2、在理解小数意义的基础上学会读小数和写小数,并分清与整数读写的区别。

  3、经历探索小数意义的过程,了解小数在生活中的广泛应用。

  教学重点:结合实际操作,使学生理解小数的意义,学会读写小数

  教学难点:经历探索小数意义的过程。

  教学准备:

  自制课件正方形纸片、正方体模型

  教学过程:

  一、情景创设

  课件播放歌曲《春天在哪里》

  师:请大家用最响亮的声音告诉老师,刚才我们听到的歌曲与哪个季节有关?

  生:春天。

  师:对,春天来了,瞧,(课件展示)花儿绽放了,蝴蝶飞来了,人们也纷纷走到了户外。看,画面上的老太太在读报纸呢,一直蝴蝶从她的身边飞过,它看到了什么呢?

  课件出示:1千瓦时的电可以让电动车运行0.84千米。

  师:谁来读一读这句话。

  生:1千瓦时的电可以让电动车运行0.84千米。

  师:0.84是个什么数?

  生:小数。

  二、合作探究

  1、教学小数的'读写

  师:你还会读其他的小数吗?

  课件出示一组小数。指名学生读。如果都读对了给自己适当的鼓励。

  教师给予适当的评价,教案《小数的意义教学设计》。然后分组讨论:小数的读法和整数的读法有什么相同的地方,又有什么不同的地方。

  学生讨论后回答汇报。

  教师小结:小数点前面的数按照整数的读法去读,小数点后面的按照数字出现的顺序去读。

  师:打搅会读小数了,那你会写小数吗?

  生:会。

  课件出示零点四七四点一三十二点四零五

  学生自由写--交流--集体订正。

  2、教学小数的意义

  师:大家既然都见到过小数,那想一想都是在哪里见到的:

  生举例生活中的小数(超市的货架上、小票上、课本上等等)

  师:大家都是善于观察、乐于发现的好孩子。那你知道0.1元是什么意思吗?

  生:1角。

  师:说说你的想法。

  生:、、、、、、

  师出示正方形的纸,然后让学生图出0.1元。

  生操作然后汇报。

  师生共同通过课件展示来理解1角=0.1元,然后拓展到2角。

  师操作让学生回答表示的是多少元。

  师:我还是把1元平均分成10份,你能表示出3角吗?涂一涂。

  生操作后汇报

  师:你知道0.01元是多少钱?

  生:1分。

  师:那1元里面有多少个1分呢?

  生:100个。

  师:也就是说(课件展示0.01元表示把1元平均分成份,取了其中的份,用分数表示。--学生自然而然的填写了答案。

  0.03元呢?0.36元呢。

  让学生用手中的正方形的纸片进行涂写、汇报。

  展示0.25的图片,让学生写小数和分数。

  借助课件讲解0.001与分数的关系。让学生写0.025与分数。进一步理解三位小数。

  师小结:通过我们刚才的谈话,我们不难看出小数与分数有着密切的联系。其实小数就是表示十分之几、百分之几、千分之几…的数。0.1、0.01、0.001…是小数的计数单位。到这里,这节课我们主要就学习了出示课题"小数的读写及意义",学得怎么样呢,下面我们一起来测验一下。

  三、课题达标

  (课件)展示题目

  采用的方法是学生口答,并要学生说出原因。教师做适当的点评和评价。

  四、课堂小结

  师:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

小数的意义教学设计9

  一、教学目标

  (一)知识与技能

  在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。

  (二)过程与方法

  在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。

  (三)情感态度和价值观

  在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。

  二、教学重难点

  教学重点:理解小数的意义,理解小数的计数单位及它们间的进率。

  教学难点:理解小数的计数单位及它们间的进率。

  三、教学准备

  米尺、彩带、磁条。

  四、教学过程

  (一)创设情境,导入新课

  1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度是多少?

  2.你们估计得对不对呢?让我们一起用直尺来验证一下。

  3.谁愿意把你测量的结果告诉大家?

  学生汇报预设:

  学生1:我测量课桌面的长度是120厘米。

  学生2:我测量课桌面的长度是1米2分米。

  教师:课桌的长度如果以米为单位就是1.2米。

  (1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。

  (2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。

  【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。

  (二)尝试探究,理解意义

  1.认识一位小数。

  教师:出示1米长的彩条,如果把1米平均分成10份,每份是多长?把1分米改写成

  用“米”做单位的分数怎么表示?说一说你是怎么想的?

  学生交流想法。

  教师总结:米用小数表示就是0.1米。

  教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。

  学生独立完成,教师巡视。交流分享学生的思考过程。

  教师:仔细观察黑板上的每组分数和小数,你发现了什么?

  结合学生回答,教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。

  练习:用小数怎么表示?呢?0.5怎样用分数表示?

  参考答案:0.9,0.6,。

  2.认识两位小数。

  教师:我们都已经知道了一位小数表示十分之几,猜一猜:两位小数可能与什么样的分数有关?

  1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?

  学生先独立完成,再合作交流。

  教师:观察每组中的分数和小数,说一说你发现了什么?

  学生1:分数的分母都是100。

  学生2:小数点的右面都有2个数字。

  教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。

  【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的小数有关,有意识地促进迁移,让学生体验成功,培养学生的学习兴趣和信心。

  3.小数的意义。

  教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。

  学生先独立研究,再汇报交流结果,教师根据学生回答适时板书。

  教师:通过你的研究,你发现了什么?

