- 相关推荐
《用数对确定位置》教学反思
作为一位到岗不久的教师,我们要有很强的课堂教学能力,对学到的教学技巧,我们可以记录在教学反思中,教学反思应该怎么写才好呢?以下是小编整理的《用数对确定位置》教学反思,欢迎阅读,希望大家能够喜欢。
《用数对确定位置》教学反思 篇1
本节课开始给我的感觉是比较简单的一个内容,可当静下心来细细琢磨教材时,才感觉到本不像我所料。“数对”这个概念对五年级的孩子来说是极为抽象而又陌生的,如何让他们既对其生成过程有所经历,又对其实质顺理成章地轻松接受。用心思考之后,我把本节课的设计理念定位为:既尊重教材,又超越教材;既自主探究,又适当讲授;既重视结果,又关注过程;既夯实基础,又培养能力;既关注课内,又适当延伸。
基于以上分析,本节课的教学过程主要体现在以下几个方面:
1、用数对确定位置是基于学生已经学习了用第几排第几个描述位置的基础上进行的,我从孩子最熟悉的教室座位出发,唤起了学生用已有知识来确定位置的经验,帮助学生找到新旧知识的连接点。由于观察方位、角度的不同,学生对于刘珈吟同学位置的描述产生了多种方法引起争议,从而产生认知需求:如何才能正确、简明地描述位置呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的积极性。
2、在教学中我应用了小组讨论的方法。在解决本节课的重点难点的时候,我并没有直接告诉学生现成的答案,而是引导学生经历了一个探索问题的过程。通过小组谈论,学生找到了许多种简单表示第2列第3行的方法,然后让学生汇报交流,我适时引导从而使学生认识了数对表示方法的科学性、准确性和简洁性。
3、在教学中引导学生经历由实物图到方格图的.抽象过程,渗透“数形结合”的思想,发展空间观念。在教学中我先给学生出示了实物图,然后通过电脑演示了由实物图到方格图的变化过程,渗透了数形结合的思想。
4、在整个教学设计中我始终坚持了“数学知识从实际中来、到实际中去”的思想。在导入部分我从描述班级内刘伽吟同学的位置开始,从而引起新知识的探讨过程。最后我设计了报数对找位置以及猜一猜的文字游戏也是这一思想的体现。
通过实际的教学和周主任等各位领导的点评,我认为自己在教学这节课的时候还存在着以下几点缺憾:
1、备课时总想面面俱到,查阅大量资料,但由于缺少经验对教材的理解不够透彻,有时候不知如何取舍,导致今天的课堂上在教室里找位置时本意是模拟教材情境图才以教师为观察者的,但没有和孩子们强调其实在现实生活中,自己就是观察者。
2、在渗透“数形结合”的思想时,我直接由实物图过渡到方格图,虽然利用多媒体有个过程的引导,但不如先由实物图到点子图,再把点子图的各个点用横线和竖线连接起来,然后点子图的各个点逐渐缩小,直到缩到与横线和竖线的交叉点一样大为止。我想有这样的演示再填表时效果会更好。
一节课已经结束了,但我的思考却没有终止,我不停地思考着教学的每一个细节,考虑着我教学的得与失。我始终坚持着教数学的目的是发展学生的思维而不是记住一些知识,知识的探索必须以实际生活为依赖,使学生经历知识形成的过程,体会数学的价值。
《用数对确定位置》教学反思 篇2
“用数对确定位置”这部分知识是在学生原有知识的基础上,进行进一步的学习和提升,是培养学生的空间观念,也是今后进一步学习相关知识的重要基础。在学习本课之前,学生已经在第一学段学习了前后、上下、左右等物体具体位置的知识,这些知识为学生进一步认识物体在空间的具体位置打下了基础。本节课,我创设具体情境,引导学生探索确定位置的具体方法,让学生能用数对确定物体的具体位置,体会数对在确定位置中的作用,使学生感受到数对与生活实际的紧密联系,激发他们的'学习兴趣。
一、自主探究用数对确定位置
教学中,我为学生提供了一组明星图,通过问答使学生感到:要确定“刘翔”的位置,必须要按照一定的顺序规范表达,才能使人明白。结合自学提纲,让学生通过自学,自主探究本课的知识点。学生在探究的过程中感受到要确定刘翔的位置要从二维的角度(两个方向)考虑。通过交流、汇报及教师的引导,明确了“列”与“行”。在学生能用第几列第几行描述出某一位置后,进一步让学生探究如何用简洁的方法表示这一位置,从而引入了用数对表示位置。使学生感受到数对可以更简洁、更迅速地确定位置。通过这一的探究活动,培养了学生自主探究的学习品质
二、应用数对确定位置
