五年级方程教学反思(集合15篇)
身为一名到岗不久的人民教师,我们需要很强的教学能力,写教学反思能总结我们的教学经验,那么写教学反思需要注意哪些问题呢?下面是小编整理的五年级方程教学反思,希望能够帮助到大家。
五年级方程教学反思1
教材分析
本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。
1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的'意义,为以后学习运用准备。
2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。
3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的多向思维具有举足轻重的作用。
,
学情分析
本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。
教学目标
1.能利用天平,通过动手操作理解等式的意义。
2.结合具体实例和情景,初步理解方程的意义,会用方程表
达简单的等量关系。
3.培养保护动物的意识,感受数学与生活的密切联系,提高
学习数学的兴趣。
教学重点和难点
重点:方程意义的理解 难点:建立等式、方程的概念
教学过程
五年级方程教学反思2
一、教学内容:原通用教材六年制小学数学课本第十册第24页例7。
二、教学目的:使学生初步学会列方程解稍复杂的应用题,加深学生对数量关系和解题方法的理解,培养思维的灵活性。
三、教学过程:
(一)复习
1.说一说用方程解应用题的一般步骤。其中哪一步最重要?
2.解方程
45×8+10x=820 10x-45×8=100
8x+33x=820 (x+45)×8=820
(二)新课
师:前面我们已经学过用方程解应用题。解题时根据题意,先把题中数量间的相等关系找出来,再列方程。这一步非常重要。这节课我们继续学习用方程解稍复杂的应用题。[板书:列方程解稍复杂的应用题]
师:出示例7。
商店运来8筐苹果和10筐梨,一共重820千克。每筐苹果重45千克,每筐梨重多少千克?
师:边看题边想想。这道题的意思是什么?有哪些已知条件?要求的问题是什么?按照列方程解应用题的一般步骤,第一步你准备做哪件事?
生:题中告诉我们商店运来两种水果,一种是苹果,一种是梨。已知条件是运来8筐苹果和10筐梨,两种水果一共重820千克,每筐苹果重45千克。要求的问题是每筐梨重多少千克?我第一步准备设每筐梨重x千克。这样把问题变成了条件。
师:真能干。其他同学都会这样想吗?[板书:设每筐梨重x千克]当我们用x表示题里的未知数以后,就把问题转化成了条件。下面请同学们把“每筐梨重x千克”当作条件和题中原有的条件放在一起,找一找数量间的相等关系。大家可以议论议论。
师:谁能告诉大家,你根据题意,找出了哪两个数量间的相等关系?
生:我找的是8筐苹果的重量加上10筐梨的重量正好等于两种水果的总重量820千克。
师:还找出了其他相等关系吗?
生:我找的相等关系是从两种水果的总量里减去10筐梨的重量就刚好是8筐苹果的重量。
生:我想的是从两种水果的总重量820千克里减去8筐苹果的重量就等于10筐梨的重量了。
师:好了。刚才已有三位同学代表大家找出了题中数量间不同的相等关系。这些关系不仅找得正确,而且都注意了先用这个“每筐梨重x千克”[指板书]去和题里原有的条件合在一起,再找出数量间的相等关系。这样考虑问题的方法很好。可以怎样列方程?这样好不好,因为要想发言的同学太多。所以请一位同学代表大家的意见列出一个方程后,再请另一位同学简要地说出所列方程是不是正确,为什么?谁先说?
生:可以这样列方程45×8+10x=820。[板书]
师:有多少同学会列出这个[指板书]方程?[全班都会]太好了。这个方程对吗?为什么?可别把手放下去了。
生:这个方程是正确的。因为方程的左边这个含字母的式子表示两种水果的总重量,方程右边的820千克也是两种水果的总重量。所以,根据总重量等于总重量的关系列出的这个方程是正确的。
师:说得真不错。谁能再说说,为什么方程的左边这个含字母的式子是表示两种水果的总重量?[有意请一位差生作答]
生:因为45千克是每筐苹果的重量,8是苹果的筐数。[教师用教鞭指45×8]45×8是表示苹果的总重量。x表示每筐梨的重量,10表示梨的筐数。10x表示梨的总重量。
45×8+10x这个含字母的式子表示苹果和梨一共的重量。
师:真能干,请坐。请全班同学在作业本上用方程解答这道题。解答后请翻开课本第24页和书上的解答对照一下,看看自己的解答与书上的解答是不是相同。[巡视并有意请一位差生在黑板上解答]
师:怎么,都解答完了。检查过了吗?和××解答一样的有哪些同学?[学生举手示意]谁来说说你是如何检查的?
