高一数学教学计划

时间:2022-12-26 18:35:16 教学计划 我要投稿

高一数学教学计划集锦15篇

  日子在弹指一挥间就毫无声息的流逝,成绩已属于过去,新一轮的工作即将来临,该为接下来的学习制定一个计划了。可是到底什么样的计划才是适合自己的呢?以下是小编帮大家整理的高一数学教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。

高一数学教学计划1

  一、设计理念

  新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。

  二、教材分析

  本节课选自人教版《普通高中课程标准实验教课书》必修1,第一章1.1.2集合间的基本关系。集合是数学的基本和重要语言之一,在数学以及其他的领域都有着广泛的应用,用集合及对应的语言来描述函数,是高中阶段的一个难点也是重点,因此集合语言作为一种研究工具,它的学习非常重要。本节内容主要是集合间基本关系的学习,重在让学生类比实数间的关系,来进行探究,同时培养学生用数学符号语言,图形语言进行交流的能力,让学生在直观的基础上,理解抽象的概念,同时它也是后续学习集合运算的知识储备,因此有着至关重要的作用。

  三、学情分析

  【年龄特点】:

  假设本次的授课对象是普通高中高一学生,高一的学生求知欲强,精力旺盛,思维活跃,已经具备了一定的观察、分析、归纳能力,能够很好的配合教师开展教学活动。

  【认知优点】

  一方面学生已经学习了集合的概念,初步掌握了集合的三种表示法,对于本节课的学习有利一定的认知基础。

  【学习难点】

  但是,本节课这种类比实数关系研究集合间的关系,这种类比学习对于学生来说还有一定的难度。

  四、教学目标

  ? 知识与技能:

  1. 理解子集、V图、真子集、空集的概念。

  2. 掌握用数学符号语言以及V图语言表示集合间的基本关系。

  3. 能够区分集合间的包含关系与元素与集合的.属于关系。

  ? 过程与方法:

  1. 通过类比实数间的关系,研究集合间的关系,培养学生类比、观察、

  分析、归纳的能力。

  2. 培养学生用数学符号语言、图形语言进行交流的能力。

  ? 情感态度与价值观:

  1.激发学生学习的兴趣,图形、符号所带来的魅力。

  2.感悟数学知识间的联系,养成良好的思维习惯及数学品质。

  五、教学重、难点

  重点:

  集合间基本关系。

  难点:

  类比实数间的关系研究集合间的关系。

  六、教学手段

  PPT辅助教学

  七、教法、学法

  ? 教法:

  探究式教学、讲练式教学

  遵循“教师主导作用与学生主体地位相结合的”教学规律,引导学生自主探究,合作学习,在教学中引导学生类比实数间关系,来研究集合间的关系,降低了学生学习的难度,同时也激发了学生学习的兴趣,充分体现了以学生为本的教学思想。

  ? 学法:

  自主探究、类比学习、合作交流

  教师的“教”其本质是为了“不教”,教师除了让学生获得知识,提高解题能力,还应该让学生学会学习,乐于学习,充分体现“以学定教”的教学理念。通过引导学生类比学习,同学间的合作交流,让学生更好的学习集合的知识。

  八、课型、课时

  课型:新授课

  课时:一课时

  九、教学过程

  (一)教学流程图

  (二)教学详细过程

  1..回顾就知,引出新知

  问题一:实数间有相等、不等的关系,例如5=5,3﹤7,那么集合之间会有什么关系呢?

  2.合作交流,探究新知

  问题二:大家来仔细观察下面几个例子,你能发现集合间的关系吗?

  (1)A={1,2,3},B={1,2,3,4,5};

  (2)设A为新华中学高一(2)班女生的全体组成集合;B为这个班学生的全体组成集合;

  (3)设C={x∣x是两条边相等的三角形},D={x∣x是等腰三角形}

  【师生活动】:学生观察例子后,得出结论,在(1)中集合A中的任何一个元素都是集合B中的元素,教师总结,这时我们说集合A与集合B 有包含关系。(2)中的集合也是这种关一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两集合有包含关系,称集合A为集合B 的子集,记作:A?B(B?A),读作A含于B或者B包含A.

  在数学中我们经常用平面上封闭的曲线内部代表集合,这样上述集合A与集合B的包含关系,可以用下图来表示:

  问题三:你能举出几个集合,并说出它们之间的包含关系吗?

  【师生活动】:学生自己举出些例子,并加以说明,教师对学生的回答进行补充。

  问题四:对于题目中的第3小题中的集合,你有什么发现吗?

  【师生活动1】:在(3)由于两边相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一个元素都是集合D的元素 ,同时集合D任意一个元素都是集合C的元素,因此集合C与集合D相等,记作:C=D。

  用集合的概念对相等做进一步的描述:

  如果集合A是集合B 子集,且集合B是集合A的子集,此时集合A与集合B的元素一样,因此集合A与集合B 相等,记作A=B。

  强调:如果集合A?B,但存在元素x∈B, 且x?A,我们称集合A是集合B的真子集,记作:A?B

  【师生活动2】:教师引导学生以(1)为例,指出A?B,但4∈B, 4?A,教师总结所以集合A是集合B的真子集。

  【师生活动】?,并规定空集是任何集合的

  4.思维拓展,讨论新知

  问题六:包含关系{a}?A与属于关系a∈A有什么区别?请大家用具体例子来说明

  【师生活动1】:学生以(1)为例{1,2}?A,2∈A,说明前者是集合之间的关系,后者是

  问题七:经过以上集合之间关系的学习,你有什么结论?