当学生初步认识了数对后,我设计了“找朋友”的小游戏。一是让学生用数对写出自己好朋友的位置,二是让其他学生根据数对找到好朋友。三是教师出示数对,学生找一找是谁。此环节层层递进,逐步渗透,一方面以螺旋上升的方式解决了这节课的教学难点;另一方面使学生不仅巩固了用数对确定位置的方法,而且体会数对的一一对应性,同时也让学生充分感知了数学的简洁美。
三、在平面图和方格图上用数对确定位置
由具体到抽象是数学知识的特点。对于让学生在方格图上确定位置是本节课的难点,也是学生思维的一次飞跃,当学生能在具体情境中、在平面图中用数对确定位置后,再利用多媒体,直接抽象到方格图,并且初步渗透平面直角坐标系的思想,实现了由具体到抽象的过渡。通过“一公司邀请(4,X)位置中的明星参加慈善演出,你知道可能邀请了哪些明星吗?”“另一公司要邀请(Y,2)位置中的明星参加演出,有可能邀请了谁?”让学生感知到位置处于同一列时,逗号前面的数字相同;位置处于同一行时,逗号后面的数字相同;
四、拓展应用
数学知识不能仅仅停留在课堂上,为学生准备生活中数学的知识,可以丰富学生的学习生活,拓宽学生的视野。在这一环节,我设计了:
(1)应用数对确定国际象棋棋盘中每一个方格的位置。
(2)了解地球上用经纬度可以确定任意一点的位置。
(3)GPS定位系统。
这样,由数学上的位置到生活中的位置,二者虽不尽相同,但对学生具有引领和教育价值,从而体现数学的大教育观。
《用数对确定位置》教学反思 篇3
这节课是苏教版四年级下册第八单元的内容,这一单元主要是让学生能够理解什么是列和行,知道确定第几列、第几行的规则;初步理解数对的含义,会用数对表示平面上点的位置(限正整数)。而我这一节是第一课时,这一课时主要是要求学生能够用数对来表示所在位置。
在此之前,学生已经会有语言文字描述自己在教室中的位置,在日常生活中积累了用类似“第几排第几个”的方式描述物体位置的方法。数对的学习将为学生以后学习直角坐标系打下基础。“数对”这一数学知识对于学生来说比较抽象。
为了解决这一问题,我注意了以下几点。
1、本节课的教学先让学生看情境图,说出小军的位置,唤起了学生对已有的用“第几组第几个”或“第几排第几个”的知识来确定位置的经验,帮助学生找到新旧知识的连接点。然后让学生根据“小军坐在第4组第3个”和“小军坐在第3排第4个”确定小军的位置,有的从左边数起,有的从右边数起,有的从前边数起,有的从后面数起,这样找出的位置不是唯一的,使学生认识到这样描述位置的方法不够准确。进而让学生将叙述的语句改准确,从而知道了要统一说法。最后让学生说一说你在班级是第几列的小游戏,帮助学生们进一步认识列和行。接着我又要求学生用列和行说一说你在班级的位置和你同桌的位置,通过小游戏帮助学生们加深了对列和行的认识。
2、接着我又要求学生记录下几个同学的位置,这是学生们发现如果全部记录下来太长了,时间上也来不及。从而引导学生提出问题有没有一种既准确又简明的方法呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的积极性。然后我要求学生自己想一想设计出一个你认为比较方便的方法,接着再要求学生写在黑板上。最后我在学生设计的基础上用数对表示位置的基本方法,使学生认识到数对中的第一个数表示“列”数,第二个数就表示“行”数以及这个数对的读法。
3、通过多种形式的练习,既激发了学生学习的兴趣,又提高了学生的能力。首先是结合学生在教室中的位置,通过做游戏,说位置,猜朋友等多种形式,使学生进一步巩固了对行、列和数对含义的认识。接着我又通过小游戏猜猜他是谁,使学生们进一步认识数对,并且明确了要想确定具体的位置必须要同时知道数对中的两个数字。我又安排了找座位的`小游戏,让学生们找到自己的位置,其中我准备了一张(6,6)的卡片,然后让学生自己修改卡片,找到自己的位置,从而让学生进一步的认识数对,并且初步体会什么是一一对应。
尽管我努力想上好这一节课,但仍然有不足之处:
在第一环节中让学生用自己的方法把方队中小军的位置描述出来,学生书写速度较慢,浪费时间,在试讲的过程中也尝试过让学生口头表述,后面学生受前面发言学生影响,往往不愿意表达自己的描述方法,所以这一环节还需精加工改进。在处理找座位这一环节的时候,应该着重处理怎么修改就可以找到自己座位的这一环节,让学生能够体会一一对应的。而且在上课的时候总是说得过多,不能放开手让学生去讨论探索,而是把学生牢牢地扎在手中,让学生失去了自主学习的机会。