生:把方程的解代入原方程左边,360+460等于820,方程的右边也等于820,所以x=46是原方程的解。
师:检查的过程虽然不要求写出来,但我们要养成检查的习惯,检查后再写出答案。
师:还有不同意见吗?[因有学生举手]
生:我列的方程和书上的不一样。我根据苹果的重量等于苹果的重量的相等关系列的。820-10x=45×8,方程的解还是46。[板书这个方程]
师:非常好。能根据不同的相等关系列出不同的方程,但方程的解却是相同的。很会动脑筋。还可以怎样列方程?
生:我列的方程是820-45×8=10x。相等关系是梨的重量同梨的重量相等。
师:这个方程对吗?
生:我觉得不完全对。解方程不好写。
生:这个方程是对的。因为相等关系找对了。
师:[举手同学多还想发表意见]这样,老师说说看法。应该说这个方程是正确的。因为它是根据梨的重量等于梨的重量的相等关系列出的方程。只不过我们习惯的写法是把含字母的式子写在等式的左边。如果列出了这样的方程只需要把等式左右两边调换一下,就便于我们解方程了。
师:[小结]这节课我们学了列方程解稍复杂的应用题。下面让我们一起根据大家在解题中的思考过程,再来总结一下解题的思路。想想看,在解题过程中你自己先怎样,再怎样?然后怎样?最后怎样?谁能结合自己刚才解题中的思考过程一步接一步地说出来。
生:第一步是读题后把问题转化成条件;第二步是把转化来的条件拿来和题中原有的`条件放在一起;第三步找数量和数量间的相等关系;第四步是根据相等关系列方程;第五步是解方程;最后一步是检查和写出答案。
师:谁能把××同学总结的思路再说一遍?[有意请中差生回答]
生:第一步……[教师边引导××说边板书如下]
师:这就是今天我们学习的列方程解稍复杂应用题的解题思路,也就是我们的思考过程。另外,同学们在学习中肯动脑筋,会动脑筋,同一道题列出了不同的几个方程。它们的解都相同。这是因为数量间的相等关系不只一个。根据不同的相等关系就可以列出不同的方程来。但要注意,方程是不是列正确了不是看方程的“样子”,而是要看相等关系找对没有。只要按照这样的思路[指板书]正确地去列方程都可以。
(三)巩固练习
师:请拿出作业本。我们作几道练习题。只设未知数,列方程,不解方程。
第一题是把例7中的“一共重820千克”改成“苹果比梨少100千克”[擦去“一共重820千克”,再写上“苹果比梨少100千克”]列出方程。
师:谁来告诉大家,你是怎样设未知数和列方程的?[有意请中差生]
生:设每筐梨重x千克,方程是10x-45×8=100。
师:你是根据哪两个数量的相等关系列出这个方程的?能说出来吗?
生:苹果比梨少的重量等于苹果比梨少的重量。
师:正确吗?
生[齐]:正确。
师:还可以怎样列方程?先说相等关系,再说方程。
生:用苹果的重量加上苹果比梨少的重量就等于梨的重量。
10x=45×8+100
师:有多少同学根据×××找出的相等关系,列出的方程跟他相同?[学生举手]
师:这两位同学的想法都不错,列出的方程也正确。请全班同学都注意,列方程解应用题时,只要根据你自己能理解的又比较容易找到的数量间的相等关系列出方程就可以了。
下面三道题请把方程写在作业本上。
1.商店运来苹果和梨各8筐,一共重724千克。每筐梨重46千克,每筐苹果重多少千克?