  学生1:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的`一份就是1毫米,也就是米,写成小数就是0.001米。

  学生2:三位小数就表示千分之几。

  教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?

  学生预设:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。

  教师:说得非常好!一位小数表示十分之几,两位小数表示百分之几,三位小数就表示千分之几。那么四位小数表示什么?五位小数呢?

  学生:四位小数表示万分之几,五位小数表示十万分之几。

  结合板书,请同学们仔细观察、回忆一下我们刚才的探讨过程,和同伴交流一下,你都发现了什么?

  学生1:我认为分母是10、100、1000、10000等的分数可以用小数来表示。

  学生2:我知道了十分之几可以写成一位小数,百分之几可以写成两位小数,千分之几可以写成三位小数……

  学生3:也就是说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  小结:分母是10、100、1000……这样的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  4.认识小数的计数单位。

  教师:大家都知道分数中,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一。请同学们想一想小数的计数单位分别是多少呢?

  学生交流,教师根据学生汇报归纳整理:小数的计数单位是十分之一、百分之一、千分之一……

  【设计意图】引导学生借助对“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,有效地锻炼了学生的多种能力,突破了重难点,同时也渗透了小数中相邻两个计数单位间的进率。

  (三)巩固练习,强化认知

  1.第33页做一做。

  2.第36页练习九第1题。

  3.填空:

  0.6 里面有6个( );再增加( )个 0.1就等于1。

  0.25里面有( )个0.01。

  32个0.001是( );32个0.01是( );32个0.1是( )。

  4.在括号里填上适当的小数。

  学生先独立完成,教师再让学生汇报答案,集体评议。

  【设计意图】通过不同层次的练习设计,让学生在对比练习的过程中不断加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用价值,帮助学生根据小数意义理解生活中常见的小数所表示的含义。

  (四)总结梳理,拓展延伸

  1.今天这节课我们学习了哪些知识?你有什么收获?

  2.介绍对小数发展具有杰出贡献的两位数学家。

  【设计意图】通过问题帮助学生梳理本课所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。

小数的意义教学设计10

  一、教学目标

  1、理解小数的意义,能够说出小数各部分的名称。

  2、正确掌握小数的读、写方法。

  3、通过观察、测量体验小数与生活的关系。

  4、在合作与交流中的过程中,感受数学学习的乐趣。

  5、体验数学在身边,感受数学学习的价值和乐趣。

  二、教学重点和难点

  1、认识小数学概念。

  2、小数表示形式。

  3、理解小数的含义是本课的重点、也是难点。

  三、教学过程

  一)创设情景,导入新课

  创设情景,引导学生交流搜集到的生活中的小数。

  教师根据学生回答随机板书:

  1、一张桌子的高度是0.7米;

  2、教室窗户的宽是0.85米;

  3、一份汴梁晚报价格是0.50元

  4、每度电的价格是0.52元。

  5、一棵包菜的重量是0.625千克。

  6、奥运冠军刘翔的身高是1.89米,体重是74.11千克。

  问题思考:为什么在这些地方需要用小数来表示?

  引导学生在读一读这些小数,在读的过程之中,如果有错误,教师当即指导。

  问题:1、这些都是小数,你知道关于小数的哪些知识呢?

  2、关于小数你还想知道些什么?

  3、今天我们就进一步研究小数的意义。(揭示课题)

  这样的设计在于把枯燥的数学知识与学生的生活实际相联系,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

  二)新授部分

  1、0.7米表示什么意义?谁来说说(借助课件,帮助学生理解)

  引导学生完整说:刚才我们把1米平均分成10份,每份长1分米,就是1/10米,还可以写成0.1米。谁也来就像这样完整说一说。

  师:这就是0.7米的意义。对照板书中的分数和小数,你能发现什么?

  学生思考后再交流,十分之几可以写成一位小数,反之,一位小数也可以用十分之几表示。

  问题:十分之五等于多少?0.8等于多少?

  我们过去三年级所认识的0.1米、0.2米以及0.7米都是表示把一米平均分成10份得到的分数,那么1米还可以平均分成多少份呢?

  每份长1厘米,就是1/100米,还可以写成0.01米.

  问:谁愿意再来说说0.01米的意义。学生完整地说出:

  1米平均分成100份,每份长1厘米,就是1/100米,还可以写成0.01米。

  想一想0.85米表示什么?

  重点让学生自己来说一说。

  观察:对照板书,那么你们又有什么新的发现?

  得到:百分之几可以写成两位小数,两位小数表示百分之几。

  师:能举些例子吗?现在我们如果将1米平均分成1000份,每份多长?用分数、小数如何表示?

  你又能发现什么呢?(得到:千分之几可以写成三位小数)请再举例。

  师:如果将1米平均分成10000份呢?能再举例吗?