《用数对确定位置》教学反思 篇4
在第一单元的《位置》教学中,我让学生从自己十分熟悉的座位入手,用自己唤起探究如何确定位置的欲望。在学生探究确定位置的方法时,我不急于告诉学生答案,而是让学生开动脑筋,尝试用自己的方法去描述,组织学生讨论谁的方法比较好。引入“数对”表示位置的方法时,我没有直接讲授,而是让学生运用自己喜欢的方式表示。此时,本课重要的知识点从学生之口引出,使学生获得极大的满足感,更进一步激发学习兴趣。同时从学生已有的知识经验中逐步抽象出数学的表示方法,让学生更易理解和接受。结合具体情境,贴近学生生活实际,借用教材的情境与问题这一思路,从学生自己班上的座位情况这一真实的课堂情境引入,再把情境图作为巩固练习。因为讨论的是学生每天都坐的位置,所以这一交换就很容易激发起学生兴趣,使教材内容更加丰富了。练习时的城市街区图、火车票、电影票、地球的经纬线等等,使学生体会到我们生活环境中,存在着大量的数学知识与问题,从而激发学生的学习兴趣、促进教学活动的生成。
在用数对确定位置的教学中,发现学生对“列在前,行在后”的数对表示方法,是用记忆来掌握的。在练习中多次会出现列数和行数位置颠倒的错误。其实,在现实生活中,我们成年人如果不明白道理仅靠规定或记忆,也经常将列数和行数位置颠倒。看来,学生虽然已经学会了数对的表示方法,但出现列数和行数位置颠倒的.错误是属于记忆模糊的问题。对数对中列数在前,行数在后的表示方式,数学家或者教材的编写者为什么会这样规定了?由于我看到的资料有限,一时还无法找到教材中专家这样规定的依据。在教学中,我们可以设计这样的环节,让学生思辨:数对中,数学家为什么要把列数写在前,行数写在后呢?这样也许会给学习带来意想不到的收获。
《用数对确定位置》教学反思 篇5
《用数对确定位置》知识点不多,对于五年级的学生来说是比较简单的,那么如何使教学的内容更丰富,在课堂上激发学生学习的需要,使学生产生探究的欲望,便成了我的主要思考方向。
学生在一年级已学习了用“第几”描述物体在某个方向上的位置,在二年级时学习了用类似“第几排第几个”的方式描述物体在平面上的位置,已经初步获得了用自然数表示位置的经验。因此,在导入环节,我出示了小军班级的座位图后,先向学生提出要求:你能用以前所学过的知识告诉我小军的位置在哪里吗?你是怎么看的呢?学生在描述时出现了两种不同的说法:“第4列第3个”、“第3排第4个”。小军的位置没变,但同学们看的角度和方法不同,所以产生了不同的说法,从而使学生产生正确、简明描述小军位置的需要。学生在生活中已具备了确定列和行的经验,因此,便很顺利地得出竖排叫做列,从左往右数,横排叫做行,从前往后数,小军是在第4列第3行。
知道了确定第几列、第几行的规则后,再将座位的场景加以抽象,用圆圈表示实际场景中不同的座位,详细地标出每一列每一行,让学生在圆圈图中找出小军的位置,提高了学生的抽象思维能力。同时,向学生介绍表示位置还可以用更简明的表示方法——用数对确定位置。学生在具体情境中学习用数对确定位置,并理解用数对表示物体位置的方法,第一个数表示第几列,第二个数表示第几行。
当学生学会从平面图上用数对确定位置后,我又引导学生回归到生活中,在教室里,找到自己的位置在第几列第几行。通过游戏的形式,使学生认识教室里的列和行,并学会描述自己的位置和好朋友的位置。再通过对一组数对的观察,认识到同一列的第一个数字相同,同一行的第二个数字相同。(5,y)表示第5列的所有同学,(x,2)表示第二行的所有同学。当让学生用一个数对表示全班同学的位置时,学生出现了以下的.数对:(x,y)、(y、y)、(x、x),通过举例,若y=8时,教室里没有(8,8)这个座位,使学生形象深刻地理解了只能用两不同的字母表示,才能表示全班同学的位置。
练习中,练习三的第2题,当学生完成数对后,我有目的地引导:“观察同列或同一行的两个数对,你有什么发现?”问题具有针对性后,学生都能从同列或同一行的数对去观察、思考,并发现规律。练习三的第3题,让学生讨论:“你发现花色地砖位置的规律了吗?”学生讨论地看似比较热烈,但指名回答时,学生却不敢发言了,在我的再三鼓动下,有几位同学站起来说出了他们的发现:一是同一列的第一个数字相同,同一行的第二个数字相同;二是数字中的奇偶数关系;三是花色地砖第3列1块,第5列2块,第7列3块,第9列2块,第11列1块,第2行1块,第3行2块,第4行3块,第5行2块,第6行1块。第3个发现也就是左右、上下都是对称的。