2.学校买回4个排球和5个篮球,共用476元。每个篮球56元,每个排球多少元?
3.学校买篮球比买排球多花84元。买回篮球5个,每个56元,买回的排球每个49元。学校买回多少个排球?
[教师行间巡视,进行个别指导]
五年级方程教学反思3
小学数学揭示概念的方式有多种,有用图画来揭示概念,有用描述的方法来揭示概念。“含有末知数的等式是方程”,这是用定义的形式来揭示概念。根据方程定义的需要,教学中先教学等式,再教学方程的意义。而所有的教学都离不开天平图,离不开天平平衡的具体情境,这是联系学生数学与生活的.纽带。在教学中,我引领学生将现实问题数学化。课中注意从学生已有知识和经验出发,通过师生合作,生生合作,通过观察、分析和比较,在独立思考和交流中,由具体到抽象感受、理解,构建方程的意义。
课后反馈:
与马科长席谈,令我获益匪浅。马科长肯定了我的教学思路,并对课堂上学生的积极发言感到欣喜,对我班学生的小组合作习惯成效,训练有素甚是高兴。(说实在,一直在寻找小组合作的良方,上学期作了些尝试,不过技艺尚不够纯熟、多样),然而提出的以下三点更是让我深思。
1、充分利用“组合拳”。比如说、写、动手操作等等。特写是写,不要满足于学生口头表达正确,其实有时写起来错误百出。是啊,举个小例子:有些汉字我们认识但一写起来,无从下笔,还有课堂上总归能得到正确答案,(不然老师不会放过)但它不表示,人人都知道正确答案,我们时常评讲过一个练习,或让学生重新订正完一份试卷,收上来一看,结果却差强人意,想必原因与此同理。我们的课上应让每个孩子动起来,让他们展示,小黑板、实物投影,十八般武艺,能用尽用上,而不是仅限于口说正确完毕。
2、书本的运用。现在的课堂有一趋势,依赖课件多多,自主发挥创新多多,我也不例外。虽然新课标希望教师用自己的思考解读课本,但课本舍弃不得,它毕竟是优秀的学者的心血之作。是啊,作为一线教师,我们应当挖掘教材价值,不放过一丁点的利用价值,特别到高年级,可借助课本培养学生的自学能力啊。今后的教学,我定会多多注意。
3、细节的处理还可再斟酌。比如等式与方程的关系教学。此环节什么时候出现?怎样出现?为什么出现?显然我的教学明显操之过急,其实,我也知道,只是上得兴起,太投入了,不自觉的就冒出来了,其实应该在完成练一练的第一题时讨论才好,并适时鼓励学生用自己的方式表达二者之间的关系,真正实现师生、生生之间的互动。现在想起略显遗憾,好在我倒也淡定,因为此生遗憾的事太多了。不过我也要提醒自己:对教材,对学生,千万多思三个“W”即“what、when、 why”。
五年级方程教学反思4
今天早上在库沟小学听了张福华老师的《简易方程的整理和复习》这节复习课。这是我第一次听复习课,以往只是从教学策略上了解复习课的教学流程,当今天真真正正的倾听了一节复习课后,感受颇深,所学甚多,只奈何有言吐不出,下面就简单说一些听完这节课的体会。
首先,张老师的语言简练干脆,善于利用名言名句。
在课的开始,大屏幕上就展示出了俄国乌申斯基的一句话:“装着一些片段的,没有联系的知识的头脑,就像一个乱七八糟的仓库,主人从那里是什么也找不出来的。”这句话的展示,让学生一下子就了解了整理的重要性,也了解了这节课的目的所在。在回顾整理,构建网络这一环节,张老师在让学生自己看课本例题的知识点时又说了一句“不动笔墨不读书”,提醒了学生看例题时可以适时的进行批画,将遗忘的知识点突出显示出来。在课的最后又课件展示了韦达和爱因斯坦的名言警句。
其次,目录归纳知识点,清楚明了。
我想所有的老师都会头疼复习某一单元或某一册课本时知识点的归纳,只奈何没有更好的方法可以把所有知识点系统的展现给学生。本节课张老师的方法让我眼前一亮,目录展示法,让所有知识点的区别和联系清楚的摆了出来,方便了学生的回顾和整理。
最后,练习充实有趣,层次分明。
闯关形式的练习提高了学生的积极性,激发了学生的`好胜心。在一,二,三的闯关中,依次将基础知识点,重难点进行了练习,稳固。学生在回答闯关的答案时,张老师经常会问一个为什么,引导学生对知识点进行再回顾。例如,在一名学生回答bX8等于8b时,问为什么不是b8?在学生回答aXa=a的平方时,问为什么不是2a?看似不经意的询问,却巩固了细微处的知识点。
当然,张老师的课还有许多值得我学习的地方。例如,创设了有效地复习情景,亲和力强,能及时唤起回忆,将零散的知识系统化等等。通过这节课,让我更清楚的了解了复习课的教学模式,对以后上好复习课有了更多的信心。
