- 相关推荐
初中数学教学设计模板
作为一位杰出的老师,总归要编写教学设计,借助教学设计可以更好地组织教学活动。那么大家知道规范的教学设计是怎么写的吗?以下是小编为大家整理的初中数学教学设计模板,希望对大家有所帮助。
初中数学教学设计模板1
新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,围绕我校新学期的工作计划要求制定初中一年级数学教学设计方案:
一、教材分析:
本学期是本年级学生初中学习阶段的第二学期、新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、现行教材、教学大纲要求学生从身边的实际问题出发,乘坐观察、思考、探究、讨论、归纳之舟,去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教师在灵活选用现有教材的.基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质、
二、教学目标:
本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力、在期末考试中力争生均分87分左右,及格率75%以上,并将低分率控制到10%以下,综合成绩县前五、
三、教学措施:
1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质、
2、把握学生思想动态,及时与学生沟通,搞好师生关系、
3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩、
4、改进教学方法,用挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会、
5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘、
6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力、
7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长、特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:(1)课前预习习惯;(2)积极思考,主动发言习惯;(3)自主作业习惯;(4)课后复习习惯。
初中数学教学设计模板2
一、学情分析
学生通过上节课的学习,已经掌握了如何用没有刻度的直尺和圆规作一条线段等于已知线段。同时在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学目标分析
教科书基于学生在上节课学习了如何作一条线段等于已知线段,并积累了一定的活动经验,提出本节课的主要教学任务是:会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。为此,本节课的教学目标是:
1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的'简单应用。
2、能利用尺规作角的和、差、倍。
3、能够通过尺规设计并绘制简单的图案。
4、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。
三、教学设计分析
1、回顾与思考
活动内容:
(1)怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?
(2)练习:已知线段a,b,c,作一条线段m,使得m=a+b—c
活动目的:
通过回顾上节课学习的用尺规作线段,既达到了复习巩固,反馈落实的目的,同时熟练尺规的使用,积累活动经验,也为后面学习用尺规作角起到了铺垫的作用。
2、情境引入,探索发现
活动内容:如图2
初中数学教学设计模板3
课题
正比例函数
一 教学目标
1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力
二 教学重点
理解正比例函数的概念
三 教学难点
利用正比例函数解决生活实际问题
四 教学过程
【提出问题】
《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了21000千米,耗费了他150天时间。
(1) 阿甘大约平均每天跑步多少千米?
(2) 阿甘的行程y(km)与时间x(天)之间有什么关系?
(3) 阿甘一个月(30天)的行程是多少千米?
【生】 列算式回答 【师】 点评总结
2.写出下列变量间的函数表达式
(1) 正方形的周长l和半径r之间的关系
【进一步抽象问题让学生思考】
(2) 大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么?
(3) 下列函数关系式有什么共同点?(小组合作)
【分析共同点和不同点,找出规律】 (1) y=200x
(2) l=2∏r (3) m=7.8V 【生回答,师点评】 【引入新课】
1.正比例函数的概念:
一般地,形如y=kx (k≠0)的'函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】
2 【例题讲解】
例1 在同一坐标系里,画出下列函数的图像: y=0.5x y=x y=3x 解: 【略】
【掌握函数图像的画法:列表,描点,连线】 3.练习
(1)已知正比例函数y=kx.当 x=3 时 y=6 。求 k的值
(2) 一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的? 当销售金额为360元时,则售出了多少本这种笔记本?
四 小结
五 课外作业
【反思】
由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。
初中数学教学设计模板4
一、背景
新课标要求,应让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型、估计、求解、验证解的正确性与合理性的过程。在实际工作中让学生学会从具体问题情景中抽象出数学问题,使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能,这些多数教师都注意到了,但要做好,还有一定难度。
二、教学片段
在刚过去的这个学期,我上了一节“一元一次不等式组的应用”。
出示例题:小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在另一端。这时,爸爸的一端仍然着地,后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果,爸爸被高高地跷起。猜猜看,小宝的体重约多少千克?
我问学生:“你们玩过跷跷板吗?先看看题,一会请同学复述一下。”学生复述后,基本已经熟悉了题目。我接着让学生思考:他们三人坐了几次跷跷板?第一次坐时情况怎样?第二次呢?学生议论了一会儿,自主发言,很快发现本题中存在的两种文字形式的不等关系:
爸爸体重>小宝体重+妈妈体重
爸爸体重<小宝体重+妈妈体重+一副哑铃重量
我引导:你还能怎么判断小宝体重?学生安静了几分钟后,开始议论。一学生举手了:“可以列不等式组。”我给出提示:“小宝的体重应该同时满足上述的两个条件。怎么把这个意思表达成数学式子呢?”这时学生们七嘴八舌地讨论起来,都抢着回答,
我注意到一位平时不爱说话的学生紧锁眉头,便让他发言:“可以设小宝的体重为x千克,能列出两个不等式。可是接下来我就不知道了。”我听了心中一动,意识到这应是思想渗透的.好机会,便解释说:“我们在初中会遇到许多问题都可以用类似的方法来研究解决,比方说前面列方程组”不等我说完,学生都齐声答:“列不等式组。”全班12小组积极投入到解题活动中了。5分钟后,我请学生板演,自己下去巡查、指导,发现学生的解题思路都很清楚,只是部分学生对答案的表达不够准确。于是提议学生说说列不等式组解应用题分几步,应注意什么。此时学生也基本上形成了对不等式方法的完整认识。我便出示拓展应用课件:
一次考试共25道选择题,做对一道得4分,做错一道减2分,不做得0分。若小明想确保考试成绩在60分以上,那么他至少要做对多少题?
