分数除法教学反思

时间:2024-09-20 01:49:09 教学反思 我要投稿

分数除法教学反思(15篇)

  作为一位刚到岗的教师,教学是重要的工作之一,通过教学反思可以很好地改正讲课缺点,那么问题来了,教学反思应该怎么写?以下是小编整理的分数除法教学反思,希望对大家有所帮助。

分数除法教学反思(15篇)

分数除法教学反思1

  今天执教了一节《分数除法(一)》的数学课的教学。本课是第三单元的起始课,内容涉及到以前整数除法意义的复习,加上本节教学知识点——分数除以整数的意义和方法,设计难度除内容多外且知识抽象,学生不易理解和接受,备起课来难度较大。不过越是有难度的课自己还偏偏有一种想要挑战的心理,毕竟自己迟早是要讲的,而且这样的讲课其实最终目的是为了促进自己教学水平的提高,如果只是为了一节精彩课的展示而有意避重就轻也许恰恰就失去了上课听课评课的本意了。

  自知自己对于数学学科的造诣不是很精深,但个人感觉数学课应该要把握住几点:教学语言凝练、具有启发和点拨的作用;流程设计要详略得当、突出重点、分散难点;习题设计体现由浅入深的梯度性;教学覆盖面广,充分发挥学生的积极性和主动性,体现学生的.主体地位等等……也许是个性使然,或者是文科味道较浓的教学风格,因此执教较为枯燥乏味的数学课也很喜欢赋予它一种文质兼美的特点,喜欢让知识性较强的数学课也能带上情感的韵味和兴趣的刺激。尽管事先对于教材进行了一番分析和思考,对于课堂情景和学生进行了预设,尤其是对自己的教学语言也做了格外的注意和设计。但实施起来之后,自己之前最担心的问题还是出现了,由于内容过多,加上课上生成的东西自己也没有做到较为妥当的处理,不可避免的遗憾随之而来,即课堂效果没有预期的理想,学生的学显得不够扎实和深透,自己在教学课件等一些形式的利用上与教学内容的把握上没有达到一个有机的统一。度的失衡使得这节课不免流于形式而略显不实,假如在个别地方善于取舍或是科学的估计四十分钟的教学时间的容量,那么遗憾也许会降到最低程度。

  通过今天的讲课,感觉收获很多,要学习的、要改变的、要给予学生的还有很多很多。教学,真的是一门永远探究不完的艺术。即便今天的教学没有任何遗憾,即便学生的表现十分精彩,但我仍然知道,自己距离那种“突破”还有着很长的一段路……。

分数除法教学反思2

  分数除法应用即用分数除法的知识解决问题是在学习了分数乘除法和用乘法解决问题的基础上进行教学的。课本例题以人体生理常识为内容载体,引导学生找出等量关系,列方程解答比较简单的分数除法实际问题。具体内容为

  例1:根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5。我体内有28千克的水分,可是我的体重才是爸爸的7/15。(1)小明的体重是多少千克?(2)小明的爸爸体重是多少千克?

  去年我也教学过这部分内容,当教师把这一部分知识全部呈现给学生时,学生要解题,要选择需要的信息,感觉很费劲。今年我改变的呈现的方式,分两部分来教学这些内容:

  第一部分:

  第一环节,教师说明人体内水分的含量,学生知道后,只出示“儿童的体内的水分约占体重的4/5”这一条信息,让学生观察,说明题目中包含了哪两个量,并用数量关系式表示出它们之间的关系。引导学生得出:体重×4/5=水分的`重量

  教师口头出示:一个儿童的体重为45千克,让学生计算出他体内的水分有多少千克?学生很容易就口答出了答案。之后我板书:小明体内的水分重20千克,小明的体重是多少千克?让学生尝试解决。结果有5名学生选择用除法直接计算,其他学生选择用方程解决。

  在教学后,我引导学生分析本节课所学的解决问题知识与以前学习的有何不同,引导学生找出这类问题的特点,总结出当单位1是未知时,可以直接用算术方法,也可以用方程解决。

  第二部分:

  在学生计算出小明的体重后,我再出示另一个条件“小明的体重占爸爸体重的7/15,爸爸的体重是多少千克?”学生独立解决,本来解决第一个问题我感觉还蛮顺利的,可是在此题计算中我尝到了失败的滋味,学生找数量之间的关系,选择用除法解决都很费力。列算式为25×7/15者有6个同学,列方程为25X=7/15的有2人。我很是失望,我甚至不知道怎么教学这些知识了,最终我以“下节课再说”来结束了这几课。