五年级方程教学反思5
今天学习了《列方程解决实际问题》,学生经历列方程解决一步计算的实际问题的学习过程,在练习中学生对列方程解决实际问题的一般步骤和方法掌握不太好。
本节课我重视学生对数量关系的理解和列方程与数量关系的对应的方程。如:例7的数量关系:小军的.成绩-小刚的成绩=0.06米,对应的方程是x-1.39=0.06,如果数量关系:小军的成绩-0.06米=小刚的成绩,对应的方程是x-0.06=1.39。
本节课学生设未知数x的后面单位名称会丢掉。在本节课教学中使用的数量关系,实际上就是以前的“…比…多…”和“…比…少…”应用题的数量关系,数量关系:大数-小数=差,大数-差=小数,差+小数=大数。
五年级方程教学反思6
这节课是在五年级学生刚刚经历了等式的性质的学习和解简单的方程的基础上进行的,本节的重点是:如何分析实际问题中的数量关系和综合运用方程知识解决实际问题。难点是:找到题目中未知量与已知量之间的数量关系、等量关系,掌握形如ax+b=c,ax-b=c的方程的解法。
我校的五年级学生基础知识非常扎实,不仅能熟练地解决已学的一步计算的简单方程,而且,根据课堂上练习时的观察,一半的学生在新授之前已经掌握了ax+b=c,ax-b=c的解法。从课堂发言看,这些学生并不是运用等式的性质来解方程,有的班级学生学会了移项的方法解题,有的是根据等式中各个量间的关系来解方程,比如2x-22=64,部分学生把2x看作被减数,运用被减数=减数+差的关系式得出2x=64+22后,轻松解答方程。可见不少班级老师已经在教学时拓展了更复杂的方程的解法。再经过共同学习后学生已经熟练地掌握形如ax+b=c,ax-b=c的方程的解法。但找到题目中未知量与已知量之间的数量关系、等量关系仍然是学生学习的难点,许多学生能顺利列出方程但是对等量关系式却表达不清,这种现象在历年的教学中均有体现。
用方程解决生活中的问题,关键在于让学生能正确寻找问题中的数量关系式。掌握了数量关系式,问题便可迎刃而解。学生在以前的学习中缺乏这样的训练,对如何分析数量关系没有一定的基础和经验。在例1教学时,学生找等量关系的时候还是比较困难,究其原因,大多是直接把大雁塔和小雁塔的高度比较,而没有和小雁塔高度的2倍去比较。等量关系犹如解题的拐杖,一定要让学生认真阅读,仔细分析。这就需要教师恰当地引导。
一、抓住关键句提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的`关键句:大雁塔的高度比小雁塔高度的2倍少22米,根据这句话学生的思维就会直觉的写出这样的相等关系:大雁塔的高度=小雁塔的高度 2-22。(学生的表现也验证了这是学生最容易想到的数量关系式。)再引导学生找出已知量与未知量,根据等量关系式列出方程。 通过学习和思考,学生就会很快掌握类似这样的一个数比另一个数的几倍多几(或少几)的实际问题,就会根据自己的理解和直觉思考 一个数=另一个数倍数几这种相等关系,。因此学生如果学会抓住关键句分析与思考, 能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
二、重视互动交流,提高学生表达能力。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、分析关键句、交流关键句等手段,提高学生的思维能力,让学生在学习的过程中关注他人的方法和过程,理解他人的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,还应指导学生通过互帮互学,在交流中促进学生思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,互相促进,共同提高。 (教学本课后,我还有一个想法:在例2的教学中将引导学生通过画线段图来理解数量之间的等量关系。那能否在例1教学中也灵活运用这样的方法呢?我想一定能促进对学生对数量关系的分析。今后将在教学实践中试行。)
总之,教学此单元内容时在学生的数量关系的分析上还要多花时间,多帮助学生,磨刀不误砍柴功,为了能让学生顺利掌握新知,要始终把数量关系式的训练作为教学的主线贯穿在教学过程中
五年级方程教学反思7