设置这道题,既有调查本节课效果的意图,也想巩固拓展一下学生的思维。没料到相当多学生对“至少”一词理解不准确,导致失误。这正好让我们的“本课小结”填补了一个空白——弄清题目中描述数量关系的关键词才是解题的关键。
三、反思
本节课讲完后,我感到一丝欣慰,看到孩子们跃跃欲试的学习劲头,突然领悟到:教师的教学行为至关重要,成功的教学,能开启学生心灵的窗户,能帮学生树立学习的自信心。
本节课我有几个深刻的感受:
1、在课前准备的时候,我就觉得不等式组的应用是个难点。所以在课堂教学中设置了几个台阶,这也正好符合了循序渐进的教学原则。
2、例题贴近学生实际,我在教学中有采用了更亲近的教学语言,有利于激发学生的探究欲望。
3、关注学生的学习状态,随时采取灵活适宜的教学方法,师生互动,生生互动,课堂教学才更加有效。
4、学生在学习后,确实感受到“不等式的方法”就像方程的方法一样是从字母表示数开始研究解决的。这种方法可以帮助我们用数学的方式解决实际问题。
初中数学教学设计模板5
新课程标准指出:“问题是思想方法、知识积累和发展的逻辑力量,是生长新知识、新方法的种子。”有问题才有探究,有探究才有发展、有创新。学生思维的过程受情境的影响。良好的思维情境会激发思维动机,唤起求知欲望;不好的思维情境会抑制学生的思维热情。因此,创设良好的思维情境在数学教学中就显得十分重要。教师通过自己的教学活动,有意识地培养学生善于在好的问题情景下主动建构新知识,积极参与交流和讨论,不断提高学习能力,发展创新意识。
一、联系学生的生活实际,创设问题情境
生活离不开数学,数学也离不开生活。实践证明:联系学生已有的生活经验和学生熟悉的事物入手展开教学,有利于学生更好的掌握数学知识。
例如在教学菱形性质时,导入时是这样设计的:
1、我们大家在日常生活中见过哪些菱形图案?(看谁说的多)学生争先恐后地说:
(1)吃过的菱形形状的食物
(2)春节时门上贴的剪纸花
(3)居室装饰地板砖
(4)中国结
(5)菱形衣帽架等。
2、为什么把这些图案设计成菱形呢?
3、菱形到底有哪些特殊的性质和运用呢?(板书课题) 通过本节课的学习之后大家可以总结出来。
然后通过画图和电脑显示,让学生去猜想,去探究,去发现,去论证。从而弄清了菱形的定义、性质、面积公式及简单运用,
然后让学生思考日常生活中还有哪些菱形性质方面的应用。
这样通过创设问题情境,让学生产生一种好奇,一种对知识的渴望,为探究活动创造了良好的条件,为本节课的成功创造了条件。同时让学生感受到了数学问题来源于生活。让学生多留意身边的事物转化成数学问题。但教学中要注意从实际出发,创设学生所熟悉的喜闻乐见的东西。同时不是为情趣而情趣,要注意增加情趣的内涵。注意经常引导学生用数学的眼光看待周围的事物,培养学生数学问题意识。
二、变更表述形式,创设问题情境
在数学教学中教师可以运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法——有时可通过变更问题的表述形式,引发学生兴趣。 例如:“等腰三角形的判定定理”的'教学,为引出等腰三角形的判定定理,通常提出问题:“如图(1),△ABC要判定它是等腰三角形
BC A 有哪些方法呢?”这样出示问题显得单调又乏味。为了同样的教图(1)学目的(引导学生获得判定定理),教师若能根据“性质定理”与“判定定理”的内在联系,在引导学生性质定理后,提出这样一个实际问题“如图(2),△ABC是等腰三角形,AB=AC,因不小心,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,试问能否把原来的△ABC重新画出来?”不仅引发了生动活泼的讨论形式,而且也收到良好的引发效果,(有的先度量∠C度数,再以BC为边作∠B=∠C;有的取BC中点D,过D作BC的垂线等)。由此可见,在定理或概念性较强的性质的教学中,应尽力创设问题情境,使学生认识到所学内容的意义,使他们产生学习需要,形成学习的内驱力,诱发学生积极思维,在教师的指导下,让学生主动去探索解决问题的办法,在实践中培养学生的创造能力。
三、猜想验证法,创设问题情境
在数学教学中,利用猜想验证的课堂教学模式创设问题情境,可以积极的促进学生有效的参与课堂教学,学生兴趣高涨,主动的进行猜想验证。
例如,在教学“三角形的内角和”时,我先请同学们试先量一量自己准备好的三角形的每一个内角的度数,然后告诉我其中两个内角的度数,我迅速的说出第三个内角的度数。同学们都感到很惊讶!为什么老师能很快的说出第三个内角的度数呢?通过观察他们发现:每个三角形的内角和都是180度。我问他们是不是任何一个三角形的内角和都是180度呢?他们的回答是肯定的。我说这只不过是你们的一个猜想,下面就请同学们利用你手中的学具来验证你的猜想。于是,同学们立刻想到了手中的三角板,积极的行动起来证明自己的猜想。
总之,创设问题情境,培养学生问题意识,一方面能激发学生学习动机、培养创新思维,是新课程理念下数学教学的重要环节。另一方面有助于学生积极地建构数学知识,在情境中自主的参与探究和相互交流,从而达到意义建构的目的,提高课堂教学的有效性。当然教学没有最好,只有更好,让我们在今后的教学过程中不断探索,不断创新,争取更打的进步。
初中数学教学设计模板6
教学目标
1、知识与技能:
(1)理解一元一次不等式组及其解集的意义;
(2)掌握一元一次不等式组的解法。
2、过程与方法:
(1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。
(2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。
3、情感、态度与价值观:
(1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。
(2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。
2学情分析
本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基础,让学生借助对已学知识的认识学习新知识。
另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。
3重点难点
1、教学重点:对一元一次不等式组解集的认识及其解法。
2、教学难点:对一元一次不等式组解集的认识及确定。
3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。
4教学过程4.1第一学时教学活动活动1【导入】温故知新
教师提问:
1、什么是一元一次不等式?
