简便计算教学反思

时间:2023-03-13 14:49:43 教学反思 我要投稿

简便计算教学反思(15篇)

  作为一名到岗不久的老师,课堂教学是我们的任务之一,写教学反思可以很好的把我们的教学记录下来,那么大家知道正规的教学反思怎么写吗?以下是小编为大家收集的简便计算教学反思,欢迎大家分享。

简便计算教学反思1

  连减法的简便运算这节课,我用的是导学课的模式进行组织教学的,首先我进行的口算练习,有利于本节课学生在计算时提高速度,本节课我是先出示了导学提纲,让学生进行自主学习,再进行讨论交流算法,“由此你发现了什么”可以使学生由具体算式,发展到一般情况,锻炼了学生的探索规律,进行总结的能力。我担心有的学困生不能做到完全总结,我出示了“友情提示”给出提示语,让学生思考、总结,收到了良好效果,再出示规律,学生齐读掌握了重点,通过反馈精讲,使学生更加清晰了简算的要点,所有同学都能学会,我还在最后的时候,出示了能力提升题,使不同学生得到不同层次的提升。在备课过程中进行了精心的准备,还运用了多媒体教学,学生的兴趣也很高,注意力更集中,运算过程可以大量演示,效果比较好。

  我在四年一班上了一节同样的课,课堂结束后,听课教师对本堂课的评价较好,我自己也对本节课的教学效果感到满意。然而在同学年的二班讲授时,效果却不尽如人意。在教学一开始的'时候探究减法运算性质时过于拖沓,虽然花的时间比较多,我也关注了班级的学困生,但是他们中的个别学生掌握的还是不好,在让学生上前面板书的时候,减法运算性质逆用这样的题型,个别学生能力比较弱,不能逆向思维,这也造成时间的浪费。

  所以在上二班的课时,我都有点困扰,因为我总是把握不准班级差异,也许是对学生的了解还不够吧,所以在今后的教学工作中,在精心备课的同时,还应该备学生,认真分析学情,设计教案,应因班级,因学情而有所不同,从而使所有的学生都能够学会知识,提高能力。

简便计算教学反思2

  本节课的新知识在以前的数学学习中都有相应的认知基础,学了本节的新知识可以促进学生更深入地认识原来学过的知识和方法。在教学加法运算定律的过程中,我始终以学生为本,依据学生的年龄特点,把握学生的认识规律,取得了较好的教学效果。

  1、密切联系学生的生活实际

  教学时,我充分利用教材中呈现具体情境,从学生熟悉的`实际问题的解答引入,激发学生主动学习的需要,为教师进行教学活动创设了良好的氛围。通过解决情境中的问题,让学生对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提供自主探索的时间和空间,让学生经历探索的过程,获得成功的体验,增强学生学习数学的信心。

  2、培养学生归纳概括能力

  教学中,两个运算定律都是让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算定律的初步感知举出更多的例子,进一步分析、比较,发现规律,并叙述所发现的规律。再让学生用自己喜欢的方法表示规律,而不是像过去那样,统一用字母来表示。这样实现了运算律的抽象内化,一方面有利于符号感的培养,方便记忆;另一方面提高了知识的抽象概括程度,也为以后正式教学用字母表示数打下初步的基础。同时,使学生体会到符号的简洁性,从而发展了学生的符号感。

  本节课的教学,让学生经历了探索、发现、反思的过程,对加法交换律和加法结合律有了充分的认识和自己的理解。但在教学的过程中仍存在着诸多的不足之处:

  在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。

  在教学加法结合律时应该让学生多举些例子,让学生去评价举的例子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。全班交流时,可以让学生具体说说他们所举的例子。其中,对于直接写等式的情况,可以引导学生进行甄别,使学生形成合理、科学的验证方法。

  本课难点,如结合律等号两边的加数都是相同的,不同的是位置和运算顺序;结合律的特点是运用小括号,小括号的作用是把两个加数结合起来先算、让学生在课堂上初步感受到应用加法交换律和结合律可以使一些计算简便,发展应用意识。在学完两种运算定律后,应该给学生足够的时间练习巩固,加深学生的理性认识,促进学生思维灵活性的发展。