教学重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;教学目的是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从学生喜闻乐见的事物入手,降低问题的难度。
解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的足球入手,引出数学问题,激发学生的学习数学的兴趣,建立学生热爱体育运动的良好情感,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的.思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后老师让学生
把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色皮多少块,黑色皮多少块,白色皮比黑色皮少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法,让学生
成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
五年级方程教学反思8
新教材对于解方程的安排是变动非常大的。以前我们是根据四则运算各部分之间的关系来解方程。一开始时,还不和学生说解方程,叫求未知数X。而现在的教材编排时是根据等式的性质来解,在小学阶段,只要让学生明白,在等式的两边同时加、减、乘和除以同一个数,等式仍然成立。从学生的学习上来看,我觉得学生是比较容易接受这种方法的,特别是比较简单的方程,学生只要明白了要把谁抵消,怎么抵消,基本上问题不大。不过,到了稍微复杂的方程出现了一些问题,因此本节课把握好教学目标是关键,
其目标有三:
1.结合现实情景了解方程的意义,
2.会用方程表示简单的等量关系,
3.感受数学的应用价值。本节课内容新,知识抽象,练习多,因此要精讲,才能完成教学目标。
经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为X…。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=…,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的.格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的'难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我先让学生复习,巩固找出题目中等量关系式的本领和方法,并且让他们学会举一反三,这点相当重要。还有一点需特别注意学生列出的方程,其中有一种方程是X单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,我觉得如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。
在练习中,我把练习的重点放在找准数量关系式上。课堂上大量提问了学生应用题的数量关系式是什么,进一步进行了专项训练,在进行列方程解应用题时,重点让学困生再说说关键句是什么,是根据哪句话找出来的,(让学生找关键句)要让他们知道怎样去找,从而总结找相等的数量关系可以有这样几种策略:
①根据关键句思考等量关系。
②根据公式思考等量关系。
③根据总数思考等量关系。
④根据相差数思考等量关系。
五年级方程教学反思9
教学内容:教材第65页例1。练习十二的第1——3题。
教学目标:
1.学生能根据等式的基本性质解形如ax±b=c的方程,初步学会列方程解决一些简单的实际问题。
2.培养学生抽象概括的能力,发展学生思维灵活性,进一步提高学生的分析能力。
3.学生感受数学与现实生活的联系,培养学生的数学运用意识与规范书写和自觉检验的习惯。
教学重点:掌握解形如ax±b=c方程的解法。
教学难点:正确找出数量间的相等关系,列出方程。
教学过程:
一、复习铺垫:
1.解方程。
x-2.5=10 0. 4x=12 3.2+x=40
2.根据下列句子说出其数量间相等的关系。
1)女生比男生人数的3倍少10人。
2)这个月比上个月水电费的2倍多200元。
二、情景导入:
同学们见过足球吧?(出示1个足球)
(出示例1)一起观察挂图,问:图中的哪些信息是解决“共有多少块黑色皮?”这个问题所需要的?