2、什么是一元一次不等式的解集?
3、如何求一元一次不等式的解集?
针对性练习:
(设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)
活动2【讲授】创设问题情景,探索新知
1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水
超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?
(设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)
2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:
超过1 200 t和不足1 500 t。
3、问题1:如何用数学式子表示这两个不等关系?
1)引导学生一起把这个实际问题转换为数学模型:
满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。
设用x min将污水抽完,则x需同时满足以下两个不等式:
30x>1200, ①
30x<1500 ②
2)教师归纳一元一次不等式组的意义:
由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。
(设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)
4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?
1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,
运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。
2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:
由不等式①,解得x>40
由不等式②,解得x<50
3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。
(设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)
5、问题3:如何求得这两个解集的公共部分?
学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。
(设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)
教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。
(设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)
形式一:用两种不同颜色表示这两个解集
1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。
(1)这两种颜色把数轴分成几个部分?
(2)每一个部分分别表示哪些数?
(3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?
2)学生通过自主探究、合作交流,得到这3个问题的正确答案。
3)得出结论:
只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。
4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的`验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。
(设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)
形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。
类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。
形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。
(设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)
6、问题4:如何表示这个可取值范围?
教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为40
7、小结并解决课本问题:原不等式组中x的取值范围为40 (设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。) 8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳: 在数轴上,若在40 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。 9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)把这些解集分别在同一条数轴上表示出来; (3)确定各个不等式解集的公共部分; (4)写出不等式组的解集。 (设计意图:及时进行小结,使学生对所学知识更加的系统化。) 在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。 一、注重类比教学 不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学.在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的.有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的`得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的方法实现函数的教学。 首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓麻雀虽小,五脏俱全。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如: 《正比例函数》教学流程 (一)环节一:概念的建立 通过对问题的处理用函数y=200x来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。 (二)环节二:函数图象 这个环节是教学的重点,由学生先动手按列表——描点——连线的过程画函数y=2x和y=-2x的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。 (三)环节三:探究函数性质 让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。 (四)环节四:概念的归纳 将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。 二、注重数形结合的教学 数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。 