  【师生活动】:师生讨论得出结论:

  (1)任何一个集合都是它本身的子集,即A?A

  5.练习反馈,培养能力

  例1写出集合{a,b}的所有子集,并指出哪些是真子集

  例2用适当的符号填空

  (1)a_{a,b,c}

  (2){0,1}_N

  (3){2,1}_{X∣X2-3X+2=0}

  6.课堂小结,布置作业

  这节课你学到了哪些知识?

  小结 知识上:

  能力上:

  情感上:

  作业:必做题:P8,3

  思考题:实数间有运算,那集合呢?

  十、板书设计

  十一、教学反思

高一数学教学计划2

  一、指导思想:

  在学校教学工作意见指导下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。

  二、教材简析

  本学期仍然使用人教版《普通高中课程标准实验教科书·数学(A版)》教材,在坚持我校数学教育优良传统的前提下,在学生九年义务教育数学课程的基础上,进一步提高学生所必要的数学素养,以满足学生的发展与社会进步的需要,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。

  三、教学任务

  本学期授课内容:必修一、必修二

  四、学生基本情况及教学目标

  学生基本情况:本届学生普遍基础较差,学习自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。其次,学生的计算能力太差,学生不喜欢去算题,嫌麻烦,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,因为学生底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  教学目标:认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。高一学生共有20个班,分两个教学层次,每层个10个班。实验班的学生可根据实际情况提高教学目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的.优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。

  五、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的课堂素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。 3、在教学中引导学生通过类比,推广,特殊化,化归等方法,尽可能培养学生逻辑思维的习惯。

  六、教学措施:

  1、认真落实,搞好集体备课。每周进行一次集体备课。各位老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的练习活页。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

  2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。

  3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。

  4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

  附:教学进度计划

  第一周集合

  第二周函数及其表示

  第三周函数的基本性质

  第四周指数函数

  第五周对数函数

  第六周幂函数

  第七周函数与方程

  第八周函数的应用

  第九周期中考试

  第十至十一周空间几何体

  第十二周点,直线,面之间的位置关系

  第十三至十四周直线与平面平行与垂直的判定与性质

  第十五至十六周直线与方程

  第十七至十八周周圆与方程

  第十九至二十周期末考试

高一数学教学计划3

  一、教材依据

  本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1.2直线的方程》第一部分《直线方程的点斜式》内容。

  二、教材分析

  直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式

  、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题求直线方程问题。在引入,过程中要让学生弄清

  直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。

  在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。

  三、教学目标

  知识与技能:

  (1)理解直线方程的点斜式、斜截式的形式特点和适用范围;

  (2)能正确利用直线的点斜式、斜截式公式求直线方程。

  (3)体会直线的斜截式方程与一次函数的关系。

  过程与方法:在已知直角坐标系内确定一条直线的几何要素直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生

  通过对比理解截距与距离的.区别。

  情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化

  等观点,使学生能用联系的观点看问题。

  四、教学重点

  重点:直线的点斜式方程和斜截式方程。

  五、教学难点

  难点:直线的点斜式方程和斜截式方程的应用。

  要点:运用数形结合的思想方法,帮助学生分析描述几何图形。

  六、教学准备

  1.教学方法的选择:启发、引导、讨论.

  创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性

  学习活动。

  2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用数形结合的方法建立起代数问题与几何问题

  间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:

  ①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。

  ②.分组讨论。

高一数学教学计划4

  教学计划可以帮助教师理清教学思路,提高课堂效率。

  ●教学目标

  (一)教学知识点

  1.了解全集的意义.

  2.理解补集的概念.

  (二)能力训练要求

  1.通过概念教学,提高学生逻辑思维能力.

  2.通过教学,提高学生分析、解决问题能力.

  (三)德育渗透目标 渗透相对的观点.

  ●教学重点 补集的`概念.

  ●教学难点

  补集的有关运算.

  ●教学方法 发现式教学法 通过引入实例,进而对实例的分析,发现寻找其一般结果,归纳其普遍规律.

  ●教具准备

  第一张:(记作1.2.2 A)

  ●教学过程 Ⅰ.复习回顾

  1.集合的子集、真子集如何寻求?其个数分别是多少? 2.两个集合相等应满足的条件是什么?

  Ⅱ.讲授新课 [师]事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系.

  请同学们由下面的例子回答问题: 投影片:(1.2.2 A)

  [生]集合B就是集合S中除去集合A之后余下来的集合. 即为如图阴影部分

  由此借助上图总结规律如下: 投影片:(1.2.2 B)

  Ⅳ.课时小结

  1.能熟练求解一个给定集合的补集.