三、探究新知:
1.师:要想知道黑色皮有多少块,就必须了解黑色皮的块数和白色皮的块数有什么等量关系?
老师可以用线路图表示帮助学生分析题中的等量关系。
2.请学生依据等量关系式列出方程;还有另外的学生找到另外的等量关系式,列方程。
3.师:大家依据不同的等量关系列出较复杂的方程,怎样解答呢?今天我们就来学习“稍复杂的方程”。(板书课题)
4.探究求解过程。
1)生:我们可以用“黑色皮的块数×2-4=白色皮的块数 ”这个等量关系式列方程,可以怎么解呢?
2)强调:把2x看作一个整体,先求出2x等于多少,再求出x等于多少。
3)最后求出 x=12,还要检验12是不是这个方程的解。(学生在黑板上展示解方程的步骤)
4)2x-20=4 这样的方程能转化成我们原来学过的简单的方程再解答吗?(在黑板上展示方程的解法步骤)
5)师:同学们真了不起,这几个同学解答较复杂的方程都是先转化成简单的方程,然后用学过的知识去解决。请同学们不要忘记,最后要检验结果是否正确。
5.大家在用方程解决问题的时候,有什么共同特点吗?步骤是什么呢?
(生答完特点后,师生共同总结列方程解决问题的`步骤:
① 弄清题意,找出未知数用x表示;
② 分析、找出数量间的相等关系,列方程;
③ 解方程;
④ 检验并写答语。)
四、巩固拓展:
1.p66 第1题 解下列方程 3x+6=18 2x-7.5=8.5 16+8x=40 4x-3x9=29
2.p66第2题
五、全课总结:
本节课你有什么收获?
作业:p66 3
板书设计: 稍复杂的方程
例1 解:设共有x块黑色皮。
黑色皮块数x2-4=白色皮块数
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
答:共有12块黑色皮。
课后小记:这节课由于有了前面的几节课对等量关系的训练,在根据老师出示的线段图,学生很快就找到了等量关系,列出了方程,方程的求解过程就是本节课的重点内容,一定要反复的请学生说,达到都会的结果。
五年级方程教学反思10
长期以来,在小学教学解简易方程,是依据加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。这种方法到了中学又要另起炉灶,重新开始。根据新课标的要求,人教版教材从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,使学生摆脱算术思维方法中的局限性,有利于加强中小学的知识衔接。
猜想是学生学习数学的一种重要方式,通过让学生综合已有的知识和经验的基础上经历等式的变化过程,不仅让学生体会到数学来源于生活,还为猜想等式的性质奠定了良好的基础。学生一旦作出了猜想,就会迫不及待的想去验证自己的猜想是否正确,从而主动地去探索新知。
任何猜想都必须经过验证,才能确定是否正确,而验证的过程也正是学生主动学习探索数学知识的过程。学生通过自己动手用天平称一称,验证自己的猜想,以一种自主探究的方式进一步认识了等式的性质,为后面学习解方程奠定了良好的基础。“举出生活中的例子”体现了数学来源于生活,学到的数学知识也要应用到生活当中去的理念,让学生体会到数学就在自己的身边。这样的设计不但极大地激发了学生的学习兴趣,还有利于培养学生的自主探究能力和创新能力。
学生在合作操作中,已经对解方程有了一定的基础和认识,能够大概地说出解方程的过程和依据,而又一次让同学之间同桌说一说后再全班交流体现了本节课的'学习重点“理解并利用等式的性质解方程”,“为什么要减去3”突破本节课的难点。在这个环节中教师还有针对性地指导了书写的规范性和检验的过程。师生之间的共同探讨,显示了一种平等的师生关系。
练习中学生加深了对“方程的解”的认识,抓住了利用等式的性质这一依据去解方程。不同层次的练习照顾了学生之间学习水平的差异,3X=8.4对等式的性质进行了拓展,有利于发散学生的思维。最后交流学习的收获促进了学生形成积极的学习心理。
五年级方程教学反思11
列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。
经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为X…。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=…,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的。
格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我想先教会学生找出题目中等量关系式的本领和方法。 我小结出平时做的练习题中经常会出现的一些等量关系,如下:
1、根据常用的数量关系确定等量关系。
例如:甲乙两地相距1820千米,汽车每小时行130千米,求汽车从甲地到乙地需要多少小时?