《用数对确定位置》教学反思 篇6
这部分内容是在学生已经初步获得了用自然数表示位置的经验的基础上进行教学的。将学生已有的用类似“第几排第几个”的方式描述位置的经验加以提升,用抽象的数对来表示位置,进一步发展空间观念,提高抽象思维能力。本节课我通过引导学生观察主题图——军营生活引入对新知识的探索,使学生充分了解数学与日常生活的联系。课的最后,利用猜位置找礼物和大家喜欢的迷宫游戏的实例,引导学生将所学知识应用到实际生活中去。这样设计,充分体现了“数学知识从实际中来、到实际中去”的思想。
数学教学要重视知识形成的过程是当前数学课程改革的一个重要的理念。本节课中,我注重了向学生充分展现知识形成的`过程,我通过将“小强”站在从左数第3列从前数第2行”简化成用数对来表示,然后把人物图简化成点子图再到方格图,力图让学生经历数学知识、数学思想的形成过程,从而加深学生对所学数学知识的理解;而且在这个充满探索和自主体验的过程中,使学生逐步学会数学的思想方法和如何用数学方法去解决问题,获得自我成功的体验,增强学好数学的信心。
在练习题的设计中,我设计了孩子喜欢的游戏入手,先设计了一个根据位置寻找礼物的游戏,又设计了一个走迷宫的游戏,从孩子喜欢的游戏入手,可以提高孩子的学习兴趣,增强数学的应用能力,拓宽了孩子的视野。
知识的延伸:了解数对的发展史:
笛卡尔是著名的法国哲学家、数学家、物理学家。有一天,笛卡尔生病卧床,但他头脑一直没有休息,还在反复思考一个问题:通过什么办法,才能把“点”和“数”联系起来呢?突然,他看见屋角上的一只蜘蛛在上边左右拉丝。他想,可以把蜘蛛看做一个点,蜘蛛的每个位置就能用一组数确定下来。于是在蜘蛛的启示下,笛卡尔用一对有顺序的数表示平面上的一个点,创建了数对与直角坐标系。他本人也受到了人们永远的尊敬。由此可以看出,在我们的生活中蕴藏许多奥秘,同学们要学会用数学的眼光观察生活、了解生活。
然后让学生联系一下生活中用数对表示位置的事例,从而让学生联系生活,引出地球仪上的经纬网也是应用了数对的思想。在地球仪上连接两级的点叫做经线,垂直于经线的横线叫做纬线,根据经纬线可以确定地球上任何一点地位置,而且还可以根据该地点的经纬度,测算出该地点与我们的距离。神州 七号飞船发射返回地面时地面工作人员就是根据经纬度来准确地判断飞船的着陆地点的。从而拓宽孩子的知识面。
当课结束了,学生还沉浸在神奇的知识奥秘之中。
《用数对确定位置》教学反思 篇7
1、关注学情,教而有效
认知教育学家奥苏贝尔说过:“如果我不得不把教育心理学的所有内容简约成一条原理的话,我会说:影响学习的最重要的因素是学生已经知道了什么,弄清了这一点后,再进行相应的教学。”的确,有效的数学教学应该基于学生的已有经验。唤醒学生原有知识,了解学生的生活经验和已有知识背景,是学生学习的基础。因此我在教学时,首先通过让学生自己来描述赵晨的位置,激活学生头脑中已有的描述物体位置的经验,然后通过交流评价,自己认识到这些方法的不足,引发学生产生用统一、简明的方式来确定位置的需求,体会学习新知的必要性。
2、巧设平台,彰显个性
学习是一种个性化行动。作为教师,应当在课堂教学环境中创设一个有利于张扬学生个性的“场所”,让学生的主动性和创造性得到尽情释放。在让学生以赵晨的位置“第3列第2行”为例,根据数学的简明性特点和符号化特点自己创造更简洁的表示方法的环节中,为学生提供了自主思考的空间,学生的思想无拘无束,创新灵感、创新思维不断涌现,课堂真正成为了他们发挥自己聪明才智的乐园。然后再针对学生自己创造的方法,通过师生互评、生生互评,让学生产生矛盾冲突,抽取共性,从而产生确定位置的方式——数对。可以说数学的特点促进了数对的产生,数对的产生也符合数学的特点。再通过对“数对”名字的分析,使学生对于“一对数”确定位置的理解也更加清晰了。
3、知趣交融,快乐求学