函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则: (1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。 (2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的最优化,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。 (3)注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。 函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。 关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。 一、 教学目标 1、 知识与技能目标 掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。 2、 能力与过程目标 经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。 3、 情感与态度目标 通过学生自己探索出法则,让学生获得成功的喜悦。 二、 教学重点、难点 重点:运用有理数乘法法则正确进行计算。 难点:有理数乘法法则的探索过程,符号法则及对法则的理解。 三、 教学过程 1、 创设问题情景,激发学生的求知欲望,导入新课。 教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米? 学生:26米。 教师:能写出算式吗?学生:…… 教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题 2、 小组探索、归纳法则 (1)教师出示以下问题,学生以组为单位探索。 以原点为起点,规定向东的方向为正方向,向西的方向为负方向。 ① 2 ×3 2看作向东运动2米,×3看作向原方向运动3次。 结果:向 运动 米 2 ×3= ② -2 ×3 -2看作向西运动2米,×3看作向原方向运动3次。 结果:向 运动 米 -2 ×3= ③ 2 ×(-3) 2看作向东运动2米,×(-3)看作向反方向运动3次。 结果:向 运动 米 2 ×(-3)= ④ (-2) ×(-3) -2看作向西运动2米,×(-3)看作向反方向运动3次。 结果:向 运动 米 (-2) ×(-3)= (2)学生归纳法则 ①符号:在上述4个式子中,我们只看符号,有什么规律? (+)×(+)=( ) 同号得 (-)×(+)=( ) 异号得 (+)×(-)=( ) 异号得 (-)×(-)=( ) 同号得 ②积的'绝对值等于 。 ③任何数与零相乘,积仍为 。 (3)师生共同用文字叙述有理数乘法法则。 3、 运用法则计算,巩固法则。 (1)教师按课本P75 例1板书,要求学生述说每一步理由。 (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。 (3)学生做练习,教师评析。 (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。 一教学目标 1.通过案例理解正比例函数,能列出正比例函数关系式 2.教会学生应用正比例函数解决生活实际问题的能力 二教学重点 理解正比例函数的概念 三教学难点 利用正比例函数解决生活实际问题 四教学过程 【提出问题】 1.《阿甘正传》是一部励志影片。片中阿甘曾跑步绕美国数圈,假设他从德州到加州行进了千米,耗费了他150天时间。 (1)阿甘大约平均每天跑步多少千米? (3)阿甘一个月(30天)的行程是多少千米? 【生】列算式回答 【师】点评总结 2.写出下列变量间的函数表达式 (1)正方形的周长l和半径r之间的关系【进一步抽象问题让学生思考】 (2)大米每千克四元,则售价y元与数量x(kg)的函数关系式是什么? (3)下列函数关系式有什么共同点?(小组合作)【分析共同点和不同点,找出规律】 (1)y=200x(2) l=2∏r(3) m= 【生回答,师点评】 【引入新课】 1、正比例函数的.概念:一般地,形如y=kx (k≠0)的函数,叫做正比例函数,其中k叫做比例系数.【板书概念,引导学生分析正比例函数的定义】 2 、【例题讲解】 例1在同一坐标系里,画出下列函数的图像:y==x y=3x 解:【略】 【掌握函数图像的画法:列表,描点,连线】 3、练习 (1)已知正比例函数y=kx.当x=3时y=6 。求k的值 (2)一种笔记本每本的单价为3元。则销售金额y元与销售量x之间的关系式是怎样的?当销售金额为360元时,则售出了多少本这种笔记本? 五课外作业 【反思】 由于函数的概念比较抽象,学生不容易理解。而理解函数的概念是教学的重点。这节课首先通过实例,回顾函数的概念,其次抽象提出正比例函数关系式,由学生观察得到特点,然后引出正比例函数的概念和特点,再通过练习加以巩固,最后通过小组讨论利用正比例函数解决生活中的问题。 教育改革的关键在于教师观念的转变,现代教育理论告诉我们:教师的职责现在已经越来越少地传授知识,而是越来越多地鼓励、思考……将越来越成为一位顾问、一位交流意见的参加者、一位帮助发现而不是拿出现成真理的人,必须拿出更多的时间和精力去从事那些有效果的和有创造性的活动:互相影响、讨论、激励、了解、鼓舞。这说明了一个道理:教师的地位发生了根本性的变化,不再仅仅是知识的传授者,还要确定“以人为本”的观念,把课堂教学看作自己也是学生人生中的一段激荡的生命经历,鼓励、激发学生去不断探索,把学生的“发现”与“创造”视为最有价值的劳动成果,教师与学生平等地对话,与他们共同感悟思潮的跌宕涌动。我想从三个方面谈谈自己在教学时的一些认识: 一、联系生活、感知数学 “数学课程不仅要考虑数学自身的特点,而且应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型进行解释与应用的过程。”这就要求我们遵循学生的思维规律,在实际问题和数学模型之间架起一座桥梁,让学生在不知不觉中走进数学、感知数学。数学来源于生活并服务于生活,主体(学生)在思考问题时,既符合自身的认知规律,又有直觉洞察、直观猜想、合理归纳与活动思维过程,有利于提高自己对数学的认识。 二、身临其境,探索规律 “数学教学活动必须建立在学生的认识发展水平和已有的'知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会。 在教学时教师应根据知识的内在结构和学生的学习规律,提供现象和问题,创设思维情境,引导学生主动参与,进行观察、思考、探索。这样有利于激发学生解决问题的热情,提升学生的学习水平。比如在探究一元二次方程的根与系数的关系时,我们可以按下列步骤来创设情境。 1.求三个一元二次方程的两根之和与两根之积。一般来说学生都是先把方程的根求出来,然后计算,学生可能体会不到什么,此时课堂气氛比较平稳。 2.求一元二次方程的两根之和与两根之积,这时很多学生会感到很繁,怕动手计算,课堂出现沉闷现象。此时教师立即口答出答案,学生就会感觉到很惊奇,为之一振,进而产生疑问:“老师怎么会看出答案?这里会不会有规律?”课堂出现窃窃私语,激活了学生的思维,活跃了课堂气氛。 3.提出问题:你能根据你开始的计算和老师的结论观察出一元二次方程的根与系数之间的关系吗?