简便计算教学反思3

  《分数乘法简便计算》教学反思分数乘法简便计算,是学生学习了分数加减法混合运算,整数、小数的简便计算的基础上进行学习的,然而,原以为学生已学过了整数和小数的简便运算,分数乘法简便运算又只应用乘法交换律、结合律和分配律,学生掌握肯定不错。事实证明上课效果还不错,可是作业中错误率极高。回顾了这节课的教学,整节课通过学生预习反馈,自主举例验证,尝试解决,交流讨论,自主总结等方法,发展学生的自主学习解决问题能力。却忽略了让学生理解知识这个最根本的教学目标。问题主要有以下三种:

  一是混合运算和简便计算题混淆,乱用简便运算。

  二是分配律用错的最多,原先的整数、小数利用乘法分配率进行简便计算就是简便计算的难点,碰到分数出错率就更多了。

  三是分数加减法混合运算与分数乘法计算混淆。针对这些现象我采取了以下措施:

  一引导学生回顾分数乘法和加减法的意义,理解各自的`意义;

  二联系分数乘法和加减法各自的计算方法,并采取针对性练习;

  三复习整数、小数的与之相关的简便运算,并对常见的分数乘法简便运算的题型予以分类整理,辅之对应练习;

  四是加强审题的训练,让学生学会判断。

  五是加强对比练习,认真分析哪些可以简便,哪些不能简便。

  其实最主要还是抓班级里学习有困难的学生,因为这些错误类型几乎都是由他们所创。

简便计算教学反思4

  对于小学生来说,运算定律的运用具有一定的灵活性,对于数学能力的要求较高,这是问题的一个方面。另一个方面,运算定律的运用也为培养和发展学生思维的灵活性提供了极好的机会。

  一、加强数学与现实世界的联系,促进知识的理解与应用。本单元教材最明显的'特点之一就是关注数学的现实背景,从社会生活中来,到社会生活中来,到社会生活中去,体现了数学教学回归社会、回归生活的愿望。因此,领会教材这一意图,用好教材,借助数学知识的现实原型,可以调动学生、的生活经验,帮助学生理解所学运算定律,构建个性化的知识意义。进而,凭借知识意义的理解,也有利于所学运算定律的运用。

  二、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。简便运算的思路会有很多,但是,只要把握“简便”这个解题关键,正确、合理地使用定律、法则,就应该是正确的。简便计算不仅要求学生能明确运算顺序,正确计算,而且还要求学生有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的部分,并合理地进行简便运算。

简便计算教学反思5

  一、三点收获:

  1。两点“突破”。“不求完美,但求突破”作为本次教研活动的中心思想,“追求高效课堂”是本次教研活动的主题,为了体现中心思想,凸现主题,我在教学内容和教学方法上进行了大胆的尝试。

  (1)教学内容的“突破”。从教材的编写来看,因为考虑到学生认知水平的局限,似乎突出了对“a÷b÷c=a÷(b×c)”的理解,而有意识地淡化了对“a÷b÷c=a÷c÷b”和“a÷(b×c)=a÷c÷b”这些形式的理解。然而在实际的教学中,由于是在“解决实际问题”和“连除的运算”的背景下来研究“连除性质”的,引导学生在理解“a÷b÷c=a÷(b×c)”的本质意义的同时,不可避免会碰到对“a÷b÷c=a÷c÷b”的理解。处理好这两者之间的关系,既成为了课堂教学规律拓展的内容,也成为了认识规律逐步完善的过程。所以,在教学中我有意识的设计了相关的.变式题目,让学生完整的认识了“除法性质”,还进行了有效的拓展。

  (2)教学方法的“突破”。本节课学生的主体地位得到了充分体现,自始至终整个课堂都变成了学生表演的舞台。由学生去发现规律,探究规律,总结规律。通过学生“自己做自己讲”,让学生去倾听学生的思想,更有代表性,更有吸引力;通过“极限挑战”赛让学生去体会、去感受本节课的教学内容,理解得更深刻;通过“你有困难我来帮忙”活动化解重难点,运用“互帮互学”,加强了教学针对性,让知识落实得更到位,既培养了学生的能力,又活跃了课堂气氛。