心理实验表明,学生经过20至30分钟紧张的新课学习后,会感到疲劳,学习兴趣降低,学困生表现尤为明显。而“兴趣是最好的老师”,为了继续保持学生积极的学习状态,教师要特别注意练习的设计。“找好朋友”的练习紧密联系生活实际,而且形式活泼有趣,极大调动起了学生学习的兴趣。学生在这一活动中,动眼看,动耳听,动脑想,动口读,动手找,调动了多种感官参与学习。通过这个形式新颖有趣的练习,变学生被动学习为主动参与,既增大了练习面,又使全体学生主动参与。
4、研究探索,发展思维
本课有两大主线贯穿始终:一条是图例的抽象和演变:由实物图、到点子图再到方格图,这一抽象的过程细腻、清晰,借助“数形结合”的方式很好地渗透了“坐标”这一较难理解的数学知识,为学生的后续学习做好铺垫。另一条线是确定位置的方法:由不同的描述方法过渡到列与行的方法最后通过对比淘汰产生数对的方法,这一表达方式逐步递进、简化、抽象,都使学生对数学的简捷性和抽象性有了深刻的感受和体会。课堂中,两大主线的层层递进与发展,把本课数学知识和思想的产生与发展过程展现得淋漓尽致,教师引导学生进行前后对比反思,及时提升学生的认识,培养反思习惯和能力。通过学习,学生不但熟练地掌握了数对知识,而且真正感受到了数学能够把复杂的问题简单化,也真正体会到了数学符号的简洁清晰,最重要的是学生真正亲身经历了数学知识、数学思想的形成过程,这些都为学生的全面发展、长远发展打下了良好基础。
5、缺点与不足
常言道:教学永远是一门有遗憾的艺术。的`确,尽管在不断的雕琢中我努力追求完美,但几缕缺失时常萦绕脑际,难以释怀。
(1)在第一环节中让学生用自己的方法把方队中赵晨的位置描述出来,学生书写速度较慢,浪费时间,在试讲的过程中也尝试过让学生口头表述,后面学生受前面发言学生影响,往往不愿意表达自己的描述方法,所以这一环节还需精加工改进。
(2)这节课不仅仅要教会学生用“数对”的方法来表示位置,更重要的是让学生在解决问题中,构建“数对”模型,经历用简洁的数学符号确定位置这一抽象的过程,这才是本课的重点。学生在经历了由文字描述到符号表达,由繁到简的再创造过程中,进一步感受到了数学的抽象化、符号化。这些方面本课都体现的比较充分,但在让学生感知“数对”确定物体位置,要从两个维度来考虑的数学本质的同时,对数对的有序性体现的不够充分。
(3)此外,联系实际举例:说说生活中哪些地方用到了数对思想,学生非常缺少这方面的经验,往往举不出恰当的例子,是否能改为先介绍“地球上经纬线知识”,课后再让学生在生活中寻找应用了数对思想确定位置实例,也在思考中。
《用数对确定位置》教学反思 篇8
本节课内容是在学习了用前后、左右、上下等表示物体位置和东西南北等八个方向及认识简单的路线图等知识的基础上进行学习的,是“方向与位置”内容的延续和发展。也是以后进一步学习相关知识的基础。这部分内容对学生认识自己的生活环境、发展空间观念具有重要的作用
“数对”这一数学知识对于学生来说比较抽象,为了解决这一问题,我注意了以下几点。
1、本节课的教学是先从认识观察者与被观察者开始的。认识观察者与被观察者是认识那是第一列的基础,也是学生经常发生混淆的地方。因此我在导入时设计了学生介绍第一排同学给我认识的环节。通过学生用方位词向我介绍同学,使学生产生认知的冲突,从而加强了观察角度的认识。事实证明,我这样的教学设计确实对学生认识列产生了深刻的影响。
2、本节课又通过让学生看军营情境图激起学生的好奇心,通过说出小强的位置,唤起了学生对已有的用“第几组第几个”或“第几排第几个”的知识来确定位置的经验,帮助学生找到新旧知识的连接点。然后让学生根据已有的生活经验确定小强的位置,有的从左边数起,有的从右边数起,有的'从前边数起,有的从后面数起,这样找出的位置不是唯一的,使学生认识到这样描述位置的方法不够准确。进而让学生将叙述的语句改准确,使学生认识到如果叙述准确了,又显得太罗嗦。有没有一种既准确又简明的方法呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的积极性。
3、在教学中引导学生经历由实物图到方格图的抽象过程,渗透“数形结合”的思想,发展空间观念。在教学中我先给学生出示了实物图,然后通过电脑演示了有实物图到点子图的过程。最后我把点子图的各个点用横线和竖线连接起来,然后点子图的各个点逐渐缩小,直到缩到与横线和竖线的交叉点一样大为止。通过电脑的演示使学生亲身感知了由实物图到点子图再到方格图的变化过程,渗透了数形结合的思想。