等量关系式:速度×时间=路程。由此可以列出方程:
解:设汽车从甲地到乙地需要X小时。
X×130=1820
X=1820÷13
X=14
答:汽车从甲地到乙地需要14小时。
2、根据几何公式确定等量关系。
例如:平行四边形的面积是11.2平方米,底是5.6米,它的高是多少米?
等量关系式:底×高=平行四边形的面积,根据这个公式列出方程。
解:设平行四边形的高是X米。
5.6X=11.2
X=11.2÷5.6
X=2
答:平行四边形的高是2米。
3、根据题目中有比较意义的关键句确定等量关系。
类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:第一,找出题目中有比较意义的关键句;第二,按照关键句中,文字表述的顺序列出等量关系式。
例1:钢琴的黑键有36个,比白键少16个,白键有多少个?
第一,找出有比较意义的.关键句“比白键少16个”,第二,按照关键句中文字描述的顺序,“比白键少”,“ 少”就是“减”,用“白键的个数-16个=黑键的个数”,再根据等量关系式列出方程。
解:设白键有x个。
x-16=36
x=36+16
x=52
答:白键有52个。
例2:一只大象的体重是6吨,正好是一头牛体重的15倍。一头牛的体重是多少吨?
第一,找出找出有比较意义关键句,“正好是一头牛体重的15倍”,第二,按照关键句中文字描述的顺序,“是一头牛体重的15倍”,看到“……的几倍”,应该用乘法,“一头牛体重×15=一只大象的体重”, 再根据等量关系式列出方程。
解:设一头牛的体重是X吨。
15X=6
X=6÷15
X=0.4
答:一头牛的体重是0.4吨。
另外,还要注意的是,其实每道题目都可以列出三个等量关系式,要提醒学生注意,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是X单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。
总之,列方程解实际问题只要找出数量间的相等关系,再列式就可以了,等量关系式变化很多,因此方法较多,从不同的角度找出不同的数量关系式,可以列出不同的方程。我觉得对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,选择适合自己的一种方法就可以了,并且要养成良好的检验习惯。
五年级方程教学反思12
在学习方程的意义时,首先先让学生进一步认识等式,虽然学生在以前的学习中一直接触等式,但是都是如何进行算式的具体运算上,得数只是作为运算的结果,写在等号后面而已。教材利用天平来写出等式,了解等式的结构。再引导学生观察所写的等式,交流等式和方程的'关系,通过交流使学生体会等式和方程是包含于被包含的关系,方程是一类特殊的等式。
在教学过程中,我通过师生合作,生生合作的形式,不仅使学生充分经历了探索、发现和应用知识的过程,初步建立起关于等式和方程的概念,了解他们之间的关系,而且使学生在学习过程中体验到成功的愉悦,激发他们对数学学习的兴趣。
五年级方程教学反思13
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用,《方程的意义》教学反思。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1.用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的.过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
( 2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
3在“看”“说”和“写”中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。
五年级方程教学反思14
“含有未知数的等式是方程”,这句话中包括两个条件,一个是”含有求知数”一个是“等式”。因此,“含有未知数”与“等式”是方程意义的两个重要的内涵。所以在本节课的教学中,就要围绕着这两处条件,设计教学。