  接着学习下面的几个小数:0.50元、0.52元、0.625千克

  把小数在实际生活中的运用结合起来,使学生体验教学就在身边,感受数学学习的乐趣。

  归纳:刚才我们分的是1米、1元、1千克等,都可以用整数“1”来表示,我们把整数1平均分成10份100份1000份、……这样的一份或几份是十分之几、百分之几、千分之几……还可以写成一位小数、两位小数、三位小数。

  三)练习加强理解

  1、读小数:1.35元0.49米0.98千米0.87千克

  2、1厘米=()/()分米5角=()元

  3、王新买了三本书,价钱分别是9角8分、7角、3元2角。如何表示

  四)教学反思

  1、认识小数是小学阶段教学小数的知识,教学过程中引导学生与实际生活中量长度、买东西等具体事件联系起来,引导学生结合生活经验学习小数的内容。

  2、本节课教学包括一位小数的'意义、读写方法,是后继学习比较小数大小和小数加减计算的思考基础。学生在日常生活中大量的接触小数,小数的读和写并不是孩子的难点,让学生借助生活实际去理解小数的意义才是学生的学习的关键。

  3、在教学过程中,考虑到学生已有的生活经验,用元、角引入降低学生理解的难度。让学生感受生活中处处有数学,领会到数学源于生活、用于生活的思想。

  4、在教学中,教师应该有感染力的教学语言,让课堂气氛充分活跃起来,这方面有待于今后教学中加强。

  5、学生对小数意义的认识需要经过一个循序渐进的过程,在教学中,应该对教学内容可以进行适度的重组和补充。

小数的意义教学设计11

  一、教学目的:

  1、在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。

  2、在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。

  3、在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。

  二、教学重难点:

  1、理解小数的意义,理解小数的计数单位及它们间的进率。

  2、理解小数的计数单位及它们间的进率。

  三、教学准备:

  米尺、表格纸、多媒体课件等。

  四、教学过程

  (一)创设情境,直入新课

  教师:1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度能有多少?

  2.大家估计得对不对呢?让我们一起用直尺来验证一下。

  学生:实际测量。

  教师:谁愿意把你测量的结果告诉大家?

  学生:汇报预设,学生1:我测量课桌面的长度是120厘米。学生2:我测量课桌面的长度是1米2分米。……

  教师:课桌的长度如果以米为单位就是1.2米。(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。(2)认识小数吗?在哪儿见过小数?(3)出示课件超市的商品价格,书店的书本价格。今天我们一起学习小数的意义。

  (设计意图:联系生活实际提出问题,让学生动手操作,在进行测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必然性。)

  (二)实践入手,探究意义

  1.认识一位小数。

  教师:各小组观察米尺,把1米平均分成10份,每份是多长?

  学生:1分米。

  教师:把1分米改写成用“米”做单位的分数怎么表示?说一说你是怎么想的?

  学生:交流想法。十分之一米

  教师引导学生回答:1分米,也就是十分之一米,用小数表示就是0.1米。

  教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。学生独立完成,教师巡视。交流分享学生的思考过程。

  教师:出示课件:1、线段平均分成10份,取3份,用小数表示。2、正方形平均分成10份取8份,用小数表示。3、分母是10的分数对应的小数。仔细观察白板,你发现了什么?

  学生:回答。

  教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。

  2.认识两位小数。

  教师:我们都已经知道了一位小数表示十分之几,猜一猜:两位小数可能与什么样的分数有关?1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?

  学生:先独立完成,再合作交流。

  教师:观察每组中的分数和小数,说一说你发现了什么?

  学生:分数的分母都是100。学生:小数点的右面都有2个数字。教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。

  教师:出示课件:1、把正方形平均分成100份取35份,用分数和小数表示。

  设计意图:引导学生根据一位小数表示十分之几,推测出两位小数和什么样的小数有关,有意识地促进迁移,体验成功乐趣,培养学生的学习兴趣和信心。

  3.小数的'意义。

  教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。

  学生:先独立研究,再汇报交流结果,教师根据学生回答适时板书。教师:通过你的研究,你发现了什么?

  学生:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是千分之一米,写成小数就是0.001米。

  学生:三位小数就表示千分之几。

  教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?学生:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。

  教师:说得非常好!一位小数表示十分之几,两位小数表示百分之几,三位小数就表示千分之几。那么四位小数表示什么?五位小数呢?学生:四位小数表示万分之几,五位小数表示十万分之几。结合板书,请同学们仔细观察、回忆一下我们刚才的探讨过程,和同伴交流一下,你都发现了什么?

  学生:我认为分母是10、100、1000、10000等的分数可以用小数来表示。

  学生:我知道了十分之几可以写成一位小数,百分之几可以写成两位小数,千分之几可以写成三位小数……学生3:也就是说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  教师小结:分母是10、100、1000……这样的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  4.认识小数的计数单位。

  教师:大家都知道分数中,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一。请同学们想一想小数的计数单位分别是多少呢?学生:交流。

  教师:根据学生汇报归纳整理:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1,0.01,0.001……

  5、小数相邻计数单位之间的进率

  教师:引导学生1分米=0.1米。1厘米=0.01米。1分米=10厘米,那么0.1米=(10个)0.01米,0.1=(10个)0.01.……得出:每相邻的两个计数单位之间的进率是十。

  (设计意图:引导学生从“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,按循序渐进的认知规律,先讲解,接着放手让学生独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,总结小数相邻计数单位之间的进率是十。锻炼了学生的能力,破解了重难点,。)

  (三)巩固应用,强化认知

  1.第33页做一做。

  2.第36页练习九第1题。

  3.课件:填空:0.7里面有7个();再增加()个0.1就等于1。0.23里面有()个0.01。34个0.001是();34个0.01是();34个0.1是()。

  4.在括号里填上适当的小数。学生先独立完成,教师再让学生汇报答案,集体评议。

  (设计意图:用不同层次的练习,让学生在对比练习的中加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用,帮助学生根据小数意义理解生活中常见的小数所表示的含义。)

  (四)总结巩固,拓展延伸

  教师:今天这节课我们学习了哪些知识?你有什么收获?