  2.注意一些特殊结论在以后解题中的应用. Ⅴ.课后作业

高一数学教学计划5

  教材教法分析

  本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课。该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化。教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中。同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2—1内容《空间中的向量与立体几何》有着铺垫作用。由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系。

  学情分析

  一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力。另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想。这两方面都为学习本课内容打下了基础。

  教学目标

  1、知识与技能

  ①通过具体情境,使学生感受建立空间直角坐标系的必要性

  ②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程

  ③感受类比思想在探究新知识过程中的.作用

  2、过程与方法

  ①结合具体问题引入,诱导学生探究

  ②类比学习,循序渐进

  3、情感态度与价值观

  通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法。通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间。

  教学重点

  本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为“空间直角坐标系的理解”。

  教学难点

  “通过建立恰当的空间直角坐标系,确定空间点的坐标”。

  先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出“第三根轴”的建立,进而感受逐步发展得到“空间直角坐标系”的建立,再逐步掌握利用坐标表示空间任意点的位置。总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论。

高一数学教学计划6

  一、基本情况分析

  任教153班与154班两个班,其中153班是文化班有男生51人,女生22人;154班是美术班有男生23人,女生21人,并且有音乐生8人。两个班基础差,学习数学的兴趣都不高。

  二、指导思想

  准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

  三、教学建议

  1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

  2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

  3、树立以学生为主体的教育观念。学生的'发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

  4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

  5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。

  6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

  四、教研课题

  高中数学新课程新教法

  五。教学进度

  第一周 集 合

  第二周 函数及其表示

  第三周 函数的基本性质

  第四周 指数函数

  第五周 对数函数

  第六周 幂函数

  第七周 函数与方程

  第八周 函数的应用

  第九周 期中考试

  第十十一周 空间几何体

  第十二周 点,直线,面之间的位置关系

  第十三十四周 直线与平面平行与垂直的判定与性质

  第十五十六周 直线与方程

  第十八十九周 圆与方程

  第二十周 期末考试

高一数学教学计划7

  1、指点思惟:

  (1)跟着本质教导的深化睁开,《课程计划》提出了“教导要面向天下,面向将来,面向古代化”以及“教导必需为社会主义古代化建立效劳,必需与消费休息相分离,培育德、智、体等方面片面开展的社会主义奇迹的建立者以及接棒人”的指点思惟以及课程理念以及变革要点。使先生把握处置社会主义古代化建立以及进一步进修古代化迷信技能所需求的数学常识以及根本技艺。其内收留包含代数、多少、三角的根本观点、纪律以及它们反应进去的思惟办法,几率、统计的开端常识,较量争论机的运用等。

  (2)培育先生的逻辑思想才能、运算才能、空间设想才能,和综合使用无关数学常识剖析成绩息争决成绩的才能。使先生逐渐地学会察看、剖析、综合、比拟、笼统、归纳综合、探究以及立异的才能;使用归结、归纳以及类比的办法停止推理,并精确地、有层次地表白推理进程的才能。

  (3)依据数学的学科特色,增强进修目标性的.教导,进步先生进修数学的盲目心以及兴味,培育先生杰出的进修习气,脚踏实地的迷信立场,固执的进修毅力以及自力考虑、探究立异的肉体。

  (4)使先生具备必定的数学视线,逐渐看法数学的迷信代价、使用代价以及文明代价,构成批驳性的思想习气,崇尚数学的感性肉体,领会数学的美学意思,了解数学中遍及存正在着的活动、变革、互相联络以及互相转化的景象,从而进一步建立辩证唯心主义以及汗青唯心主义天下不雅。

  (5)学会经过搜集信息、处置数据、制造图象、剖析缘由、推出论断来处理实践成绩的思想办法以及操纵办法。

  (6)本学期是高一的紧张期间,教员承当着两重义务,既要不时夯实根底,增强综合才能的培育,又要浸透无关高考的思惟办法,为三年的进修做好预备。

  2、学情份析及相干办法:

  高一作为肇端年级,作为从任务教导阶段迈进本质教导征程的顺应阶段,该有的是一份固执。他的非凡性就正在于它的超过性,抱负的期盼与学法的渐变,难度的增强与惰性的天生等等冲突抵触随同着高一重生的生长,面临新课本的咱们也是边探索边改动,建立新的教授教养理念,并落真实讲堂教授教养的各个关键,才干没有负众看。咱们要从先生的看法程度以及实践才能动身,研讨先生的心思特点,做好初三与高一的跟尾任务,协助先生处理好从初中到高中进修办法的过渡。从高一同就留意培育先生杰出的数学思想办法,杰出的进修立场以及进修习气,以顺应高中贯通性的进修办法。详细办法以下:

  (1)留意研讨先生,做好初、高中进修办法的跟尾任务。

  (2)会合精神打好根底,分项打破难点.所列根底常识根据课程规范计划,着眼于根底常识与重点内收留,要充沛注重根底常识、根本技艺、根本办法的教授教养,为进一步的进修打好坚固的根底,切勿忙于过早的拔高,上困难。同时应放眼高中教授教养全局,留意高考命题中的常识请求,才能请求及新趋向,如许才干兼顾布置,按部就班,使高一的数学教授教养与高中教授教养的全局无机分离。.