  下课后我在反思,也和平行班的教师谈论,她们也感觉有些困难,“已知一个数的几分之几是多少,求这个数”的问题,如果用算术方法解决,需要进行逆向思维,教材呈现的是顺向思考,让学生根据分数乘法的意义,找到等量关系列出方程解答。可是在教学中我感觉出来学生对于数量关系的理解个别同学很有困难,好像去年教学这部分知识时没有这么困难,我又在思索以前对这部分知识的教学。

  今天我又在另一个班教学这部分知识,基本思路还是和昨天一样。不过经过昨天的思考,我添加了一个课前预习环节:总结我们学习过的分数乘除法解决问题的类型:

  1.求一个数的几分之几是多少的问题。2.已知一个数的几分之几是多少,求这个数的问题。

  让学生举例,其他学生口答问题。在此基础上我才出示以上教学内容,进行教学。结果也还是不能令我满意。我还得继续反思我的这节课。

分数除法教学反思3

  本课教学的内容是分数除以整数,在教学过程中,要让学生理解分数除以整数的意义,并掌握分数除以整数的计算方法。有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式。

  为了帮助学生更好地理解分数除以整数的意义和计算方法,教学中,运用数形结合的教学思想。把符号语言和图形语言很好地结合起来,把抽象的过程直观展示出来,通过学生的直观体验,将文字语言和图形相结合,从而使学生理解分数除以整数的意义和计算方法。

  但是学生自主探究,合作交流时时间的不多,没有给学生更多的表达空间。部分学生对分数除以整数的计算法则理解不够,除法变成乘法后,除数没有变成相应的倒数。分数除以整数时,应该乘这个整数的'倒数。没有正确理解分数除法结果的规律,一个数除以比1小的数,结果比这个数要大。有些比较大小的题目可以不用计算,直接运用计算规律就可以判断出来,但是学生不太会应用。

  在今后的教学中,我要加强对学生的训练,让学生真正理解、掌握做题技巧,做题方法,真正的学会学习。

分数除法教学反思4

  今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的'分数都表示谁占谁的几分之几(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面:

  1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4?

  2、通过操作,结果明明是将单位“1”平均分成12块,取出其中的3块,为什么不能用3/12块表示呢?

  针对上述两个问题,我在教学中主要采取了以下一些策略:

  1、复习环节巧铺垫。

  在复习导入中增加一道用分数表示阴影部分的练习。其中一幅图是圆的3/4,另一幅图是圆的3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。

  2、审题过程藏玄机。

  在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。

  通过上述改进措施,学生理解3/4相对容易一些。

分数除法教学反思5

  “已知一个数的几分之几是多少,求这个数”的应用题,是由分数乘法意义扩展到除法意义而产生的应用题,这类应用题历来是教学中的难点。这类应用题是求“一个数的几分之几是多少”应用题的逆解题。因此,紧扣已掌握的分数乘法应用来组织教学显得比较重要。此外,由于分数除法应用题和乘法应用题都存在着“单位‘1’的量×几分之几=对应数量”这样的数量关系,不同的仅是一个条件和问题不同,因此教材强化用列方程的方法解,这样做就能利用分数乘除法之间的内在联系,统一分数乘除法应用题的解题思路。因此,在教学中我注重已下几点:

  一、重视新旧知识的内在联系。

  分数除法应用题和乘法应用题都存在着“单位‘1’的量×几分之几=对应数量”这样的数量关系,因此在探索新知之前,精心设计复习练习。一是找单位“1”和写数量关系式练习;二是出示与例题有关的分数乘法应用题。复习与新知有密切联系的旧知,为新知的探究铺路搭桥,为学生更好地从旧知迁移到新知做准备,起到水到渠成的.作用。

  二、重视思路教学。

  思路,是学生确定解题方法的分析、思考过程,这个过程应是有条有理的,有要有据的。本课分析、具体地设计了使学生形成思路的过程:首先,分步思考;接着,引导学生完整地复述思考过程;最后,通过个别、集体训练,使学生形成完整思路。