学生们跃跃欲试,开始投入到观察、思考、探索中去。 4.提出问题:你敢肯定你所猜测到的结论是正确的吗?再一次激发学生的斗志,使他们敢于说理、敢于证明,给予他们充分展示自己才华的机会。 三、由点到面,触类旁通 复习不是简单的知识重复,而是一个再认识、再提高的过程,复习中的最大矛盾是时间短、内容多、要求高。复习既要做到突出重点、抓住典型,又能在高度概括中深刻揭示知识的内在联系,让学生在掌握规律中理解、记忆、熟练、提高。比如在复习一元二次方程根的判别式和根与系数的关系时,可以把一元二次方程根的判别式、根与系数的关系和二次函数的有关知识相联系,根的判别式可以作为判别二次函数的图像与x轴的交点个数的依据:当△>0时,抛物线与x轴有两个不同的交点;当△<0时,抛物线与x轴没有交点;当△=0时,抛物线与x轴只有一个交点即顶点。如果抛物线与x轴有两个不同的交点,用根与系数的关系可以求抛物线与x轴的两个交点之间的距离,可以判别抛物线与x轴交点的位置(交点是在坐标原点的左边还是在坐标原点的右边)等等。这样在复习过程中把知识拓一拓、伸一伸,能激起学生思维的火花、学习的积极性,培养学生运用知识提高分析问题和解决问题的能力。 总之,课堂教学面对的是独立、有个性、有思维的学生,课堂教学设计应适应学生的发展,应随“学情”的变化而变化。课堂教学设计的成效如何,完全取决于教师对教材的理解、对学生情况的了解。只有教师具备“以学生为本”的教学理念,才能一切从学生实际出发、一切为学生考虑,才能真正做到教学服务于学生,实现“不同的人在数学上得到不同的发展”。 一、案例实施背景 本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。 二、案例主题分析与设计 本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同 时通过小组内学生相互协作研究,培养学生合作性学习精神。 三、案例教学目标 1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。 2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。 3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。 四、案例教学重、难点 1、重点:正确运用科学记数法表示较大的数 2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数 五、案例教学用具 1、教具:多媒体平台及多媒体课件、图片 六、案例教学过程 一、创设情境,兴趣导学: 1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗? 2、展示课本第63页图片,现实中,我们会遇到一些比较 大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。 师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。 (1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000 生1:答:13.7亿,640万,3亿。 师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。 分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。 二、尝试探索,讲授新课: 1、探索10n的特征 计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000 (观察并思考,小组讨论) (1)结果中“0”的个数与10的指数有什么关系? (2)结果的位数与10的指数有什么关系? 2、练习:将下列个数写成只有一位整数乘以10n的形式。 (1)500(2)3000(4)40000 师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。 分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的`简便记数方法——科学记数法。 4、科学记数法: 像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。 (思考,小组讨论) 10的指数与结果的位数有什么关系? 分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。 三、巩固新知,知识运用: 1、将下列各数写成科学记数法形式。 (1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米? 分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。 (观察并思考,小组讨论) 5、如何将一个用科学记数法表示的数写成原数? a×10n将a的小数点向右移动n位原数 分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。 练习:人体内约有2.5×10 5个细胞,其原数为多少个? 七、教学反思: 数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好 地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。 一、素质教育目标 (一)知识教学点 1、要求学生学会用移项解方程的方法。 2、使学生掌握移项变号的基本原则。 (二)能力训练点 由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力。 (三)德育渗透点 用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想。 (四)美育渗透点 用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美。 二、学法引导 1、教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。 2、学生学法:练习→移项法制→练习。 三、重点、难点、疑点及解决办法 1、重点:移项法则的掌握。 2、难点:移项法解一元一次方程的步骤。 3、疑点:移项变号的掌握。 四、课时安排 3课时 五、教具学具准备 投影仪或电脑、自制胶片、复合胶片。 六、师生互动活动设计 教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成。 七、教学步骤 (一)创设情境,复习导入 师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题。 (出示投影1) 利用等式的性质解方程 (1)xx;(2)xxx; 解:方程的两边都加7,解:方程的两边都减去x, 得x,xx 得x, 即x 、 合并同类项得x。 【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础。 