  (3)培育先生解答考题的才能,经过例题,从方式以及内收留两方面临所学常识停止才能方面的剖析,领导先生理解数学需求哪些才能请求。

  (4)让先生经过单位测验,检测本人的实践使用才能,从而实时总结经历,找出缺乏,做好充沛的预备

  (5)抓好尖子生与落后生的教导任务,提早睁开数学奥竞提拔以及数学根底教导。

  (6)留意使用古代化教授教养手腕辅佐数学教授教养;留意使用投影仪、电脑软件等古代化教授教养手腕辅佐教授教养,进步讲堂服从,激起先生进修兴味。

高一数学教学计划8

日期





周次





学时





内容





重点、难点





9.1-9.7





1





5





集合的含义与表示、





集合间的基本关系、





集合的基本运算





会求两个简单集合的并集与交集;会求给定子集的补集;能使用Venn图表达集合的关系及运算。难点:理解概念





9.8-9.14





2





5





函数的概念、





函数的表示法





会求一些简单函数的定义域和值域;能简单应用





9.15-9.21





3





5





函数的基本性质、





学会运用函数图象理解和研究函数的性质,理解函数单调性、最大(小)值及几何意义





9.22-9.28





4





3





本章复习、测试






9.29-10.5





5






国庆放假






10.6-10.12





6





5





指数与指数幂的运算、





指数函数及其性质





掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念





10.13-10.19





7





5





对数与对数运算、





对数函数及其性质





理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数





10.20-10.26





8





5





幂函数,复习、测试





从五个具体的幂函数(y=x,y=x2,y=x3,y=x-1,y=x1/2)图象中认识幂函数的一些性质





10.27-11.2





9





5





方程的根与函数零点,





二分法求方程近似解,





几类不同增长的模型、函数模型应用举例





能够借助计算器用二分法求相应方程的近似解;





对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义





日期





周次





学时





内容





重点、难点





11.3-11.9





10






期中复习及考试






11.10-11.16





11





5





讲评试卷





分析知识点的掌握情况





11.17-11.23





12





5





任意角和弧度制,





任意角的三角函数





了解任意角的概念和弧度制,能进行弧度与度的互化,借助单位圆理解任意角三角函数的定义。





11.24-11.30





13





5





三角函数的诱导公式,





三角函数的图象与性质





借助单位圆中的三角函数推导出诱导公式,能画出








的图象,理解三角函数的周期性、单调性、最值等性质

12.1-12.7





14





5





函数








的图象,

三角函数模型的简单应用





了解函数








的实际意义,能借助计算器画出函数




的图象,并观察参数对图象的影响。会用三角函数解决一些简单实际问题。

12.8-12.14





15





5





复习、测试





平面向量的实际背景及基本概念





通过力的分析,了解向量的实际背景,理解平面向量和向量相等的`含义,理解向量的几何表示





12.15-12.21





16





5





平面向量的线性运算,





平面向量的基本定理及坐标表示





掌握向量加、减法的运算,数乘运算,并理解其几何意义以及两个向量共线的含义。了解向量的基本定理、运算性质及其几何意义。掌握平面向量的正交分解及其坐标表示





12.22-12.28





17





5





平面向量的数量积





平面向量的应用举例





本章复习、测试





理解向量数量积的含义及其物理意义,会进行数量积的运算,会用数量积判断两个平面向量的垂直关系。用向量解决某些简单的几何问题。





12.29-1.4





18





5





两角和与差的正弦、余弦和正切公式





用向量的数量积推导出两角差的余弦公式,并能用两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式





1.5-1.11





19





5





简单的三角恒等变换,期末复习





能运用上述公式进行简单的恒等变换。进行知识的梳理。





1.12-1.18





20






复习及期未考试






高一数学教学计划9

  一 指导思想

  为了使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:

  1.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力

  3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  4.提高学习的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  二 学情分析

  1. 基本情况:班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约 人,后进生约人。

  2.我所执教的215班均属普高班,学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  三 教材分析

  我们采用的教材是人教版必修教材,本册教材共分两章:第四章《三角函数》和第五章《平面向量》。三角函数的主要内容有:任意角的三角函数概念、弧度制、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数以及三角函数的图象和性质、已知三角函数值求角等。难点是弧度制的概念、综合运用本章公式进行简单三角函数式的化简及恒等式的证明周期函数的概念,函数y=Asin(x+)的图象与正弦曲线的关系。平面向量主要内容是向量及其运算和解斜三角形,向量的几何表示和坐标表示、向量的线性运算,平面向量的数量积,平面两点间的距离公式,线段的定比分点和中点坐标公式,平移公式,解斜三角形是本章的重点,而向量运算法则的理解和运用,已知两边和其中一边的对角解斜三角形等是本章的难点。

  四 教法分析

  在教学过程中尽量做到以下几个方面:

  1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五 教学及辅导措施

  1. 激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2. 注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3. 加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4. 抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5. 自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6. 重视数学应用意识及应用能力的培养。

  六 优、差生名单及辅导措施

  1. 对于优生:学生自愿成立兴趣小组,兴趣小组可以在老师的指导下由学生自己不定期的开展活动,围绕数学竞赛拓展他们的知识面,加深对所学知识的理解和应用,在原有基础上,稳定班级在数学学习钟的尖子学生,进一步培养他们自主学习的意识。

  2. 对于待发展生:对于成绩较差的学生,针对他们的基础差异和个性差异,耐心细致的进行个别辅导,有问题随时解决,并多予以鼓励。在作业中体现分层。尽量做到因材施教。

  七 教学进度安排

周 次




课时




内 容




重 点、难 点




第1周




5




任意角和弧度制(2)




任意角的三角函数(3)




了解任意角的概念和弧度制,能进行弧度与角度的互化。任意角三角函数的定义。




第2周




5




同角三角函数的基本关系式(3)




三角函数的`诱导公式(2)




诱导公式的探究。运用诱导公式。




第3周




5




两角和与差的正弦、余弦、正切 (5)




两角和与差的公式及其应用与求值、化简




第4周




5




二倍角的正弦、余弦、正切 (3)




正、余弦函数的图象(2)




三角函数的倍角公式、和差化积公式




正、余弦函数图象的画法




第5周




5




三角函数图象与性质(4)