  三、重视训练学生讲题。

  应用题教学重在分析数量关系。学生只有理解了题目中的数量关系,

  才会进一步进行思考。若在学生不理解题目中的数量关系的情况下进行分析,则思无源,想无据。所以,讲清题目中的数量关系是分析的基础,必须给予足够的重视。

  四、重视列方程解答。

  本节课没有设计算术思路,因为用列方程解答分数应用题是有限的,能比较熟练地解答,但达不到熟练的程度,发现不了解答规律。

  本堂课我设计了“题目——线段图——等量关系式——解决问题”这样四个环节来教学例(1)的2个问题,本是很清晰的一个教学思路,意在引导学生解决问题的同时教给他们此类问题的解决方法。但由于教学时,我对线段图环节的教学引导不足,没有充分发挥线段图的作用,有些流于形式,因此学生在等量关系的推导上就未能如教师预计般顺利。下次如果再有类似的教学,我将注重思索如何将题目、线段图和等量关系式三者更有机地结合起来。

分数除法教学反思6

  分数除法的内容是在学生已经学习了倒数的认识、分数除法计算、分数乘法解决问题的基础上进行教学的。

  成功之处:

  沟通分数乘除法解决问题,加强知识的横向和纵向联系。在例2和例3的教学中重点梳理分数除法的数量关系:

  总数÷份数=每份数总数÷每份数=份数

  路程÷时间=速度路程÷速度=时间

  总价÷数量=单价总价÷单价=数量

  在此类分数除法解决问题中,学生容易出现总数与份数、总数与每份数颠倒位置的情况。因此,加强分数除法解决问题的数量关系让学生明确谁是总数,谁是份数,谁是每份数。此外,还通过具体的例子来让学生进行辨别。如:榨1/4千克油需要4/5千克大豆,榨1千克油需要多少千克大豆?1千克大豆可以榨多少千克油?

  在例4教学中,首先让学生先找出关键句中的数量关系,比如:小明的体重×4/5=小明体内水分的`质量,然后再找出单位“1”,看一看是已知还是未知,已知用乘法,未知用除法或方程来解决问题。

  不足之处:

  1.个别学生仍然无法正确辨别分数除法解决问题中的总数、份数、每份数,导致列式出错。

  2.学生在理解数量关系方面还存在一些问题,不能正确列出数量关系式。

  改进之处:

  1.对于数量关系式可以统一归纳为单位“1”的量×分率=对应量,加强理解对应量和对应分率之间的关系理解。

  2.联系整数和分数解决问题进行对比,让学生加强整数和分数解决问题的区别与联系。

分数除法教学反思7

  这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,理解分数与除法的关系,会用分数来表示两数相除的商,能运用分数与除法的关系,解决一些简单的问题。

  在引入课题之前,先复习旧知。课件呈现几道简单的口算题,以唤醒学生对整数除法的记忆,为探索新知做铺垫。在探索新知时,课件呈现猪八戒化斋的故事,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:猪八戒又化了3张饼,每人分多少张?学生又拿出学具自主探究,再演示。学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的`拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

分数除法教学反思8

  在讲分数的产生时,曾提到计算时往往不能正好得到整数的结果,常用分数来表示,这实际上已经初步涉及分数与除法的关系。教学分数的意义时,讲到把一个物体或一些物体组成的一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确的点出来,现在学生知道了分数的意义,再来学习分数与除法的关系,使学生初步知道两个整数相除,只要除数不为0,不论被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化为整数或带分数做好了准备。

  成功之处:

  1.读懂教材编写意图,准确把握每个例题的安排。在例1的教学中是根据整数除法的意义列出算式,根据分数的意义计算结果,使除法计算与分数联系起来。在例2教学中,列式比较容易,但是计算结果相对有些难度,但是对于部分孩子来说,可以得出计算结果,但是为什么学生说不清楚,因此通过学生的动手操作,实际分一分,学生知道了其中的'结果,能根据分的结果说出所表示的意义。

  2.留给学生充分时间,让学生能够通过不同的方法在合作交流中探索出计算的结果。在操作中出现了以下三种方法:

  (1)先把每个圆剪成4个四分之一块,再把12个四分之一平均分给4个人,每个人得到3个四分之一块,也就是分得四分之三块。

  (2)把三个圆摞在一起,平均分成四份剪开,得到四分之三块。

  (3)先把2个圆摞在一起,平均分成2份,剪成4个二分之一块,分给四个人,每人得到二分之一块,再把1个圆平均分成4份,每人得到四分之一块,最后把二分之一和四分之一合起来,就是每人分得四分之三块。