  2、练习形式多种多样,激发学生的学习热情。

  在教学流程上我从“唱响口号”开始,设计了“小试身手”“热身活动”“一式定音”“深化认识”“独立解题”“你挑我讲”“应用拓展”等环节,环环相扣,步步引入。特别是“热身活动”,让学生耳目一新,极大的激发了他们的学习欲望。“你挑我讲”活动,让平时学习成绩优秀的同学不再在课堂上显得无所事事,被同学选种为心中“小老师”,自然是莫大的光荣,也为他们今后更加努力学习树立了信心。

  3、关注学生的心声,构建轻松愉悦的课堂。

  在这个课堂上,我极大的满足了学生表现欲望,每个学生都在课堂上积极发表自己的观点和思想,本着“学生有疑问,我们当堂就解决”,“学生有感想,我们一起来倾听”的宗旨,我不放过教学中学生的一点一滴的异议,让每位学生都体验到“大快人心”之感,真正体现了口号中所提倡的“认真倾听,大胆表现”。教学中“温馨提示语”,课结时“老师送给你们的话”,构建出了一个和谐、轻松、愉悦的课堂。

  二、两点反思;

  1、学生“悟”得不深。在第一环节“小试身手”中,如果每位学生两组题目都做,自己去对比,感悟,印象会更深刻;在“热身活动”中,如果将一分钟的比赛时间再增加一分钟,学生的体会会更深刻;在“深化认识”中,对两种思路分析得更透彻一点,学生对算理会理解得更深刻。

  2、作为一节计算课,在各种不同形式的大量练习之后,让热闹的课堂沉静下来,安排4、5道的独立计算练习,检查一下教学效果,老师做到心中有数,学生学得也会更扎实一些。

简便计算教学反思6

  四年级这些日子学习简便算法,教材第三单元是加减法的运算定律和简便运算方法,紧接着是乘法的运算定律和有关乘、除法运算的简便算法,教学中我把这两部分内容归结在了一起,统称为“简便算法”。

  关于计算方法的教学,我始终认为不能只靠老师讲解方法,还是要通过大量的练习才能达到那种熟练程度,才能使学生形成数感、形成技巧,才能够运用自如地进行计算和解决问题。但青版教材在这部分内容的编写上更加注重一些问题的解决,而对计算的练习编写却比较单薄。

  例如对于乘法分配律这部分内容的教学,教材安排了4课时的教学时间,第一课时学习乘法分配律及课后第

  1、2题,第二课时学习运用乘法分配律的计算方法,第

  三、四课时解决自主练习中的一些问题。

  但在教学运用乘法分配律解决问题时,课本中的例题是12×105和135×6+65×6,学生接受起来难度不太大,但自主练习中却出现了48×

  25、85×199+8

  5、98×

  34、56×(20-3)等几种类型,以及由它衍生出来35×99+

  35、101×83-83等题目,由于班级里有60多个智力不同、接受能力不等的学生,所以要想能够熟练地计算就不是一节课两节课能解决的了。

  课本中的练习题数量极少,每种类型的题只有一道两道,在教学中我就针对一种类型的题目出几个同样的题目进行反复练习,用两节课时间把这几种类型题目的解决方法和学生共同探究出来以后,就开始进行一些乘法分配律混合题目的练习,练了两节课后,又把所有的简便计算混合在一起进行试做,学生一开始颇有点“葫芦搅茄子”的意思,可经过几节课的练习,情况有了明显的好转。我又针对练习题的`类型编了一百多道简便计算的题目,十几道题分成一组当做每天晚上的作业,经过一段时间的课堂集中练习和课后的独立作业,终于把这些简便算法区别开来了。

  简便算法学了三个星期,虽然耗费的时间比较多,但看到每天的作业错误量越来越少,也挺有成就感的。

简便计算教学反思7

  运算定律与简便计算,共包括了五个定律和两个性质:

  加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c 或者a×(b+c)=a×b+a×c

  连减法的性质:a-b-c=a-(b+c) 连除法的性质:a÷b÷c=a÷(b×c)

  大多数学生对于加法运算定律和乘法的交换律掌握的`比较好,对于乘法结合律和乘法分配律常混淆,针对这一现象,我采取对比的方法进行练习:

  1. 101 × 87=(100+1)× 87=8700+87=8787(乘法分配律拆项法)