  教师:出示课件,介绍对小数发展具有杰出贡献的两位数学家——刘徽,朱世杰。

  (设计意图:通过问题帮助学生梳理本节所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。)

小数的意义教学设计12

  教学内容:

  人教版数学四年级下册P50-51

  内容分析:

  本节教学内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。

  小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确“分母是10、100、1000……的分数可以用小数来表示。”

  教学设想:

  三年级学生已经初步认识了分数和小数,再次基础上,课前让学生进行复习。在课堂上通过练习题进行新知的教学,先由教师指导学生认识一位小数,在学习两位小数和三位小数的时候,放手让学生小组探究,体现学习的自主性。通过直观的图形帮助学生理解小数的意义,知道分母是10、100、1000……的分数可以用小数表示。通过想一想、说一说、议一议等活动使学生认识小数的计数单位和数位,掌握小数的计数单位间的进率是10。通过一系列练习巩固认识小数的意义。

  教学目标:

  1、利用米尺和面积图研究分数和小数之间的关系,感悟小数的意义:分母是10、100、1000……的分数可以用小数表示。理解小数是十进分数的另一种表示形式。

  2、认识小数的数位和计数单位。

  3、知道小数每相邻两个计数单位间的进率是10。

  教学重点:

  理解小数的意义

  教学难点:

  小数每相邻两个计数单位间的进率是10

  教学过程:

  课前谈话:三年级我们已经认识了小数,课前也带领大家根据学案复习了小数的知识,并要求大家把你写的小数进行了分类。

  下面请同学们给同桌读一读你写的分数和小数,并互相说一说分类结果

  课件出示学案内容

  一.复习导入

  (出示一位学生的'分类结果)

  师:请这位同学来回答,你把这些小数分成了几类?

  生:三类

  师:你是怎么想的?

  生:小数点后面只有一位的是一类,小数点后面是两位的是一类,小数点后面三位的是一类

  师:你们分的和他一样吗?

  小数点右边的部分是小数部分(板书补充数位顺序表)

  小数部分只有一位的小数叫做一位小数,那小数部分只有两位的小数呢?

  生:两位小数

  师:三位的呢?

  生:三位小数

  师:今天我们一起来探究小数的意义(板书:小数的意义)

  【设计意图:三年级已经初步认识了小数,会写以米、元作单位的小数,并理解其意义。在此基础上,也能用小数表示面积图和线段图中给定部分,因此利用课前复习关于小数的知识,为本节课的学习做准备】

  二、新授

  (一)认识一位小数

  1、出示尺子图

  师:看这幅图,你是怎样填的?

  生:分数:1/10米,小数:0.1米

  师:你是怎么想的?

  生:把1米平均分成10份,其中的一份是1/10米,用小数表示是0.1米。

  师:谁再来说一说?

  2、出示面积图

  师:再看这个图,你还能用分数和小数表示吗?

  生:分数是1/10,小数是0.1

  师:为什么它也能用0.1表示?

  生:涂色部分表示把正方形平均分成10份,取其中的一份,用分数表示是1/10,用小数表示是0.1.

  师:其他同学同意吗?也就是说它们都表示1/10。即1/10=0.1

  (出示课件:1/10=0.1)

  3、出示第二幅面积图

  师:那现在涂色部分是多少?

  生:分数是3/10,小数是0.3

  师:0.3表示什么意思?

  生:把正方形平均分成10份,取其中的3份,就是3/10,分数是0.3

  师:0.3里面有几个0.1?

  生:0.3里面有3个0.1

  4、出示

  师:你还能用分数和小数表示涂色部分吗?给同桌说一说,并且说一说每个小数表示的意义

  (同桌互说)

  汇报:

  师:第一个谁来说?

  生:分数是6/10,小数是0.6

  师:0.6里面有几个0.1?

  生:0.6里面有6个0.1

  师:第二个是多少?

  生:分数是9/10,小数是0.9

  师:0.9表示什么?

  生:把正方形平均分成10份,取其中的9份,就是9/10,小数是0.9

  师:0.9里面有几个0.1?

  生:0.9里面有9个0.1

  5、课件出示

  师:这是我们刚才得到的几组小数和分数,观察这些分数,有什么特点?

  生:分母都是10,都是平均分成了10份得到的

  师:也就是十分之几的数,十分之几的数我们可以用几位小数表示?

  生:一位小数

  师:十分之几的数用一位小数表示(课件出示)

  给同桌读一读这句话

  6、课件出示

  师:我们再回到这个图,现在涂色部分是0.9,也就是9个0.1,如果再添一份是多少?

  出示

  生:10/10、1

  师:十分之十就是1

  1里面有几个0.1?

  生:1里面有10个0.1(课件出示)

  7、出示

  师:这个图怎么表示?

  生:1.2

  师:1.2里面有几个0.1?

  生:1.2里面有12个0.1(课件出示)

  8、出示

  、

  师:同学们仔细看,你发现了吗?一位小数都可以看做几个0.1(引导学生说)

  0.1就是一位小数的计数单位,读作十分之一(补充数位顺序表)

  十分之一所占的数位就是十分位(补充数位顺序表)

  师问:十分位的计数单位是什么?