4、在教学中我应用了小组讨论的方法。在解决本节课的重点难点的时候,我并没有直接告诉学生现成的答案,而是引导学生经历了一个探索问题的过程。通过学生小组内的谈论,学生找到了许多中简单表示第3列第2行方法。通过学生的讨论汇报,我适时引导从而使学生认识了数对表示方法的科学性、准确性和简洁性。
5、在整个教学设计中我始终坚持了“数学知识从实际中来、到实际中去”的思想。在导入部分我先从班级内的第一排学生开始,然后引导出了军训中的情景图,从而引起了新知识的探讨过程。最后我设计了寻找班级的数对以及猜一猜的文字游戏也是这一思想的体现。
通过实际的教学,我认为我在教学这节课的时候还存在着以下几点缺憾:
1、讲完课后总觉的有些面面俱到,没有突出重点。
2、在小组讨论的时候给学生的时间太少,学生自由活动不够充分。在汇报讨论结果的时候又过于仓促,没有给学生留下自己评价和相互评价的时间。
3、过于依赖课件,在讲到十几分钟的时候,电脑突然死机使我有些措手不及,上课的思路有些乱了。在处理这个突发事件时,我处理的也有些不当。当时我还没有介绍点子图我不应该叫学生到点子图中找小强的位置。当时我在黑板上已经总结出了“第3列,第2行”,如果这个时候叫学生直接讨论“第3列,第2行”表示方法我想效果会更好,而且能为自己争取到更多的时间。
一节课已经结束了,但我的思考却没有终止,我不停地思考着我教学的每一个细节,考虑着我教学的得与失。我始终坚持着教数学的目的是发展学生的思维,而不是已记住一些知识为目的。知识的探索必须以实际生活为依赖,使学生经历知识形成的过程,体会数学的价值。
《用数对确定位置》教学反思 篇9
《确定位置》这节课是要求学生能用数对来确定位置,在此之前,学生已会用语言文字描述自己在教室中的位置,数对的学习将为学生以后学习直角坐标的知识打下基础。
“数对”这一数学知识对于学生来说是比较抽象的,为了解决这一问题,我在这节课的设计中注意了以下几点。
从学生现实情境“向学生介绍座位”导入,创设了轻松、和谐的'课堂氛围,有唤醒学生已有对确定位置的认知,为下一步的自主探究提供了基础,也为抽象出“数对”构建了一个现实模型。
首先,让学生自己根据问题进行思考,用自己喜欢的解决问题,这一过程是开放的,学生的思维得到了很好的拓展,在此之后,教师在学生交流中合理引导,充分发挥信息技术的优势,丰富的感性材料,合理的动态演示,激发了学生习兴趣,启迪学生的有序思维,有利于学生对“数对”有个清晰的理解。
整个教学过程我采用多样化的呈现方式,激励学生学习生活中的数学,在后一教学环节中,有意识地的创设生活情境,让学生在数学交流中,培养了应用知识、解决问题的能力,同时使学生真切地感受到数学知识来源于生活,应用于生活。
《用数对确定位置》教学反思 篇10
本节课中用数对确定位置的关键是让学生认识列、行的含义,并弄清确定第几列、第几行的规则。课本是这样告诉学生的:竖排叫做列,第几列一般从左往右数;横排叫做行,确定第几行一般从前往后数。列“从左往右数”、行“从前往后数”,是用数对表示位置的逻辑前提,但是让学生明白站在不同的“观测点”来观察结论是不同的',确定位置要有统一的标准,有着一定的意义。总的来讲,从课堂同学们的表现来讲,每一个同学都掌握了所学的知识,教学设计的目标都很好的得以实现,但是反思自己的教学实际,还有几个方面需改进:
1、 课堂的引入,不是那么的有吸引力,没能更好的引起学生的认知冲突,把统一标准作为前提,作为确定位置的需要,学生求知的欲望会更强。
2、 在整节课的设计时,因为知识比较简单,安排了自学环节,交流时大多数的同学都已经掌握的知识,因此交流环节有些流于形式,前面来展示的面比较窄,教师引导语言没有跟上,造成学困生没有吃饱。
3、 在学生“说数学”的训练上还要加强指导,会说、说的明白、简洁利索才是真的理解了。很多教师的引导性语言可以省略让小老师来代替,逐步培养学生自主学习的能力。
《用数对确定位置》教学反思 篇11