三角函数的图象及其性质。函数思想。




第6周




5




函数y=sin(+)的图象(2)、三角函数模型的简单应用(2)




用参数思想讨论图象的变换过程。用三角模型解决一些具有周期变化规律的实际问题。难点:实际问题抽象为三角函数模型




第7周




5




正切函数的图象和性质(3)




已知三角函数值求角(2)




正切函数的图象和性质




反三角函数的表示




第8周




5




三角函数单元复习




知识点的复习+练习卷




第9周




5




平面向量的实际背景及基本概念(2)、平面向量的线性运算(2)




向量的概念。相等向量的概念。向量的几何表示。向量加、减法的运算及几何意义。向量数乘运算及几何意义。




第10周




5




平面向量的基本定理及坐标表示(2)




平面向量的数量积(2)




平面向量基本定理。会用平面向量数量积的表示向量的模与夹角。




第11周




5




平面向量的应用举例(2)




用向量方法解决实际问题的方法。向量方法解决几何问题的三步曲。




第12周




5




向量平移、正弦定理、余弦定理




向量平移的公式




第13周




5




简单的三角恒等变换(3)




第三章小结(1)




以11个公式为依据,推导和差化积、积化和差等公式,会进行三角变换。




第14周




5




期末复习





第15周




5




期末复习




分章归纳复习+3套模拟测试




高一数学教学计划10

  一、教学分析

  1、分析教材

  本章教材整体主要分成三大部分:

  (1)、圆的标准方程与一般方程;

  (2)、直线与圆、圆与圆的位置关系;

  (3)、空间直角坐标系以及空间两点间的距离公式。

  圆的方程是在前一章直线方程基础上引入的新的曲线方程,更进一步要求“数与形”结合。所以学习有关圆的方程时,仍仍然沿用直线方程中使用的坐标法,继续运用坐标法研究直线与圆、圆与圆的位置关系等几何问题。此外还要学习空间直角坐标系的有关知识,以便为今后用坐标法研究空间几何对象奠定基础。这些知识是进一步学习圆锥曲线方程、导数和积分的基础。

  2、分析学生

  高中一年级的学生还没有建立起比较好的数形结合的思想,前面学习过直线知识,只是使学生有了用坐标法研究问题的基本思路,通过圆的概念的引入及其现实生活中圆的例子,启发学生学习的兴趣及研究问题的方法,培养学生分析探索问题的能力,熟练的掌握解决解析几何问题的方法-坐标法,渗透数形结合的思想研究问题时抓住问题的本质,研究细致思考,规范得出解答,体现运动变化,对立统一的思想

  3、教学重点与难点

  重点:圆的标准方程与一般方程;利用直线与圆的方程判断直线与圆、圆与圆的位置关系;空间直角坐标系的基本认识。

  难点:直线与圆的方程的应用;会求解简单的直线与圆的相关曲线的方程;建立空间直角坐标系。

  二、教学目标

  1、掌握圆的定义和圆标准方程、一般方程的概念;能根据圆的方程求圆心和半径,初步掌握求圆的方程的方法。

  2、掌握直线与圆的位置关系的判定。

  3、在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。

  4、培养学生科学探索精神、审美观和理论联系实际思想。

  三、教学策略

  1、教学模式

  本节内容是运用“问题解决”课堂教学模式的一次尝试,采用探究、讨论的

  教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,掌握数学基本知识和基本能力,培养积极探索和团结协作的科学精神。

  2、教学方法与手段--充分利用信息技术,合理整合课程资源

  采用探究、讨论的教学方法,通过问题激发学生求知欲采用多媒体技术,目的在于充分利用其优良的传播功能,大容量信息的呈现和生动形象的演示(尤其是动画效果)对提高学生学习兴趣、激活学生思维、加深概念理解有积极作用。制作中,采用交互技术,使课件的机动性得到加强。

  四、对内容安排的说明

  本章分三部分:圆的`标准方程与一般方程;直线与圆、圆与圆的位置关系;空间直角坐标系。

  1、建立圆的方程是本节的主要内容之一。根据圆的几何特征(主要是动点与定点间距离恒定)建立适当的坐标系,再根据曲线上的点所满足的几何条件,求出点的坐标所满足的曲线方程。

  通过研究方程来研究曲线的性质是解析几何的另一个主要内容,这就是解析几何通过代数方法研究几何图形的特点,也就是坐标法。始终强调曲线方程与曲线图像之间的一一对应。这一思想应该贯穿于整个圆的教学。

  2.通过方程,研究直线与圆、圆与圆的位置关系是本章的主要内容之一。判断直线与圆、圆与圆的位置关系可以从两个方面着手:

  (1)。两条曲线有无公共点,等价于由它们方程联立的方程组有无实数解。方程组有几组实数解,这两条曲线就有几个公共点;方程组没有实数解,这两条曲线就没有公共点。

  (2)。运用平面几何知识,把直线与圆、圆与圆位置关系的结论转化为相应的代数结论。

  3、坐标法是研究几何问题的重要方法,在教学过程中,应该始终贯穿坐标法这一重要思想,不怕重复;通过坐标系,把点和坐标、曲线和方程联系起来,实现形和数的统一。

  用坐标法解决几何问题时,先用坐标和方程表示相应的几何对象,然后对坐标和方程进行代数讨论;最后再把代数运算结果翻译成相应的几何结论。这就是用坐标法解决平面几何问题的“三步曲”:

  第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题;

  第二步:通过代数运算,解决代数问题;

  第三步:把代数运算结果翻译成几何结论。

  五、教学评价

  ㈠过程性评价

  1、教学过程中,教师的讲解和学生的练习紧扣教学目标,内容深浅要分层次,设计的问题要照顾好、中、差。

  2、对于方程的推导运用的方法,学生理解起来难度较大,主要采用让学生理解的基础上进行检测反馈

  ㈡终结性评价

  1、课程内容全部结束后,让学生分组交流、讨论后,选代表谈收获、体会和感想。

  2、留课后作业(扣教学目标、分类型、分层次,落实学生为主体),让学生认真理解和巩固,了解圆的标准方程和一般方程,以及直线与圆位置关系,做完课后习题,做好作业。

高一数学教学计划11

  一、教学目标

  1.知识与技能目标

  (1). 掌握集合的两种表示方法;能够按照指定的方法表示一些集合.

  (2).发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.

  2.过程与方法目标

  ①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。

  ②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力

  情感态度与价值观目标 感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。

  2、教材分析 本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。

  集合语言是现代数学的基本语言。通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。

  在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,在后续学习的集合的相关内容和第二章≤不等式≥、

  第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。也是研究数学问题不可缺少的'工具。这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。

  3、学情分析

  学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学

  生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的基础上记忆的学习方法来学习。

  二、方法与手段

  本节课采用新知识讲授课的教学模式,教学策略为先熟悉再深入,采用启发式、讲练结合等教学方法,并采用多媒体教学手段辅助教学。

  3、教学重难点

  重点:列举法、描述法。

  难点:运用集合的三种常用表示方法正确表示一些简单的集合

  4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。

  5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。

  6、教学思路:

  7、教学过程

  7.1创设情境,引入课题

  【活动】多媒体展示:1、草原一群大象在缓步走来。

  2、蓝蓝的天空中,一群鸟在飞翔

  3、一群学生在一起玩。

  引导学生举出一些类似的例子问题

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是一群大象、一群鸟、一群学生)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  【设计意图】通过多媒体展示,极大地调动起了学生的积极性,吸引学生的注意力,设置轻松的学习气氛。

  7.2步步探索,形成概念

  【活动1】观察下列对象:

  ①1~20以内的所有质数;

  ②我国从1991—20xx年的13年内所发射的所有人造卫星

  ③金星汽车厂20xx年生产的所有汽车;

  ④20xx年1月1日之前与我国建立外交关系的所有国家;

  ⑤所有的正方形;

  ⑥到直线l的距离等于定长d的所有的点;

  ⑦方程x2+3x—2=0的所有实数根;

  ⑧新华中学20xx年9月入学的所有的高一学生。

  师生共同概括8个例子的特征,得出结论,给出集合的含义:把研究对象统称为元素,常用小写字母啊a,b,c….表示,把一些元素组成的总体叫做集合,常用大写字母A,B,C….来表示。

  【设计意图】使学生自己明确集合的含义,培养学生的概括能力。

  【活动2】要求每个学生举出一些集合的例子,选出具有代表性的几个问题,比

  如:

  1)A={1,3},3、5哪个是A的元素?

  2)B={身材较高的人},能否表示成集合?

  3)C={1,1,3}表示是否准确?

  4)D={中国的直辖市},E={北京,上海,天津,重庆}是否表示同一集合?

  5)F={a,b,c}与G={c,b,a}这两个集合是否一样?

  【分析】1)1,3是A的元素,5不是

  2)我们不能准确的规定多少高算是身材较高,即不能确定集合的元素,

  所以B不能表示集合

  3)C中有二个1,因此表达不准确

  4)我们知道E中各元素都是属于中国的直辖市,但中国的直辖市并不 只有这几个,因此不相等。

  5)F和G的元素相同,只不过顺序不同,但还是表示同一个集合

  通过上述分析引导学生自由讨论、探究概括出集合中各种元素的特点,并让学生再举出一些能够构成集合的例子以及不能构成集合的例子,要求说明理由。师生一起得出集合的特征:

  1)确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.

  2)互异性:同一集合中不应重复出现同一元素.

  3)无序性:集合中的元素没有顺序

  4)集合相等:构成两个集合的元素完全一样

  【设计意图】引导学生自主探究得出集合的特征:确定性、互异性、无序性,集合相等,培养学生的抽象概括能力,同时使学生能更好的了解集合。

  7.3集合与元素的关系

  【问题】高一(4)班里所有学生组成集合A,a是高一(4)班里的同学,b是

  高一(5)班的同学,a、b与A分别有什么关系?

  引导学生阅读教科书中的相关内容,思考上述问题,发表学生自己的看法。 得出结论:①如果a是集合A的元素,就说a属于集合A,记作a∈A。

  ②如果b不是集合A的元素,就说b不属于集合A,记作b?A。

  再让学生举一些例子说明这种关系。

  【设计意图】使学生发挥想象,明确元素与集合的关系。

  【活动】熟记数学中一些常用的数集及其记法

  引导学生回忆数集扩充过程,阅读教科书第3页表格中的内容,认识常用数集记号。

  【设计意图】使学生熟记常用数集的记号,以免日后做题时混淆。

  7.4集合的表示方法

  【问题】由以上内容我们可以知道用自然语言可以描述一个集合,那么有没有其他方式表示集合呢?