  (4)1块月饼平均分给4个人,每人分得四分之一块,3块月饼平均分给4个人,每人分得3个四分之一块,是四分之三块。

  不足之处:

  对于除法算式的两层含义,个别学生还是有些混淆。

  再教设计:

  让学生正确区分分率和实际数量的区别,以便更好的理解分数的意义。

分数除法教学反思9

  观察是学生常用的一种学习方法。如在本课得出被除数÷除数=被除数 / 除数时,我有意识的提出质疑:在分数与除法的关系中,有什么问题要问?学生有的自学了课本,有的依据课前或平时积累的经验,提出:(1)分母能不能为0?(2)用字母如何表示它们的关系?(3)分数是不是就是除法?在这一过程中,学生提出问题指向明确,突出了课堂进一步发展的需要,并在观察发现中答达成问题的解决。有的学生认为分母不能为0,因为分母相当于除数。个别同学认为分子也不能为0,但遭到同伴的反驳,澄清了分子可为0的理由。用字母表示分数与除法的关系,当教师提出用a表示被除数,b表示除数时,学生很轻松就用a/b表示出来;在探究“分数是不是就是除数”,学生的争辩非常激烈,点燃了课堂学习的热情,有学生认为从被除数÷除数=被除数 / 除数的关系中,非常明确说明分数就是除数,不然怎么用“等于”;有学生从教师提出:“我们学过了哪些数”中得到启发,认为分数是一个数,而除法是一道计算的式子,反对上面学生的意见,得出分数不等于除法;有人认为意义也不同,分数表示把单位“1”平均分成若干份,表示其中的一份或几份叫做分数,而除法表示把一个数平均分成几份,每份是多少??通过争辩,明确分数和除法的各自意义,提示了“分数相当于除法”的生成目标,体验了成功所带来的信心和力量,实现了以人发展为本的教学理念。

  “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计《分数与除法》这一课时,从以下两方面考虑:

  一、以解决问题入手,感受分数的价值。

  从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。

  二、分数意义的拓展与除法之间关系的理解同步。

  当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的.3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。

  教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

分数除法教学反思10

  “分数除法应用题”的教学是小学数学教学的重要内容,也是学生学习中出现问题最多的内容。长期以来一直受到教师们的重视,特别是到了六年级要学习的分数乘除法应用题,更是重中之重,因为它是小学毕业考试的必考内容。一些教师根据多年来的教学经验总结出一套分析解答分数应用题的方法,如“是、占、比、相当于后面是单位1”;“知1求几用乘法,知几求1用除法”等等。这些方法看似行之有效,在一定意义上也为那些学习有困难的学生提供了帮助。但长此以往,学生便走上了生搬硬套的'模式,许多同学在并不理解题意的情况下,也能做对应用题。然而在这种教学方法指导下获得的知识是僵化的,许多学生虽然会熟练的解答应用题,但却不会在实际生活中加以运用,原因在于他们生活中遇到的问题不是以标准形式的应用题出现,在这里找不到“是、占、比、相当于”,也就找不到标准量,学生因此无从下手。

  我在教学《分数除法应用题》时,是先让学生自己先预习,看看还有那些,不理解的地方。然后再让学生分组进行讨论交流,本着“学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。”的教学的思想,在适时因人,解决引导点拨。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。这样的教学,可以更好的调动学生学习的主动性,鼓励学生自己提出问题,解决问题,从而提高学生解决实际问题的能力。

  教学中我把分数除法应用题中的例题与“试一试”结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的引导者,凸显了学生的主体地位,及老师的主导地位。

  在巩固练习中,通过鼓励学生根据条件把数量关系补充完整,看图列式、编题,对同一个问题根据算式补充条件等有效的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。

分数除法教学反思11

  分数除法应用题,历来都是教学中的难点。要突破这个难点,让学生透彻理解这类型的应用题,就要抓住乘除法之间的内在联系,通过运用转化、对比,使学生了解这类分数应用题特征,再借助线段图,分析题中的数量关系,找出解题规律。我主要从以下几个方面入手:

  一、走进生活,体验生活中的数学

  本来人体的机体构造对于小学生来说是一个很有趣的问题。教学一开始我把人体的彩图展现在学生面前,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。使学生从中了解到更多有关人体构造的知识,增加了学生的知识面。