《用数对确定位置》是五年级数学上册的内容,本节课是要求学生认识行与列,理解数对的含义,能用数对表示物体的位置。“数对”这一数学知识对于学生来说是比较抽象的,为了解决这一问题,我在这节课的设计中注重数学知识的产生与发展过程。首先,本节课我直接出示情境图,先让学生说出队列中小强的位置,让学生在任意描述小强位置的过程中发现一个位置虽然可以用不同的方法来描述,但在不同之中也有共通之处,那就是每次确定小强的位置都会涉及到两个至关重要的数,这两个数也就是后面所说的列数和行数。整节课围绕从具体到抽象:实物图→点子图→方格图一条线形成知识结构,借助“数形结合”的方法,很好了渗透了“坐标”思想,这学生的后续学习奠定了基础。同时让学生经历确定位置的方法由“自己的方法”→“列与行的方法”→“数对的方法”这一递进、简化、抽象的过程,使学生深刻地感受到数学的简洁性和抽象性。其次,在教学中每一过程的简化、抽象,我都引导学生进行前后对比反思,使学生获得数学学习的`积极体验与情感,并且通过学生队列导入,让数学从生活中走来,有目的地将数学问题提炼出,再将数学知识回归生活,让学生感受到生活化的数学,学生从中真正获得富有生命力的数学知识、思想、方法。
在教学的过程中,也出现了一些失误,如语速有些快,有时学生没有听清或者没有理解教师的意思。学生的回答出现了错误教师也没有听出来。重要的一点是在用数对确定生活中的位置时教师放的不够开,没有让学生自己去体验去总结而是教师给学生直接传授,没有注重知识形成的过程。在以后的教学中我会总结经验教训,使自己的课上得更好,效果更佳。
《用数对确定位置》教学反思 篇12
一、挖掘教材、理解教材、明确目标《用数对确定位置》这节课开始给我的感觉是比较简单的一个内容。可当静下心来细细琢磨教材时,才感觉到本不像我所料。这节课的重点不是满足让学生会用“数对”表示一个位置就可以了,而是让学生回顾科学家探究的历程,“数对”的产生过程才是本节课的关键所在。“数对”这个概念对五年级的小孩子来说是极为抽象而又陌生的',如何让他们既对其生成过程有所经历,又对其实质顺理成章轻松地接受。用心思考之后,我把本节课的设计理念定位为:既尊重教材,又超越教材;既自主探究,又适当讲授;既重视结果,又关注过程;既夯实基础,又培养能力;既关注课内,又适当延伸。
二、遵循学生的原认知,注重数学与生活的联系课堂上,我利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,通过让学生指出赵亮同学的位置,学生开始表达位置的方法不一样,从而产生了统一标准的必要性,然后潜移默化地建立起“第几列第几行”的概念。接着通过座位图来学习“数对”,让学生用“数对”来描述座位图中人物的位置。再借助班级的实际座位,让学生用“数对”表示自己的位置,并通过一些小游戏进一步明确实际座位中的行和列。在明确了“数对”的概念后,抽象出方格图,让学生在方格图中确定位置,将数学知识应用到生活中去。
《用数对确定位置》教学反思 篇13
《用数对确定位置》这节课开始给我的感觉是比较简单的一个内容。可当静下心来细细琢磨教材时,才感觉到本不像我所料。这节课的重点不是满足让学生会用“数对”表示一个位置就可以了,而是让学生回顾科学家探究的历程,“数对”的产生过程才是本节课的关键所在。“数对”这个概念对五年级的小孩子来说是极为抽象而又陌生的,如何让他们既对其生成过程有所经历,又对其实质顺理成章轻松地接受。用心思考之后,我把本节课的设计理念定位为:既尊重教材,又超越教材;既自主探究,又适当讲授;既重视结果,又关注过程;既夯实基础,又培养能力;既关注课内,又适当延伸。
本节课从学生熟悉的`生活实际入手,让学生说开家长会是怎样告诉家长自己的座位,使家长能够顺利找到座位,激发了学生的求知欲,产生了确定位置的必要性。接着通过座位图来学习“数对”,让学生用“数对”来描述座位图中人物的位置。再借助班级的实际座位,让学生用“数对”表示自己的位置,并通过一些小游戏进一步明确实际座位中的行和列。在明确了“数对”的概念后,抽象出方格图,让学生在方格图中确定位置。将数学知识应用到生活中去。由于这节课是学校要求的平板运用的课,所以在练习阶段又采用了平板的拖拽功能进一步巩固用数对表示位置的方法,效果很好。
《用数对确定位置》教学反思 篇14
《用数对确定位置》是人教版五年级上册第二单元《位置》的第一课时内容,教师在这节课中关键把握了两点:一是抓住了数对的数学本质,把看似简单的内容上出深度和厚度,二是关注了学生的真实起点,很好地帮助学生从对生活位置的认识,提升到对数学位置认识。
一、抓住数对的数学本质,循序渐进。
确定位置在小学阶段的学习过程中遵循从区域范围到精确表示的一个过程,一年级上册学习了上、下、前、后、左、右确定位置;三年级下册学习了用东、南、西、北等词语描述物体方向;五年级上册使用数对,精确描述物体在点上的位置,为后面进一步学习“根据方向和距离两个参数确定物体的位置”打下基础。