  7.4.1集合的列举法表示

  【活动】尝试用列举法第4页例1中的集合:

  1)小于10的所有自然数组成的集合;

  2)方程x2?x的所有实数根组成的集合;

  3)由1到20以内的所有素数组成的集合;

  并思考列举法的特点。

  引导学生阅读教科书,自主学习列举法,得出答案:

  1)A={0,1,2,3,4,5,6,7,8,9}

  2)A={0,1}

  3)A={2,3,5,7,11,13,17,19}

  通过上述讲解请同学说说列举法的特点:

  1)用花括号{}把元素括起来

  2)集合的元素可以具体一一列出

  【设计意图】使学生学习基本了解用列举法表示集合的方法,并了解列举法的特点。

  7.4.2集合的描述法表示

  【活动1】提出教科书中的思考题:

  1)你能用自然语言描述集合{2,4,6,8}吗?

  2)你能用列举法表示不等式x—7<3的解集吗?

  学生讨论,师生总结:

  1)从2开始到8的所有偶数组成的集合

  2)这个集合中的元素不能一一列出,因此不可以用列举法表示

  引导学生思考、讨论用列举法表示相应集合的困难,激发学生学习描述法的积极性。

  引导学生阅读教科书中描述法的相关内容,让学生讨论交流,归纳描述法的特点。

  例如2)可以用描述法表示为:A={x?R|x<10}

  【设计意图】使学生体会用描述法表示集合的必要性,会用描述法表示集合。

  【活动2】引导学生完成第5页例2

  1) 方程x2?2?0的所有实数根组成的集合

  2) 由大于10小于20的所有整数组成的集合

  讨论应当如何根据问题选择适当的集合表示法。学生回答,老师进行总结:

  1)描述法:A={ x?R|x2?2?0}

  列举法:

  2)描述法:A={ x?Z|10

  列举法:A={11,12,13,14,15,16,17,18,19}

  【设计意图】使学生掌握好两种表示法各自的特点,根据题目灵活选择。

  7.5课堂小结,学习反思

  【问题】1)集合与元素的含义?

  2)集合的特点?

  3)集合的不同表示方法

  引导学生整理概括这一节课所学的知识

  【设计意图】归纳整理知识,形成知识网络,并培养学生自主对所学知识进行总结的能力。

  8、作业布置,巩固新知

  课后作业:习题1.1A组第4题

  课后思考作业: ①结合实例,试比较用自然语言、列举法和描述法表示集合时各自的特点和适用的对象。

  ②自己举出几个集合的例子,并分别用自然语言、列举法和描述法表示出来。

  9、板书设计

  1.1.1集合的含义与表示

  1、元素的含义:把研究对象统称为元素

  2、集合的含义:一些元素组成的总体。

  3、集合元素的三个特性:确定性,互异性,无序性,集合相等

  4、元素与集合的关系:a?A,a?A

  5、常用数集与记法

  6、列举法

  7、描述法

  8、课堂小结

高一数学教学计划12

  本学期的措施及打算

  1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。

  2.落实“每周测试”过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。

  3.根据学生学力状况进行分层次的培优补差。

  三、教学进度安排

  周次学习内容目标要求

  1必修4 第一章三角函数:第1至3节周期,角的推广及表示,弧度制及互化

  2军训

  3第4节:正弦函数单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。

  4第5节:余弦函数,第6节正切函数余弦函数正切函数定义,象限符号,诱导公式,图像及性质

  5第7节: 的图像,第8节:同角的基本关系。图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。

  6第二章:平面向量:第1节至第2节向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算

  7第3节至第5节数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。数量积的应用。

  8第5节至第7节数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。

  9第三章:三角恒等变换:第1节至第2节两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。

  10期中考试期中复习,期中考试。

  11第三章第3节:三角函数的.简单应用试卷讲评改错,简单应用,三角恒等变换的综合习题课,练习,章节复习,必修4基本测试。

  12“五。一”长假

  13必修3第一章:统计。第1节至第5节统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,

  14第6节至第9节样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。

  15第二章:算法初步:第1节至第3节基本思想,基本结构及设计,排序问题。

  16第4节:几种基本语句条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。

  17第三章:概率:第1节至第2节频率,概率,古典概率,概率计算公式。

  18第2节至第3节建概率模型,互斥事件,习题课,章节复习,章节过关测试。

  19期末复习

  20期末复习,期末考试

高一数学教学计划13

  一、内容及其解析

  1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。

  2。解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。

  二、目标及其解析

  1。目标

  掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。

  2。解析

  ①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。

  ②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。

  ③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。

  ④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。

  ⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。

  三、教学问题诊断分析

  1。学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。

  2。学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。

  3。由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。

  四、教法与学法分析

  1、教法分析

  新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。

  2、学法分析

  改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的'条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。

  通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。

  五、教学过程设计

  问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?

  [设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。

  问题2:建立直线方程的实质是什么?

  [设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。

  引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?

  [设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。

  问题2。1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?

  (过与两点的直线的斜率为)

  [设计意图]让学生寻找确定直线的条件,体会动中找静。

  问题2。2如何将上述条件用代数形式表示出来?

  [设计意图]让学生理解和体会用坐标表示确定直线的条件。

  用代数式表示出来就是,即。

  问题2。3为什么说是满足条件的直线方程?

  [设计意图]让学生初步感受直线与直线方程的关系。

  此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。

  另外以方程的解为坐标的点也在直线上。

  所以我们得到经过点,斜率为的直线方程是。

  问题2。4:能否说方程是经过,斜率为的直线方程?