  34 × 43+34 × 56+34=34 ×(43+56+1)=34 ×100=3400(乘法分配律 添项法)

  2. 在教学中,我多次次听到学生把分配律说成结合律,在计算过程中,也多次出现这样的混淆。针对这一问题,我让学生注意观察,乘法分配律有两种以上运算符号,而乘法结合律只有一种运算符号。让学生在比较中区分,在区分中比较。

  3. 简算与学生的数感是密不可分的,因此,在教学中,我注重培养学生良好的数感,对于学生提高运算能力,大有益处。当然,这不是一朝一夕就能提高的,而是需要大力练习。二、设计对比练习,促进有效教学

  4. 学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。如,463+82+18,463-82-18,9600×25×4 9600÷25÷4 9600÷25×4

  5.针对逆向运用,有以下规律

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8×(125×982)=8×125×982

  乘法分配律:89×75+89×25=89×(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350÷(7×2)=350÷7÷2

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c 和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

简便计算教学反思8

  《连减的简便计算》是一节计算课,为了有效地让学生独立思考,自己探索不同算法,并能选择自己喜欢的或适合自身特点的计算方法。我在教学时:

  1、创设学生喜欢和熟悉的情境,让学生在生动具体的问题情境中感受知识的形成过程,在解决生活问题中理解连减的简便计算,体验解决问题的多样化。

  2.通过设计游戏练习:看看哪种方法更简便?让学生在对比中明白:哪种方法简便不能一概而论,要根据数据的特点,选择合适的方法进行简便计算,符合学生的'思维发展。

  3、在解决过程实际问题中掌握学习方法:例如,举例验证、用顺口溜、口诀或打比方的方法帮助理解记忆等。

  综上所述其成效,但本堂课仍存不足之处:

  1、在简便计算中,学生对减法性质的逆向运用掌握不理想,需加强指导练习。从而灵活的掌握计算方法,提高计算能力。

  2、合作学习多停留于表面,虽然整节课学生也活跃,但有些同学不能积极主动地参与大家的讨论。

简便计算教学反思9

  在本节课中,我有意识地强化了“根据算式特点灵活运用除法运算性质进行简便计算。”连除简便计算是在学生学习了加法、乘法运算定律和减法性质的基础上进行教学的,理解并掌握“一个数连续除以两个数,可以用这个数除以两个除数的积。”是重点,学生能利用它更简便灵活地进行计算,是难点。为了突破重难点,我在设计时作了这样的处理:

  1、教学中渗透学习方法的指导

  因为有减法性质的基础,我认为学生应用类比迁移能够比较自然地想到除法的运算性质,所以我依托“类比迁移”的数学思想,以“猜想———验证———应用”的教学思想引导学生展开自主探究。让学生理解“一个数连续除以两个数,可以用这个数除以两个除数的积”虽然是重点,但不是难点。采用这种教学思路的更多意义在于渗透一种“学习方法”,这对培养学生的可持续发展能力应该是有帮助的。有句话说得好,“让学生在游泳中学会游泳”,这也是我在平时课堂教学中想努力追求的。

  2、放手让学生尝试计算

  给学生独立思考和解决问题的机会,使每一种计算方法都成为源于学生独立判断后的.一种自我选择,是学生自己领悟出的,而不是来自于教师的讲解和指导。在算法交流、比较的基础上,让更多的学生体验和感悟到运用除法运算的规律可以使计算更简便,从而提高了学生的计算能力。

  3、加强连减和连除的简便运算的比较

  让学生明白减法的逆运算是加法,而除法的逆运算是乘法。这样简便运算时也便于区分。

  本课是有遗憾的,对教材和学生的理解比较到位和准确,教学环节的设计比较合理,但课堂节奏的把握欠佳,至少有这样几个环节可以让时间更加紧凑:

  1、在第一个环节,男女生比赛计算的时候,我本来的预想是女生计算的快一点,然后再观察算式的特点,他们的结果相同、数据相同,运算的顺序和符号不同,男生是一个数连续除以两个数,女生是除以这两个数的积。在男同学出来20xx÷25÷4=20xx÷(25×4)、1280÷16÷8=1280÷(16×8)简便计算的情况时,没有处理好,在这里,应该有第二套方案,请男生说说理由是什么,为什么可以这样写呢?重点要抓住这里,可以把结论先板书出来:一个数连续除以两个数,可以除以这两个数的积。然后再让学生举例等等进行验证。