一、创设情境,在实际天平的操作中等到等式,并在实际操作中得到方程。
为了加深学生对等式的理解和掌握,采用教科书的设计意图和设计,用天平的平衡找到两边物体质量相等,从而得到等式。为了让我们的设计更贴近我们的生活,直接用我们的粉笔列道具,来称粉笔的重量的过程中得到不等式和等式,含有求知数的等式(方程)。一步一步,让学生从浅到深,一点一点掌握知识,得到要掌握的'知识点。从而学会判断哪些是方程,哪些不是方程。
二、通过比较和断定,从而加深对方程的理解。
断定一个式子是不是方程,要从两个条件入手,一是“含有求知数”二是“等式”,两个条件缺一不可。从而学生互相问,这个为什么不是,哪个为什么不是。含有求知数:5Y不是方程,因为不是等式。5+8=13不是方程,因为没有求知数。所以方程既要是等式又要含有求知数。
X+Y=Z也是方程,因为含有求知数,并且是等式。Y=5也是方程,因为含有求知数,并且是等式。
三、在观察天平平衡列式过程中建立方程的概念,不仅要了解方程的外在特点,更要理解方程的意义。
从判断等式方程到借助现实的相等情境写出方程,由表及里,由浅入深。学生在把实际问题的等量关系用符号化抽象成方程时,不仅感受了方程与日常生活的联系,也体会了方程的本质特征,从而巩固了方程的概念。
五年级方程教学反思15
现在的小学数学教材十分注意将数学知识与生活实际紧密联系。内容的呈现注意体现儿童的已有经验和兴趣特点,提供丰富的与儿童生活背景有关的素材。如人教版小学数学五年级上册60页,关于警戒水位的问题。
本节课的教学目的是能让学生运用所学知识解决简单的实际问题,感受解简易方程与实际生活的密切联系,使学生初步掌握用列方程的方法解决实际问题的解题思路和方法;会把未知数的值代入已知条件看是否符合;在解方程解决问题的过程中培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。本节课是学生初次利用列方程解决实际问题,对学生来说有一定的难度,上完后,感觉有不少问题存在。
教学例3时,我首先从例题上引导学生读题观察,理解题意,然后指导学生分析题中的数量关系。这时问题产生了,由于这里学生的认知局限性,学生对于什么是湖、大坝,甚至水库,堤坝都不知道是什么,给审题带来比较大的困难,又要重新向学生介绍有关湖泊、水库、堤坝等知识,最后为了让学生更好地理解,我还结合学生常见的鱼塘、塘堤等学生熟悉的情境进行说明,学生才恍然大悟,(教学反思 )由此可见,我们提供给学生的情境必须是学生真正熟悉的生活情境,要结合当地学生的认识水平,这才是有效的情境。其次备课一定要深入,不仅要熟悉教材内容、教法、学法,还要深入分析学生已有的知识情况,这样才能备好一节课,要吸取教训。
在交流汇报时,学生说出了如下数量关系:
警戒水位+超出部分=今日水位
今日水位—警戒水位=超出部分
今日水位—超出部分=警戒水位
然后让学生依据数量关系列出相应的方程,这时学生发现例题与之前所学的方程有所不同,之前列方程时题目中未知数已经有了,直接看出x表示那个量,而例题中并没有x,从而引导学生了解到:要列方程必须把其中的未知量假设为x,从实际中让学生发现列方程解决问题时有“设……为x”的必要性,不至于出现在列方程时不写“解:设……”的情况。
但是,在列方程的.时候却出现了这样的问题,因为教材只要求掌握“未知数不是减数和除数的方程”解法,在例题教学中,有的学生列出了这样的方程:14.4—x=0.64,从意义上来说,这样的方程肯定是没有问题的,但是应该怎样解呢?是否该向学生讲解方法?如果讲解方法,又该用什么方法来解?或是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的信息:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就和现在冲突了吗?迷惑!
【五年级方程教学反思】相关文章:
五年级方程教学反思04-08
《简易方程》教学反思03-11
认识方程教学反思04-16
《解方程》教学反思04-07
《式与方程》教学反思05-04
《方程的意义》的教学反思12-23
方程的意义的教学反思12-30
方程的意义教学反思03-10
《方程意义》教学反思03-16
《方程的意义》教学反思03-01