提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么? (二)探索新知,讲授新课 投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识。 (出示投影2) 师提出问题: 1、上述演示中,两个题目中的哪些项改变了在原方程中的.位置?怎样变的? 2、改变的项有什么变化? 学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,分四组,这样节省时间。 师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号。 【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础。 师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项、这里应注意移项要改变符号。 (三)尝试反馈,巩固练习 师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项。 学生活动:要求学生对课前解方程的变形能说出哪一过程是移项。 【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式。 对比练习:(出示投影3) 解方程:(1);(2); (3);(4)、 学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解。 师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验、) 【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则。 巩固练习:(出示投影4) 通过移项解下列方程,并写出检验。 (1);(2); (3);(4)、 【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成。 (四)变式训练,培养能力 (出示投影5) 口答: 1、下面的移项对不对?如果不对,错在哪里?应怎样改正? (1)从,得到; (2)从,得到; (3)从,得到; 2、小明在解方程时,是这样写的解题过程: (1)小明这样写对不对?为什么? (2)应该怎样写? 【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”、要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式。 (出示投影6) 用移项解方程: (1);(2); (3);(4)、 【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目。 学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分。 (出示投影7) 解下列方程: (1);(2);(3); (4);(5);(6)、 【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识。 (五)归纳小结 师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点、②检验要把所得未知数的值代入原方程。 [教学目标] 1.会说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。 2.知道全等三角形的有关概念,会在全等三角形中正确地找出对应顶点、对应边、对应角。 3.会说出全等三角形的对应边、对应角相等的性质。 此外,通过把两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生 动态的研究几何图形的意思。 [引导性材料] 我们身边经常看到"一模一样"的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的例子。 说明:让学生在举出实际例子以及对所举例子的辨析中获得对全等图形尽可能多的精确的感知。 [教学设计] 问题1:几何中,我们把上述所例举的"一模一样"的图形叫做"全等形",以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的?(l)形状相同的两个图形叫全等形。 (2)大小相等的两个图形叫全等形。 (3)能够完全重合的两个图形叫全等形。 (学生阅读课本第21页,全等三角形的有关概念、全等三解形的表示方法。)操作和观察(学生用两块透明塑料片叠合在一起,任意剪两个全等的三角形,教师制作两个全等三角形的复合投影片演示。)(1)将重合的两块全等三角形塑料片中的一个沿着一边所在的直线移动,观察移动过程中这两个三角形有哪几种不同位置?画出这两个全等三角形不同位置的组合图形。 (2)图是上述移动过程中的'两个全等三角形组合的图形,说出它们的对应顶点、对应边、对应角。 (3)将重合的两块三角形塑料片,以一边所在的直线为轴,把其中一个三角形翻折180,请你画出翻折后的两个全等三角形组合的图形。 (4)将两块全等的三角形塑料片拼合成如图中的图形,并指出它们的对应顶点、对应边、对应角。 [小结] 1.识别全等三角形的对应边、对应角的关键是正确识别它们的对应顶点。 2.用全等三变换的方法观察图形,有助于正确、迅速的从复杂图形中识别出全等三角形。 [作业]课本组第2、3、4题。 初中数学实践课教案设计三一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。 二、教学目标1、知识目标:了解多边形内角和公式。 2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。 3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。 4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及 数学结论的确定性,提高学生学习热情。 三、教学重、难点重点:探索多边形内角和。 难点:探索多边形内角和时,如何把多边形转化成三角形。 四、教学方法:引导发现法、讨论法五、教具、学具教具:多媒体课件学具:三角板、量角器六、教学媒体:大屏幕、实物投影七、教学过程: (一)创设情境,设疑激思师:大家都知道三角形的内角和是180o,那么四边形的内角和,你知道吗?活动一:探究四边形内角和。 在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。 方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360o。 方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360o。 接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。 师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的? 活动二:探究五边形、六边形、十边形的内角和。 学生先独立思考每个问题再分组讨论。 关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。 (2)学生能否采用不同的方法。 学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180o的和是540o。 方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。结果得540o。 方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。 方法4:把五边形分成一个三角形和一个四边形,然后用180o加上360o,结果得540o。 师:你真聪明!做到了学以致用。 交流后,学生运用几何画板演示并验证得到的方法。 得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720o,十边形内角和是1440o。 (二)引申思考,培养创新师:通过前面的讨论,你能知道多边形内角和吗?活动三:探究任意多边形的内角和公式。 思考:(1)多边形内角和与三角形内角和的关系?(2)多边形的边数与内角和的关系? (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?学生结合思考题进行讨论,并把讨论后的结果进行交流。 发现1:四边形内角和是2个180o的和,五边形内角和是3个180o的和,六边形内角和是4个180o的和,十边形内角和是8个180o的和。 发现2:多边形的边数增加1,内角和增加180o。 发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。 得出结论:多边形内角和公式:(n-2)180。 (三)实际应用,优势互补 1、口答: (1)七边形内角和xx (2)九边形内角和xx (3)十边形内角和xx 2、抢答: (1)一个多边形的内角和等于1260o,它是几边形? (2)一个多边形的内角和是1440o,且每个内角都相等,则每个内角的度数是xx。 3、讨论回答:一个多边形的内角和比四边形的内角和多540o,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?(四)概括存储学生自己归纳总结: 1、多边形内角和公式 2、运用转化思想解决数学问题 3、用数形结合的思想解决问题(五)作业:练习册第93页1、2、3 八、教学反思: 1、教的转变本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。 2、学的转变学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。 3、课堂氛围的转变整节课以"流畅、开放、合作、隐导"为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以"对话"、"讨论"为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。 现代教学论研究指出,从本质上讲,学生学习的根本原因是问题。在数学课堂教学中,教师可根据不同的教学内容,围绕不同的教学目标,设计出符合学生实际的教学问题,围绕所设计的问题开展教学活动。这样,在课堂教学环节中,问题该怎样设计?围绕问题该怎样进行教学,才能使教学效率得以提高?这是摆在我们面前急需解决的问题。 本文将结合自己的教学实践,就问题设计的策略及反思等方面谈谈自己的看法。 一、注重问题情境的创设 著名数学家费赖登塔尔认为:“数学源于现实又寓于现实,数学教学应从学生所接触的客观实际中提出问题,然后升华为数学概念、运算法则或数学思想。”这一观念既反映了数学的本质,同时说明了在数学课堂教学中创设问题情境的重要性。比如,在《有理数的加法》一节的教学导入时,我首先出示了一周来本班的积分统计表(表中的得分用正数表示,失分用负数表示,)让学生观察: 星期 一 二 三 四 五 六 合计 积分 +3 -2 -4 -2 +2 +4 然后提出问题:“谁能帮我们班算出这一周的总积分呢?”结果我发现大多数同学能用“抵消”的方法统计出这一周本班的总积分。然后我出了一道算式题:“(+3)+(-2)+(-4)+(-2)=?”发现学生不知道该怎样算。当学生产生这样的认知冲突时我便引入了本节课要学习的内容,最后我用表中的数据分成了几种类型,如正数加正数、负数加负数、正数加负数等,展开新知学习,教学效果较以前有明显改观。 本节课成功之处在于:(1)导入的情境问题贴近学生的现实,调动了学生的积极性。(2)情境问题为后面的教学埋下了伏笔,引发了学生的认知冲突。当然,情境问题的创设不当,会直接影响教学。比如,在《函数》一节的教学时,我用游乐园中的摩天轮引入,当我提出问题:“同学们,当你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的'?”我发现学生几乎没有反应,只是偶尔听到:“摩天轮?”“很危险……”本来是一个很典型的函数问题,只因为农村学生对该情境的认识模糊,一时没有进入到虚拟情境中来,导致课堂开端出现“僵局”,也影响了后面的教学工作的胜利开展。 2、教学重点、难点处的问题设计 初中数学课堂教学中重点与难点的处理将直接影响教学效果。通过设计好的问题串可以强化重点与突破难点。例如,《结识抛物线》一节的教学重点就是做二次函数y=x2的图像并根据图像认识和理解函数的性质。而作图过程又是一个难点问题,要从所画的图像中发现并归纳性质,首先得画出较准确的函数图像。在学生画图像的过程中,我抓住学生的几种错误画法提出了三个问题让学生讨论交流:(1)根据你画的图像,给自变量x任取一个值,函数y有唯一的值与它对应吗?(2)自变量x的范围是什么?(3)在0 3、例题或课堂练习中的问题设计 例题教学具有及时巩固知识和灵活运用知识的双重功能,随堂练习是检查学生的数学学习效果和培养学生思维的有效手段之一。数学课堂教学中,教师通过优选例题,精心设计层次分明的练习,能够让学生以积极的态度去思考并解决问题,获得问题解决的成就感和快乐感。例如笔者在《反比例函数的图像与性质》一节的教学中设计了一道这样的问题:已知A(-2,y1)、B(-1,y2)、C(2,y3)三点都在反比例函数y=k/x(k>0)图像上,(1)比较y1、y2、y3的大小关系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三点也在反比例函数y=k/x(k>0)的图像上,其中a0判断y1、y2、y3的大小关系。教学中我发现多数学生对问题(1)采用了直接代入计算的方法得到结果,对问题(2)显然用代入法难以得到结果,这时,我让学生小组讨论来解决。经过讨论后,学生A回答:“因为k>0时,反比例函数y随x的增大而减小,而a 4、在学习反思中的问题设计 初中学生学习数学的方法相对欠缺,学生“重结论,轻过程”的现象较普遍,对学习结果的反思意识淡薄,自我评价不彻底,做错的题目一错再错。作为教师,在平时的教学中要注重引导,彻底分析错因,让学生在错题中有反思的机会。例如,在一元一次方程的教学中,我发现学生解含有分母的方程时很容易出错,针对学生做错的题目,我设计了如的表格: 通过引导学生对错因彻底分析与校正,学生明白了产生错误的真正原因是什么,认识到了自己的不足。然后我出了几道解方程的练习,结果发现,学生确实重视了错误,效果明显有所好转。 总之,在数学教学中,教学问题的设计确实是一种学问,是一种艺术。要让学生在实实在在的问题情境中去亲历体验,在对问题的分析、探索与交流的过程中主动思考,与人分享成果,来体验成功的快乐,增强他们的自信心。 