  2、巩固练习,举一反三,讲评学生作业1280÷(16×8)=1280÷128=10,不变成连除,按原来的运算顺序算,你认为可以吗?完全可以解决“要根据数据特点灵活选择计算方法”这一数学思维,简洁、紧凑、实效。比展示不同方法进行比较可以省时得多?一节原本可以上得很轻松自如的课却出乎意料地变成紧张急促,着实值得自己反思。

  有遗憾就会有收获,“追求课堂实效,重视课堂节奏。”还需要在平时不断历练。

简便计算教学反思10

  在教学本课之前,我安排了这样的预习作业:将左右两边相等的算式用线连起来(共五组),我故意安排了两组不相等的,居然大部分同学都上当了,说明他们对乘法分配律的认识仅仅停留在表面,没有认识到其实质。

  在教学例题时我特别加强了“分别乘”的指导,不但结合实例让学生明白为何要分别乘再相加,而且用一些形象的.箭头让学生感受分别乘的过程;而在学生探究了例题和试一试后,让他们通过比较,体会在利用乘法分配律进行简便计算时要根据具体情况选择:有时合起来乘容易,有时分别乘更容易,要灵活运用。

  但是,今天的课堂作业让我十分失望,我本以为“分别乘”的指导比较到位,但还是有一些同学出现15×(20+3)=15×20+3这样的错误,并且有两名学生在解决实际问题中列出了(18+22)×15的算式后,还将它用乘法分配律展开计算,结果计算错误百出,如何让学生灵活地运用所学的知识,我还得进一步地学习研究。

  本节课主要应用乘法分配律进行简便计算,培养学生灵活合理地进行计算的意识和能力。课的一开始,我就复习乘法分配律,抓住其特点:合起来乘转化成分别乘再加起来或者分别乘转化成合起来乘。接着通过例题和试一试的教学,中间结合类型分别练习相应的题目,再通过比较让学生明白这两组题:有的时候是合起来乘简便,有的时候是分别乘简便,要根据具体的题目来选择。对于后面的练习,我注意引导学生比较和辨析,使学生较深刻地理解适合用乘法分配律进行简便计算的题目的结构形式,培养学生的审题能力,从而使学生更好地运用乘法分配律进行简便计算。

简便计算教学反思11

  简便计算是小学计算教学中的重要组成部分。我的理解是:简便计算应该是灵活、正确、合理地运用各种性质、定律等,使复杂的计算变得简单, 从而大幅度地提高计算速度及正确率。

  我让学生做了大量的直接简算的题。(我认为计算达不到一定的练习量是不行的)通过练习,引导学生总结出一些常见的可以简算的对象,如:“25与4相乘”、“125与8相乘”、“5与任何双数相乘”以及其他的可以凑整的数,同时使学生对简算有了比较深刻的理解。

  “运用乘法分配律进行简算”是学生最不容易掌握的。根据以前的教学我发现,其实学生在真正的生活情境中还是会自觉的用乘法分配律的。比如算几套课桌椅价钱的问题,学生会列出两种不同的算式,也就是渗透了乘法分配律的思想。我在教学内容这部分时,学生确实很难达到自觉地运用分配律去计算,特别是一些变式就更加的困难了。我认为主要原因就是学生没有自觉观察算式特点的习惯。学生对于计算的目的是得到答案,而忽略了计算的过程,这也跟我平时的教学习惯有很大的关系。

  有这样一道题(80+8)×25,学生完成后,我随即将该题改为“88×25”让学生做,学生做出了两种答案:①、88×25=80×25+8×25=20xx+200=2200;②、88×25=11×(8×25)=11×200=2200。我请学生分别介绍了他们的想法,他们说:第①种是把88分成80+8,再利用乘法分配律,让他们分别同25相乘;第②种则将88分成8×11,然后利用乘法交换律和结合律,先把8与25相乘,最后再乘11。