  生:十分之一

  师:十分位所占的数位是?

  生:十分位

  师:老师在说一个小数:0.8

  8在哪一位?(生:十分位)

  它的计数单位是什么?(生:十分之一)

  有几个这样的计数单位?(生:8个)

  【从直观的尺子图入手到较抽象的面积图,在对比中理解0.1的意义,逐渐递进,在不断理解几个0.1的基础上,认识一位小数的计数单位和数位。在老师的引导下,问题的深入中帮助学生理解】

  (二)认识两位小数、三位小数

  1、自主探究

  师:刚刚我们认识了一位小数的意义、数位和计数单位。那两位小数、三位小数呢?

  接下来请同学们根据学案内容,结合老师给你的问题进行自主探究。

  先请一位同学读一读

  学生活动

  2、练习反馈

  师:同学刚才讨论的很积极,这几个问题都解决了吗?

  那老师出几个问题考考大家

  3、出示

  师:涂色部分是多少?

  生:分数是1/100,小数是0.01

  师:你怎么想的?

  生:把正方形平均分成100份,其中的一份是1/100,小数是0.01

  师:谁再来说一说?

  出示

  师:这一个呢?

  生:分数是4/100,小数是0.04

  师:0.04里面有几个0.01?

  生:有4个0.01

  出示

  师:这是多少?

  生:分数是21/100,小数是0.21

  师:0.21里面有几个0.01?

  生:有21个0.01

  4、认识两位小数的计数单位和数位

  师:两位小数的计数单位是什么?(生:0.01)

  也可以说是百分之一(补充数位顺序表)

  百分之一所占的数位是?(生?百分位)(补充顺序表)

  两位小数表示的是?(生:百分之几的数)

  5、三位小数的意义

  出示

  师:再看这个图,涂色部分是多少?

  生:分数是1/1000,小数是0.001

  师:0.001表示什么?

  生:把一个物体平均分成1000分,取其中的一份,就是1/1000,也就是0.001

  师:谁再来说?

  出示:0.125

  师:再看这个数,是多少?(生:零点一二五)

  没有图了,你还能说出他的意义吗?

  生:把一个物体平均分成1000份,取其中的125份就是125/1000,用小数表示是0.125

  师:0.125里面有几个0.001?

  生:有125个

  6、三位小数的计数单位和数位

  师:三位小数的计数单位是什么?(生:0.001)

  也可以读作千分之一

  千分之一所占的数位是?(生:千分位)

  (补充数位顺序表)

  三位小数表示的是什么数?(生:千分之几的数)

  【设计意图:在认识一位小数时,由教师带领学习,而在认识两位小数和三位小数时,则放手让学生自主探究,利用认识一位小数时的学习经验进行学习】

  7、延伸

  师:那四位小数呢?(生:万分之几)

  计数单位是?(生:万分之一)

  往下说的完吗?(生:说不完)

  我们可以用省略号表示(补充数位顺序表)

  8、拓展

  师:小数部分有没有最小的计数单位?

  生:有

  师:有不同意见吗?

  生:没有最小的计数单位,因为我们把物体平均分成10份,又平均分成100份,1000份,越分越小

  师:你们听懂了吗?

  想一想,0.1是怎么得到的?

  生:平均分成10份,1份是0.1

  师:那0.01就是平均分成100份,取其中的一份。0.001就是平均分成1000份,取其中的一份,随着分的分数越来越多,一份就越来越小,如果我继续分下去能分完吗?越往下分越小,那有没有最小的计数单位?

  生:没有最小的计数单位。

  师:小数部分有没有最大的计数单位?

  生:十分之一

  9、修改数位顺序表

  师:拿出你刚才写的数位顺序表,看一看你写的对吗?

  有问题的修改一下

  (三)计数单位间的进率

  1、出示:

  师:第一个图的涂色部分用小数表示是?(生:0.1)

  第二个图的涂色部分用小数表示是?(生:0.10)

  你发现了什么?

  生:两个图的涂色部分一样大

  师:也就是他们大小相同。(出示:0.1=0.10)

  有什么不同吗?

  生:平均分的份数不同,一个平均分成了10分,一个平均分成了100份

  师:对不对?第一个平均分成了10份,取其中的一份,第二个平均分成100份,取其中的10份

  第一个表示1个0.1,第二个表示10个0.01

  你还有什么发现?

  生:10个0.01是0.1(板书)

  师:一起读一遍

  2、出示(由1个0.1增加到10个0.1)

  生一起数到1

  师:你发现了什么?

  生:10个0.1是1

  师:(板书)再读一读

  3、小结

  师(指数位顺序表):你有什么发现?