  二、使学生在学习过程中真正成为学习的主人

  教学中,为让学生认识解答分数除法应用题的关键是什么,我故意用乘法应用题与例题作比较,让学生从中发现与乘法应用题的区别。学生通过交流对比,亲自感受它们的异同,找出它们的内在联系与区别,亲身感受应用题中数量之间的关系,然后想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键也是从题目的关键句找出数量之间的相等关系,再列出方程。

  三、方法多样化,开拓学生的思维能力

  在解答应用题的时候,我鼓励学生尽可能地找出多种方法,让学生从多角度去考虑,这样做可以拓展学生思维,引导学生懂得多角度分析问题,解决问题。充分让学生亲身体验,让学生在探究中加深对分数除法应用题数量关系及解法的理解,提高能力,为学生进入深层次的学习做好充分的准备。

  分数除法应用题教学反思9

  德国教育家第斯多惠说过这样一段话:如果使学生习惯于简单地接受和被动地工作,任何方法都是坏的;如果能激发学生的主动性,任何方法都是好的。反思整个教学过程,我认为这节课教学的成功之处有以下几方面:

  1、教学内容“生活化”

  《国家数学课程标准》指出:“数学教学应该是,从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”纵观整节课的教学,从引入、新课、巩固等环节的取材都是来自于学生的生活实际,使学生感到数学就在自己的身边。

  2、解题方法“多样化”

  《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性领域目标。而这一目标的实现除了依靠学生自身的生理条件和原有的认知水平以外,还需要相应的外部环境。这节课上学生一共提出了5种解题方法,其中有3种是我们平时不常用的,第5种是我也没有想到的。我从学生的需要出发及时调整了教案,让每一个想发言的`学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,原本素不相识的师生在短短40分钟的时间里就产生了情感上的交融。学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。虽然后面还有两个练习没有来得及做,但我认为对一个问题的深入研究比盲目地做十道题收获更大,这种收获不单单体现在知识上,更体现在情感、态度与价值观方面。

  3、师生交流“情感化”

  数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力实现师生关系的民主与平等,改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,教师所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,教师没有任何过多的讲解,有学生讲不清楚,教师也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,教师也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。

  4、值得商榷的几个方面:

  (1)形式能否再开放一些

  (2)优生“吃好”了,能否让差生也“吃饱”

分数除法教学反思12

  本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:

  一、直观演示是学生理解分数与除法的关系的前提。

  由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的.就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  二、培养学生提出问题的意识与能力是培养学生创新精神的关键。

  爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:

  a:你们是几块几块的分的?

  b:每人每次分得多少块饼?

  c:分了几次,共分了多少块?(就是3个块就是几块)

  d:怎样才能看出是几块?

  问题的提出针对性强,有利于学生把握数学的本质。

  三、 用发展的思维去理解所学的知识,注重了知识的系统性。

  数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数除法教学反思13

  根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:

  从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:

  一、是多出这类练习题进行训练;

  二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.

  比如“一件衣服现在降价2/5”,这句话把()看作单位“1”的量,数量关系式是:

  ()×2/5=()。

  好几位学生都填错了,有的填的是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的`见识还嫌少。

  再结合例题加以说明.

  (1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。

  (2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?

  帮助学生复习回忆有关解决这一类问题的基本方法。

  “一找”找出关键句。

  第(1)题的关键句是:头部占二十一分之五,

  第(2)题的关键句是:是其中的十六分之五,

  “二列”

  帮助学生根据关键句分析了解其中的具体含义并且列出等量关系式。

  第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度

  第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量

  “三算”

  帮助学生根据等量关系式列出算式并完成计算。

  第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。

  第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.

  总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数⑥已知比一个数少几分之几的数是多少,求这个数.

分数除法教学反思14

  为了激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量 。我作了以下的教学尝试。

  教学中,为让学生认识解答分数除法应用题的关键是什么时,我让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。

  把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。

  在分析应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,注意启发学生从例题中抽象概括数量关系,总结经验规律。如“是、占、比、相当于”后面的数量就是作单位“1”的数量,画线段图就先画作单位“1”这个数量,再画与之对应的.数量的线段图;“知”1“求几用乘法,知几求”1“用除法”等等的做法。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

分数除法教学反思15

  该信息窗呈现的是布艺兴趣小组给幼儿园做帽子的信息:用6米布做帽子,每顶用布2/5米,将帽子的2/3送给幼儿园。通过引导学生提出问题,来学习乘除混合运算的问题,是对前面所学知识的综合应用。