  [设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。

  问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?

  [设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。

  问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?

  [设计意图]引导学生掌握解析几何取点的方法。

  引导学生求出直线的点斜式方程

  注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。

  问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?

  [设计意图]让学生初步感受解析几何求曲线方程的步骤。

  ①设点———用表示曲线上任一点的坐标;

  ②寻找条件————写出适合条件;

  ③列出方程————用坐标表示条件,列出方程

  ④化简———化方程为最简形式;

  ⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。

  例1分别求经过点,且满足下列条件的直线的方程,并画出直线。

  ⑴倾斜角

  ⑵斜率

  ⑶与轴平行;

  ⑷与轴平行。

  [设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。

  注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。

  ⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。

  ⑶当直线的倾斜角时,直线的斜率,直线方程是。

  ⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。

  练习:1。。

  2。已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。

  [设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。

  问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。

  [设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。

  将斜率与定点代入点斜式直线方程可得:

  说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。

  注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。

  (2)斜截式方程中的k和b有明显的几何意义。

  (3)斜截式方程的使用范围和斜截式一样。

  问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?

  [设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。

  练习:1。。

  2。直线的斜率为2,在轴上的截距为,求直线的方程。

  [设计意图]让学生明确截距的含义。

  3。直线过点,它的斜率与直线的斜率相等,求直线的方程。

  [设计意图]让学生进一步理解直线斜截式方程的结构特征。

  4。已知直线过两点和,求直线的方程。

  [设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。

  例2:已知直线,试讨论

  (1)与平行的条件是什么?

  (2)与重合的条件是什么?

  (3)与垂直的条件是什么?

  说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。

  ②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。

  ③若直线的斜率不存在,与之平行、垂直的条件分别是什么?

  练习:

  问题8:本节课你有哪些收获?

  要点:

  (1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。

  (2)两种形式的方程要在熟记的基础上灵活运用。

  总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。

高一数学教学计划14

  一、学生情景分析

  本学期担任高一森林班的数学教学工作,学生共有66人,大部分学生学习习惯好,学习目标明确、勤奋、主动,学习动力足,少数同学质疑“学习是否有用”;另外,少数学生不能正确评价自我,这给教学工作带来了必须的难度,在学习中取得长足的提高,必须要引导他们,摆正学习态度,让他们体会到学习的乐趣,学习给他们带来的成就感,提高他们学习的进取性,还要不断的鼓励他们,培养他们良好的学习习惯。

  二、教学目标

  1、由数学活动、故事等等,经过分析问题的方法的教学,提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

  2、注意从实例出发,从感性提高到理性,供给生活背景,经过动手建立几何模型,让学生体会数学就在身边,培养学数学用数学的意识。

  3、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的'数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。

  4、提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本本事。

  5、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

  6、经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

  7、加强知识的横向联系,培养学生的数形结合的本事。

  8、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  三、教材分析

  本学期学习的资料主要有集合,函数和空间几何体,这些都是高中数学的基础知识,其中函数更是高中数学的学习重点,也是学习其他资料的必备基础,空间几何是高考中不可忽略的重要部分,在教学上要注重学生的逻辑思维本事、空间想象本事的培养及自学本事的逐步构成。

  四、教学措施

  1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。

  2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

  5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。

  6、重视数学应用意识及应用本事的培养。

高一数学教学计划15

  进一步深化教育教学改革,树立全新的语文教育观,构建全新而科学的教学目标体系、数学网特制定高一上学期数学函数的基本性质教学计划模板。

  教材分析

  函数性质是函数的固有属性,是认识函数的重要手段,而函数性质可以由函数图象直观的反应出来,因此,函数各个性质的学习要从特殊的、已知的图象入手,抽象出此类函数的共同特征,并用数学语言来定义叙述。基于此,本节的概念课教学要注重引导,注重知识的形成过程,习题课教学以具体技巧、方法作为辅助练习。

  学情分析

  学生对函数概念重新认识之后,可以结合初中学过的简单函数的图象对函数性质进行抽象定义。另外,为了方便学生做题及熟悉函数性质,还需要补充一些函数图象的知识,例如平移、二次函数图象、含绝对值函数的图象、反比例函数及其变形的函数图象。总之,本节课的教学要从学生认知实际出发,坚持从图象中来到图象中去的原则。

  教学建议

  以图象作为切入点进行概念课教学,引导学生对概念的形成有一个清晰的认识,尤其是概念中的部分关键词要做深入讲解,用函数图象指导学生做题。

 教学目标

  知识与技能

  (1)能理解函数单调性、最值、奇偶性的图形特征

  (2)会用单调性定义证明具体函数的单调性;会求函数的`最值;会用奇偶性定义判断函数奇偶性

  (3)单调性与奇偶性的综合题

  (4)培养学生观察、归纳、推理的抽象思维能力

  过程与方法

  (1)从观察具体函数的图像特征入手,结合相应问题引导学生一步步转化到用数学语言形式化的建立相关概念

  (2)渗透数形结合的数学思想进行习题课教学

  情感、态度与价值观

  (1)使学生学会认识事物的一般规律:从特殊到一般,抽象归纳

  (2)培养学生严密的逻辑思维能力,进一步规范学生用数学语言、数学符号进行表达

  课时安排

  (1)概念课:单调性2课时,最值1课时,奇偶性1课时

  (2)习题课:5课时