  生:进率是10

  师:对,小数和整数一样,相邻两个计数单位间的进率是10

小数的意义教学设计13

  教学目标:

  1、理解小数的意义,借助熟悉的十进制关系现实原型,多角度理解小数和分数的联系,知道每相邻两个计数单位之间的进率是10。

  2、通过小数和分数的联系,培养学生系统归纳知识的能力。

  3、通过对测量、观察、思考、操作等活动,以及学生对日常生活中的小数的广泛应用,使学生积累了丰富的感性认识,渗透迁移、类推思想。

  4、通过自学、交流等活动,积累思考的经验和探究的经验。

  5、在用小数进行表达的过程中,感受小数与生活的联系,进一步培养数感和观察、比较、抽象的能力,增强学习数学的兴趣和信心。

  6、引导学生在测量、操作过程中经历“不够1米怎么表示”,感受小数产生的必要性,并尝试着解决生活中的实际问题。通过分层练习,让学生牢固掌握并重点练习小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义,培养迁移和类推的能力。

  教学重点:

  1、理解小数的意义

  2、知道每相邻的两个计数单位之间的进率是10。

  教学难点:

  小数每相邻两个计数单位间的进率是10。

  教学过程:

  一、情境引入,揭示课题

  同学们,上学期我们初步认识了小数,了解到小数在生活中具有十分广泛的应用,生活中处处有小数,小数也经常出现在日常生活的测量和计算中。你会用米尺测量吗?请两位同学合作到前面测量黑板的长度。引出在测量过程中,往往不能正好得到整数结果,不够1m怎么办?

  今天我们一起来探究小数的.意义(板书:小数的意义)

  二、新授

  (一)1、理解一位小数的意义

  请看大屏幕(出示课件米尺图)

  师:把1米平均分成10份,其中的一份是几分米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?

  师:谁来说一说?3分米呢?7分米呢?

  通过探究,发现:分母是10的分数可以用一位小数表示。

  师:0.3m里面有几个0.1m?

  0.7m里面有几个0.1m?1m呢?

  小结:分母是10的分数,它的分子是几,里面就有几个0.1。

  2、巩固练习(出示课件)

  师:请你再思考一下:1里面有几个0.1?为什么?

  (二)1、理解两位小数的意义

  请看大屏幕(出示课件米尺图)

  把1米平均分成100份,其中的一份是几厘米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?谁来说一说?4厘米呢?8厘米呢?

  通过探究,发现:分母是100的分数可以用两位小数表示。

  0.04m里面有几个0.01m?

  0.08m里面有几个0.01m?1m呢?

  小结:分母是100的分数,它的分子是几,里面就有几个0.01。

  2、巩固练习(出示课件)

  (三)1、理解三位小数的意义

  请看大屏幕(出示课件米尺图)

  把1米平均分成1000份,其中的一份是几毫米?用米作单位,用分数表示是几分之几米?用小数表示是多少米?

  谁来说一说?6毫米呢?13毫米呢?你能独立探究吗?

  学生看课本33页,独立探究。(课件出示问题引导)

  通过探究,发现:分母是1000的分数可以用三位小数表示。

  0.006m里面有几个0.001m?

  0.013m里面有几个0.001m?1m呢?

  小结:分母是1000的分数,它的分子是几,里面就有几个0.001。

  (四)迁移推理

  同学们看课本33页,在米尺图的下面,小精灵说了一句话,咱们齐读一下。引导学生理解其中省略号的含义。

  巩固练习:

  1、教材36页 1、2两题

  2、课件出示巩固练习

  (五)认识小数的计数单位和进率

  回忆整数的计数单位,引出小数的计数单位,理解每相邻两个计数单位之间的进率是10。

  三、课堂总结:

  这节课你有什么收获?

  四、介绍小数的历史,拓展视野

  五、布置作业:教材37页7、8两题。

小数的意义教学设计14

  教学目标:

  1.使学生在现实的情境中,理解小数的意义,掌握小数的读写方法。

  2.使学生经历小数意义的探索过程,积累数学活动的经验,进一步发展数感,培养观察、比较、抽象、概括以及合情推理的能力。

  3.使学生能体会到小数与日常生活的密切联系,增强自主探索与合作交流的意识,树立学好数学的自信心。

  教学重点、难点:

  理解小数的意义,会正确读写小数。

  教学过程:

  一、导入

  同学们,我们在三年级的时候就认识了这样的一些小数,今天这节课我们将进一步学习有关小数的知识,让我们一起来认识小数的意义和读写法。(板书课题)

  二、回顾旧知,铺垫新知

  1、(1)生活中,许多地方都能看到小数,你在那些地方看到过的?

  (2)这些商品的价格你想了解一下吗?注意小数部分的`读法,从左往右依次读出各个位上的数。

  你能用角或分做单位说出下面物品的价钱吗?

  2.旧知铺垫

  以“元”为单位,3角用分数表示是几分之几元?你是怎么想的?

  (1元是10角,1角是1元的十分之一,3角是1元的十分之三,所以3角就是十分之三元。)

  用小数表示就是0.3元。

  3.初步认识两位小数。

  (1)5分和48分都是以什么为单位的?

  如果以“元”为单位,1分用分数表示是几分之几元,用小数表示呢?你是怎么想的?(1元=100分,1分是1元的百分之一,就是1/100元,也就是0.01元。)

  (2)5分用分数表示是多少元呢?48分呢?学生讨论

  (3)学生汇报,教师根据学生回答完成板书。

  (4)5分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,5分就是1元的百分之五。)

  百分之五元可以写成小数0.05元。

  (5)48分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,48分就是1元的百分之四十八。)

  百分之四十八元可以写成小数0.48元。

  三、探究新知

  1.理解一位小数的意义。1分米用分数表示是几分之几米?3分米用分数表示是几分之几米?你是怎么想的?