  “合作探索”中红点部分解决“送给幼儿园多少顶帽子”,探索学习简单分数的乘除混合运算,具有两个功能,一方面是学习分数乘除混合运算的顺序,一方面是分数乘除混合运算解决问题(先除后乘,除的这一步是包含除或具体数量关系)。教材安排了两种解决问题的方法:一是分步列式,二是列综合算式。

  自主练习中涉及的内容及题目比较多,在新授课中要注意合理选择使用,在练习课中要注意对比和综合性练习。

  本信息窗建议课时数:2课时。第一课时为新授课,教学信息窗、合作探索及自主练习中的第4、5、6、7、9、10题;第二课时为练习课,主要处理自主练习中的其他题目。

  新授课教学建议如下

  教师可继续承接本单元情境串的话题切入,出示信息窗的情境,理清情境图中包含的信息,提出问题。

  学生一般会提一步计算的问题,教师可组织学生随时口头列出算式,同时教师要有意识地引导学生提出两步计算的问题。而后着重让学生解决“送给幼儿园多少顶帽子?”。

  解决这一问题时,要引领学生分析解决问题的思路:因为送给幼儿园

  的帽子占这些帽子的2 3 ,所以,要求送给幼儿园多少顶帽子,需先求出6 米布共做了多少顶帽子,然后再求出送给幼儿园多少顶帽子。这个问题的解决是求一个数的几分之几是多少,以及已知一个数的几分之几是多少求这个数的复合。

  在学生明确了解题的思路后,放手让学生独立列式解决,再组织全班交流。交流时,要引导学生讲清解决问题的思路,并注意规范解题的具体过程,因为这是第一次接触乘除混合运算。通过两步应用题的解答,可以使学生更好地区分分数乘、除法应用题,进一步提高解题能力和发展学生的分析推理能力。因为前面有了学习的基础,因此,学生解答不会有太大困难,可让学生独立解答。对其中可用方程解答的也可用方程。如果学生出现分数乘除法混合综合算式要予以鼓励,并引导学生注意计算过程,按照从左到右的顺序进行。

  关于自主练习。

  第1题,分数乘除法的混合运算,要注意引导学生写清楚过程,避免乘除计算方法混淆。

  第2题是应用分数乘除法的知识解决实际问题的题目。练习时,可以引导分析解决问题所需要的信息和数量关系,然后独立计算,交流时着重让学生说说自己的想法。解答第(2)问时,可以用第(1)问的结果乘3/40,还可以直接用毛线的总千克数乘3/5,只要能说清解决问题的思路,都应该给予肯定。

  第3题是分数乘除基本计算的题目。练习时,在学生独立计算的基础上,着重让学生交流计算的方法,写清计算的过程,避免乘除法的混淆。

  第4题是两步计算的题目,时间、速度与路程的数量关系是学生所熟悉的,只是由原来的整数运算变为分数运算。所以要先让学生自己独立解答,然后交流。

  第7、9、11题是用连乘方法解决问题的题目,是对分数乘法知识的.循环巩固。练习时,在学生独立解决的基础上交流分析思路。

  第10题是有关长方体的题目。已知体积、长和宽,求水深。练习时,先让学生想象出长方体鱼缸里的水呈长方体状态,求水深就是求其高。然后让学生独立解决问题,学生可能设未知数列方程,也可能用体积除以底面积列算式。交流时,注意让学生说说解决问题的思路。

  第13题,学生在解决问题的过程中,可能有不同的方法,如:3/5 ×1/4÷3,3/5 ×(1/4÷3)或分步解答等,只要学生能解决问题且能讲清思路就可以。

  第14题是一道综合应用的题目。练习时,注意让学生理清题中的数量关系。

  第(1)小题是一道连乘的题目,其中“百米”是较为隐藏的信息,说明总长度为100米;第(2)小题是稍复杂的“求一个数是另一个数的几分之几”的问题,要正确地分析思路。如果一些学生有困难,教师可进行必要的提示。

【分数除法教学反思】相关文章:

分数与除法教学反思02-11

分数与除法的教学反思03-25

《分数除法三》教学反思03-13

分数除法二教学反思03-02

《分数与除法》教学反思15篇03-14

数学分数除法的教学反思01-16

分数除法教学反思15篇03-11

分数乘分数教学反思04-02

《小数除法》教学反思04-02