近年来,命题改革中加强对学生阅读能力的考核,特别是阅读理解题成了中考数学的新题不仅在各级各类的命题改革中加强对学生阅读能力的考核,对数学阅读教学提出了新的要求,而且从人的发展、人才的培养角度思考,也需要加强数学阅读能力的培养。特别是阅读理解题成了中考数学的新题型,具有很强的选拔功能。因此,在初中数学教学中,应当重视阅读教学,充分利用阅读的形式,加强数学阅读能力的培养。 一、加强广大师生对数学阅读重要性的理解 数学教科书是专家在充分考虑学生生理心理特征、教育教学原理、数学学科特点等因素的基础上精心编写而成,具有极高的阅读价值。数学教学活动中,数学阅读是“人——本”对话的数学交流形式。在这种形式中,学生能通过教科书的标准语言来规范自己的数学用语,能有效地促进数学阅读水平的发展,准确叙述解题过程中有关的观点和进行严谨的逻辑推理。因此,数学阅读不仅能促进学生数学语言水平的发展,而且有助于学生更好地掌握数学。另外,每年一度的中考试题中都设置了数学应用题,阅读理解题,而学生每遇到应用题的问答便觉得困难重重,其主要原因是学生缺乏阅读数学的方法。因此,数学教学有必要重视数学阅读。 二、初中数学阅读教学的教学原则 在初中数学教学中进行阅读教学,应当遵循如下的教学原则: 1.主体性原则。从根本上承认和尊重受学生的主体性,使学生能动地参与到数学阅读活动的全过程中来,将自己进行的阅读活动作为意识对象,不断对其进行积极的`监控,调节;规划阅读进程,独自获得必要的信息和资料;不断培养自我监控,自我调节的习惯,逐步学会探索地进行数学阅读与数学学习。 2.差异性原则。学生在个体发展区、学习方式、知识基础、思维品质等多种因素上的差异导致学生阅读能力的差异。也决定了教师必须对不同层面学生给以不同的关注,在阅读过程中,学生独立阅读的过程为教师提供了充足的课堂巡视时间,使教师能够将统一学习变成个别指导,重点对个别阅读能力较差进行指导。 3.内化性原则。内化的基本条件是对数学语言的感知水平,不仅包括对数学学科本身的概念、法则、定律、公式等的理解,而且包括学生的元认知水平的控制和调节。因此,在阅读过程中要不断地使学生充分实践监控的各种具体策略和技能,进而逐步内化为自我监控能力,使其能在新的条件下,灵活运用这些策略和技能进行自我监控。 4.反馈性原则。个体的自我反馈,自我评价的意识和能力是至关重要的。教师应及时、准确、适当地对学生的自我监控做出评价,指导他们逐步学会对学习方法,策略运用及结果进行反馈和评价。同时,学生根据教师的指导,对自己的阅读监控过程,所用的策略及结果进行调控和改进,不断提高思维的抽象概括水平,从而不断发展与完善自己的数学认知结构。 5.建构性原则。阅读过程是数学建构的过程,是通过对数学材料进行部分与整体的交替感知去构建数学结构,领悟形式化运动的过程。在阅读过程中学生主动探索,充分利用数学知识特有的逻辑性和数学内容的结构特点,不断在课文的适当地方由上文做出猜想、估计,再通过与已知相对照,加以修正,从而获得新知识。 三、实施数学阅读教学的具体途径 1.预习的阅读指导 在课堂教学中存在这样的现象:部分学生认为,没有预习的必要,反正教师都要讲,上课认真听就是了。这是一种错误的认识。预习的作用主要表现在以下几个方面:能提高学生听课的效率,有利于他们更好地做课堂笔记;培养学生的自学能力;可以巩固学生对知识的记忆。那么,怎样指导学生预习呢?可以按如下步骤进行:首先选择好预习的时间,指导学生迅速地浏览即将学习的教材,然后让他们带着问题详细阅读第二遍,并在阅读过程中做好预习笔记,以便于接下来学生能有目的地听课。 2.数学教材的阅读指导 (1)阅读目录标题。目录标题是课本的纲目,是每一章节的精华。阅读目录标题就等于了解了全文的框架结构。阅读了课本内容就使目录标题具体化了。逐步养成“标题联想”的习惯。 (2)阅读概念 我们所希望达到的指导效果是:让学生在阅读概念时能够正确理解概念中的字、词、句,能正确进行文字语言、图形语言和符号语言的互译,并能注意到联系实际找出反例或实物;学生能弄清数学概念的内涵和外延,也就是既能区分相近的概念,又能知道其适用范围。 (3)阅读代数式 大多数学生在阅读代数式时,只是按照代数式的顺序去读。教师应教会学生用多种方法读同一个代数式,同时,在阅读的过程中要注意式子本身的特点及其普遍性。 (4)阅读例题 对于初中学生例题阅读的指导,应按以下几个步骤进行:首先,要让学生认真审题;分析解题过程的关键所在,尝试解题;其次,要让学生比较例题和教材解法的优劣,对一组相关联的例题要相互比较,着力寻找,领悟解题规律,掌握规范书写格式。并使解题过程的表达即简洁又符合书写格式;最后,还要引导学生总结解题规律,并努力探求新的解题途径。 (5)阅读公式 不要让学生死记硬背公式,关键是要让他们看清教材是怎样把公式一步一步推导出来的,要提醒学生注意认真阅读公式的推导过程。同时要让学生明白公式的特征并能设法记住,另外还要让他们注意公式的应用条件,弄明白有关公式的内在联系,了解公式的运用、通用、合用、变用和巧用。 (6)阅读数学定理。注意分清定理的条件和结论;探讨定理的证明途径和方法,通过与课本对照,分析证法的正误、优劣;注意联系类似定理,进行分析比较、掌握其应用;要思考定理可否逆用,推广及引伸。 (7)阅读提示与说明 教材中相关知识及许多习题的后面都附有说明或小括号式的提示语。例如,代数式概念中的“运算符号”,教材特指加、减、乘、除、乘方运算;要告诉学生对于这些说明或提示语,千万不可忽视,往往解题的某一条件或关键正隐藏在这里,同时对选学内容,教师也应在自习课上给出相关的阅读材料。 (8)阅读章头图和小结 章头图让学生对本章要学的知识有一个初步的认识和了解,明确要学的内容,做到心中有数、目的明确;而认真阅读小结,则能教学生学会自我总结,这是一个归纳、总结、提升的过程。 3.加强课外阅读,丰富学生知识 近年来应用题的考试情况告诉我们,数学阅读不能仅仅局限于教材。教师应向学生推荐适宜的课外阅读材料,给学生提供一些数学应用题让学生阅读,不一定要求他们全会做,但必须弄清题意,对于当今社会实践中出现的新名词有所了解,如“低炭”、“环保”、“利息税”、“利润”、“毛利润”等。 四、数学阅读教学的价值 重视数学阅读,培养阅读能力,有助于个别化学习,使每个学生都能够通过自身的努力达到他所能达到的最高水平,实现素质教育的目标。要想使数学素质教育的目标得到落实,使学生不再感到数学难学,就必须重视数学阅读教学。教师应加强指导学生认真阅读课文,强调学生对数学课文的阅读和理解,以促使学生养成良好的自学能力,即终身学习的能力。这将在整个中学数学教学中形成一种以培养自学能力为目的的教学风气,同时有利于转变数学教师的教学观念,改变传统的教学方式,优化过程,提高技巧,提高课堂教学的效率,拓展教师的视野及知识结构。 【初中数学教学设计】相关文章: 数学教学教学设计08-31 数学教学设计07-20 数学教学设计心得07-24 小学数学的教学设计10-06 初中物理教学设计10-16 初中数学教学总结10-01 数学教学反思初中08-14 数学打电话教学设计09-25 小学数学教学设计(优)07-04 人教版数学《比的应用》教学设计05-18初中数学教学设计模板7
初中数学教学设计模板8
初中数学教学设计模板9
初中数学教学设计模板10
初中数学教学设计模板11
初中数学教学设计模板12
初中数学教学设计模板13
初中数学教学设计模板14
初中数学教学设计模板15