  2.进一步理解两位小数的意义。

  下面,我们请尺子来帮助我们认识小数。

  (1)1厘米用分数表示是几分之几米?你是怎么想的?

  (2)百分之一米用小数表示是多少?

  (3)把4厘米和12厘米改写成以“米”作单位的分数和小数。

  (4)观察一下,这二个小数都是把1米平均分成几份?表示其中的1份就是0.01米,表示其中的4份就是多少米?表示其中的12份呢?你是怎么想的?

  3.自主探究三位小数的意义。

  (1)拿出你的尺子,看一看1毫米有多长,(教师拿出一把米尺),我这里有一把米尺,想一想,1米等于多少毫米?1毫米用分数表示是几分之几米,用小数表示是多少米?你是怎么想的?

  (3)0.001米小数点和1之间为什么要多写二个0?(因为1毫米是1米的千分之1,少二个0,就是十分之一了。)

  (4)这几个小数跟前面的不太一样,你们能读准吗?学生齐读三位小数。

  (5)观察一下,这三个小数都是把1米平均分成几份?表示其中的1份就是0.001米,表示其中的40份就是多少米?表示其中的105份呢?你还能想到什么?

  4.

  总结归纳小数的意义。

  (1)看黑板,哪些是一位小数?哪些是两位小数?哪些是三位小数?

  (2)从分数往小数看,什么样的分数可以用小数表示?(分母是10、100、1000……的分数都可以用小数表示。)

  从小数往分数看,一位小数可以表示怎样的分数?两位小数?三位小数呢?

  谁能连起来说说。

  总结:分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,你还能想到什么?能说得完吗?这就是小数的意义。

  (3)同桌互相说一说。

  四、巩固拓深认知

  1.试一试:

  学生独立完成,并交流汇报。

  (提示:7角3分可以看作多少分,这样改写就比较容易了。)

  2.数形结合(练一练)。

  请同学们看下面这些图,每个图形都表示整数“1”,第一个图是把什么看做整数“1”?将这个整数“1”平均分成了多少份?第二个图呢?第三个图呢?

  学生自己填,再汇报。说说每题你是怎么想的?

  观察这些图形,你还能想到哪些分数和小数?

  判断这些小数各是几位小数?为什么?(小数部分有几位就是几位小数。)

  3.练习四1

  我们把整数“1”用一个正方形来表示,你能根据要求涂色,并填出相应的小数吗?

  五、课堂小结

  这节课你学了什么?

小数的意义教学设计15

  教学目标

  1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

  2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

  3.培养良好的学习习惯,提高学生的探究、归纳比较、推理能力。

  教学重点理解小数的意义。

  教学过程

  一、交流信息,引入课题

  师:课前布置学生收集一些与小数有关的资料,谁愿意读给大家听听?谈谈你了解到了什么,又想到些什么?

  小结:刚才出现的这些数都是小数,它们表示什么意义,应该怎样正确地读和写呢,;今天这节课我们一起来学习。(板书课题:小数的意义和读写方法)

  【设计意图:学生的知识起点是三年级时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情】

  二、教学例1,初步感知

  师:为了便于研究,老师课前也收集了一些与小数有关的材料。

  1.出示例1三幅图。图上这些数都是小数,表示物品的价钱。会读吗?如果你到商店去买这些物品,该怎样付钱呢?

  生1:0.3元就付3角。

  师:很好,你会把元转化成角来考虑。那0.05元和0.48元呢?

  生2:0.05元就是5分。

  生3:0.48元就是4角8分。

  帅:对,也可以说成48分。

  2.师:把3角写成用元做单位的分数,是多少呢?

  生:3角=3/10元。(一元=10角,1角就是1/10元,3角里面有3个1/10,是3/10元)

  师:3角=3/10元,也可以写成0.3元,读作零点三元。(板书)

  师:5分、48分也写成用元做单位的分数,你们会吗?同桌先讨论一下,再回答。

  生:5分=5/100元,48分=48/100元(1元=100分,每份是1/100元,5分有5个1/100,就是了5/100元;把1元平均分成100份,每份是1/100元,48分就是48/100元(板书:5分=5/100元48分=48/100元)

  师:5/100元还可以写成小数0.05元,读作零点零五;48/100元还可以写成小数0.48元,读作零点四八。(继续板书读写)

  小结:0.3、0.05、0.48都是小数,0.3的小数部分有位,是一位小数,0.05和0.48小数部分有两位,是两位小数,当然,还有三位小数、四位小数

  【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。在初步感知阶段,利用0.3元该怎么付?学生把元转化成角,进而追问3角钱以元为单位用分数表示?得出0.3元=3角3/10元,即0.3=3/10。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。在得出分数之后,告诉学生3/10还可以写成像0.3这样的小数,再教给读法】

  三、教学例2,揭示意义

  1.师:刚才从1元:100分,我们想到了用分做单位的数都表示1元的.百分之几,都能写成小数,在其他情境中也能看到这样的现象。瞧,(课件出示米尺)这是一把米尺,我们截取了一部分。把1米平均分成100份,每份是1厘米。1厘米等于1/100米,还可以写成0.01米。(板书:1厘米=1/100米=0.01米)那么,(出示)4厘米、9厘米写成分数和小数各是多少呢?

  学生尝试完成。

  师:请位同学来说一说,你是怎么填的?