在本课例1的教学中,教师通过四个层次的设计,让学生逐步感悟、掌握用数对表示位置的方法。第一层次,创设情境,让学生随意表示位置方法,感受到二维空间上确定位置存在的必要性。第二层次,依托原型,明确列行的含义,以及确定第几列第几行的一般规则;第三层次,逐步抽象,过渡到用数对的方法确定点子图上交叉点的位置;第四层次,应用方格图,在不断抽象、方法不断简化的过程中初步感受坐标思想的本质。
二、关注思想的逐层渗透,层层深入。
数对的发现和使用,对数学界来说是一个重大的贡献。它的价值在于发现一个几何的对象,可以用数来描写,而数所满足的关系就是方程。因此在小学阶段,用数对确定位置首当其冲便是坐标思想的渗透。小学阶段,学生所学习的用数对确定位置,只是直角坐标系的雏形,需要让学生对“唯一确定的直角坐标系下,一个有序数对与平面上的点是一一对应关系”有基本感悟,因此在例2的教学中,教师通过四个层次予以不断深化,渗透坐标系中原点和方向的意识。
第一层次,在教学中多处渗透先列后行的意识,如从左往右,从前往后出示箭头,这其实就是指名了关键要素之一“方向”。第二层次,教师明确地点出了关键要素之二“原点”(0,0)的重要性,因为对于确定位置而言,原点即参照点恰恰是第一位的。小学教材中虽然没有明确提到,但从有利于后续学习的角度分析,教师不得不提。第三层次,让学生对同一张方格图展开研究,利用写出不同的数对展开比较、辨析,深度感知“任意两个有序的数都可以表示平面上的任意一点”,这些都是坐标思想的集中体现。第四层次,从用数对表示位置的方法回归生活实际,教师还让学生了解了一维的围棋、二维的`国际象棋以及三维的地球经纬线。所以本节课教师对于模型思想的构建绝不是固化的,而是一个具有生长性的生态过程。
三、把握学生的需求走向,自然生长。
首先,教师以从教室中的座位图中找小军的位置为学习起点,借助观察角度不同、表示方法不同引发学生的认知冲突,从而使学生产生要有统一的观察标准和表示方法的学习需要,感受到二维空间上确定位置的必要性。其次,介入“列与行”的概念教学,不作任何无意义的探索,直接把把数学的规定教给学生,简短而又明快,自然高效;第三,通过开展“限时记录位置”的游戏,来激发学生的探索欲望,让学生充分展现个性化的表示方法,交流创造意图,在这一过程中,学生并不仅仅只是单纯“创造”数对,而是用自己的方法表达自己的思考过程,教师在互动交流中适当引导,逐步让学生感受到统一规范描述数对产生的必要性。最后,通过同一行、同一列数对特点的比较,从而使学生形成同一行中,行不变列变;同一列中,列不变行变的基本认识,不断完善认知结构,构建整体的思维模式。整个过程以学生为本,对学生各个阶段的学习情况作了充分而客观的预设,环节流畅,过程清晰,真实而有效。
四、整合有效的教学资源,步步为营。
本节课中教师对于教学资源的使用始终做到高效整合,使得整节课一气呵成、主题鲜明。从开始教学所使用的座位情境开始,到中间部分的根据点写数对,再到方格纸上找数对,观察同一行、同一列数对的特点,教师都是建立在同一张方格图中的,使得学生感受到今天所学习的知识万变不离其宗,将这些知识都清楚地建立在了平面坐标系上。最后的图形变形组合练习部分,从梯形变形为平行四边形,再到平移梯形,每层练习环环相扣,一脉相承,在逐步升级的练习过程中,学生的研究思维也在逐步升级,使得整个探究过程变成了学生主动建构的快乐的学习过程。
古人认为“魂”是阳气,构成人的思维才智。“魄”是粗粒重浊的阴气,构成人的感觉形体,魂魄协调则身体健康。本节课,教师牢牢抓住数与点的一一对应性,正是明确了用数对确定位置的“灵魂”所在。从让学生熟练掌握用数对确定位置这个结果而言,若离开了深刻理解的前提,学生岂不仅是机械模仿而已。所以,有了数学思想之魂,才可能真正拥有数学事实之魄。
【《用数对确定位置》教学反思】相关文章:
《确定位置》教学反思04-18
确定位置教学反思02-24
数学《确定位置》教学反思02-25
确定位置教学反思15篇03-08
确定位置教学反思(15篇)03-08
确定位置教学反思(汇编15篇)03-17
《确定位置》教学设计04-09
位置教学反思03-13
《位置》教学反思04-11