  板书:1厘米=1/100米=0.01米

  4厘米=4/100米=0.04米

  9厘米=9/100米=0.09米

  师小结:请大家仔细观察一下,0.01、0.04和0.09都是两位小数。那前面对应的这排分数有什么共同之处呢?

  生:都是分母为100的分数。

  师:对,他们都是分母为100的分数。分母是100的分数可以写成两位小数。现在你们知道什么样的分数可以写成两位小数吗?什么样的分数可以写成三位小数呢?

  2.我们继续观察刚才那把米尺,把他平均分成1000份,每份是1毫米。(课件出示)1毫米是1米的1/1000,还可以写成0.001米。(板书1厘米=1/1000米=0.001米)那7毫米、15毫米写成用米做单位的分数和小数各是多少?大家试试吧。

  板书:1毫米=1/1000面米=0.001米

  7毫米=7/1000米=0.007米

  9毫米=9/1000米=0.009米

  小结:请大家观察这一行分数和对应的小数,你有什么发现?

  3.总的观察:三位小数是由分母是1000的分数得到的,两位小数由分母是100的分数得到的,那位小数0.3呢?{是由分母是10的分数得到的)谁来说说什么样的分数可以改写成小数呢?

  生:分母是10、100、1000的分数可以用小数表示、:(屏搭上出示这句话)

  师:我们再从右往左看,0.3表示3/10,0.05表示5/100,0.48表示48/100,0.001表示1/1000,0.004表示4/1000你有什么发现?

  生:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  师(指着省略号):四位小数呢?(表示万分之几)

  【设计意图:数学学习的本质在于数学思维、经过对一位、两位、三位小数意义的具体分析后,教师抓住展示和交流这一时机,通过清晰直观的板书,从左往右又从右往左地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解】

  四、练习拓展,巩固提升

  (一)说说做做这个练习分4个层次进行。

  师:上面每个图形都表示整数1,你会用分数和小数把涂色部分表示出来吗?

  7/1033/1009/1000

  0.70.330.009

  选其中个小数请学生说出表示什么意义。并通过上下对比观察,再次强化:分母是10、100、1000的分数,用小数米表示分别是一位小数、两位小数、三位小数。

  2.师:阴影部分是0.7,淮能用小数表示出空白部分?它又表示什么意义?

  3.出示空白图形和0.9、0.07、0.52这三个分数,分别动手涂色表示出这三个小数。

  4.个人自由在空白图形上涂色,同桌互相考查,分别用小数表示出涂色和空白部分。

  【设计意图:在新课结束后,书上安排了练一练,教材的目的在于巩固小数的意义,但如果这样,题目的价值就没能充分发挥出来,将练一练进行适当处理,使书上分散的练习融为一个整体,由浅入深地对一道习题进行充分的挖掘与应用,使题目增值。第一层次是对教材目标的基本达成;第二层次是对习题的进一步开发,渗透辩证统一思想;第三层次培养逆向思维能力;第四个层次由个体智慧到合作交流,对习题实现了更高层次的创造和升华:,采用了让学生画小数这种直观的操作活动,伴随着学生画前的思考和画后的交流,学生对小数意义的理解也就从画出来想出来说出来,逐渐明了】

  (二)快速抢答。练一练1、2和书上练习第4题。

  (三)我说你写。老帅报几个小数,看谁能又快又好地记下来。

  0.390.60.1080.0080.80.80

  问座位互相检查一下,写的对不对?

  (此时有同学争论:0.8和0.80,是不是老师重复报了个?)

  师(故意):大家争论什么?你为什么这样想?

  生1:我认为0.8和0.80一样大,所以是重复写了;

  师:0.8表示什么:意义?0.80又表示什么意义?

  生2:0.8表示十分之八,是把1平均分成100份,取其中8份,00.8表示一百分之八十,是把1平均分成100份,取其中80份。

  师指出:0.80很特别,末尾是0,虽然末尾是0,但它表示两位小数,这个。有特殊的意义,我们以后再学习。(为学习小数的基本性质打下伏笔)

  (四)纠错能手。家文具店里的商品标价不太规范,请你帮忙把这些标价改成用元作单位的小数。

  小刀3角擦皮8分直尺5角9分

  (五)开放题:把6毫米用小数表示出来,你有几种方法?

  (六)出示姚明照片:认识吗?准来介绍介绍他?他的身高是多少?

  生:2米26。(板书2米26)

  师:2米26是口头话,用规范的数学语言,应该说成多少米?(2.26米)你的身高是多少米?猜猜老师的身高。(1.63米)这些数跟我们今天所学的小数还有点不同(整数部分不是0)。关于这些小数的知识,我们以后继续学习。

  【设计意图:在拓展提升部分,通过多种形式的练习,引导学生从身边的现象入手,不断巩固所学的小数的意义和读写方法。注意细节的处理,0.8和0.08的比较,6毫米的三种表示方法,以及姚明身高2.26米的表述,既引导学生归纳出数学知识,又为后续学习打下铺垫】

【小数的意义教学设计】相关文章:

《小数的产生和意义》教学设计06-21

小数的意义教学设计(15篇)07-18

小数的意义教学设计15篇05-26

《小数的产生和意义》教学设计3篇10-25

小数的意义教学反思06-12

小数的意义的教学反思08-16

小数乘小数教学设计08-20

《小数乘小数》教学设计08-21

小数的意义教学反思[热]01-30

四年级《小数意义》教学设计07-30