  听完学生的介绍后,我进行了总结,首先肯定了两种答案的'正确,然后对两种答案进行了分析:两种答案的共同之处在于都发现了8与25相乘非常简便,可以凑整。于是想方设法对88进行分解,因此都把握住了这道题的关键,所以都是正确的;两种解法的区别是,分解的方法不同,第①种解法是用加法进行的分解,所以使用的是乘法分配律。第②种解法用乘法进行的分解,所以使用的是乘法交换律和结合律。方法不同却有异曲同工之处。

简便计算教学反思12

  本节课不足的地方有许多,听完同事们的点评后,我反思主要有下面几点:

  一:口算材料不妥当。我设置了类似4( )=56这样的题,原本是想帮助学生较快地找到56可以变成4乘以几,为后面拆成乘法作铺垫用的。但是在上课的时候,发现这个材料的出示很唐突,与学习内容脱节了。现在想想,当学生做2556这样的题目时,教师给予指引,想4( )=56或564=( )就行了。

  二:缺少最优化的意识。本节课我非常注重算法的多样化,但是对于最优的.办法如何筛选缺少重视。在这个环节上,需多让学生进行评价他们中的一些方法好在哪里?不好在哪里?最后需要达成共识,最优的方法是什么?并且组织全班同学多说几次,让每个人都记准确,然后要求学生运用最优的方法进行计算。

  三:缺乏有效的方法小结。在学生会解决几道类似这样的题目时,需要回顾解题的过程,得出有效的解题方法。本节课里教师与学生在这方面都显得比较薄弱些。

  四:时间安排不合理,以致后面的练习没有时间完成。

简便计算教学反思13

  一、调整教材顺序,促进有效教学

  “乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。

  二、设计对比练习,促进有效教学

  在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。

  学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的'障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。

  如,463+82+18,463-82-18,463-82+18

  9600×25×49600÷25÷49600÷25×4

  三、进行逆向训练,促进有效教学

  逆向运用

  加法结合律:346+(54+189)=346+54+189

  乘法结合律:8×(125×982)=8×125×982

  乘法分配律:89×75+89×25=89×(75+25)

  减法的性质:894-(94+75)=894-94-75

  连除的简便:350÷(7×2)=350÷7÷2

  逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。

  四、加强应用训练,促进有效教学

  例1、求下列图形“L型”菜地的面积;

  9厘米21厘米9厘米

  例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?

  例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。

  1、学校一共买了多少个羽毛?

  25×12

  =25×4×3

  2、买羽毛球一共花了多少元?

  32×25

  =8×4×25

  3、每枝羽毛球拍多少元?

  330÷5÷2

  五、加强错例分析,促进有效教学

  例1:25×32×125例2:32×125

  =25×4+8×125=4×(8×125)

  =4×8×4×125

  例3:463-82+18例4:9600÷25×4例5:25×(400+4)

  =463-(82+18)=9600÷(25×4)=25×400+4

简便计算教学反思14

  四年级下学期第三单元是《运算定律与简便计算》。它把加法运算定律和乘法运算定律放在了一起,学生在学习了加法运算定律后,随后学习了乘法运算定律,这样,有利于知识的迁移,学生更容易理解。在简便计算这一部分中,除了应用“加法和乘法运算定律”进行简便计算以外,还安排了减法和除法的简便计算。可以说简便计算的方法,在这一册中全部出现了。如何让学生把这些简便运算都掌握,并且能融会贯通的运用,这是我们每位老师所思考的首要问题。在教学中我认为要把握以下几个方面:

  一、学会寻找题目的特点。

  (1)看到数字5、25、125想到数字2、4、8。将他们相乘,凑成整数。

  例如:25、36,把36写成4×9。变成25×4×9,使计算简便。

  (2)把接近整数的`写成整数和一个一位数相加减。

  例如:202×32,把202写成200+2,变成200×32+2×32,使计算简便。

  (3)寻找能凑成整数的数,把它们相加减。

  例如:126×5+5×74,发现126+74=200,就可以运用乘法分配律,5×200,使计算简便。

  例如:357-64-57,发现357和57,都有一个57,相减正好是整数,可以运用数字搬家的方法:357-57-64,使计算简便。

  二、巧妙运用简便计算。

  简便方法的目的是通过用整数来参与计算,达到使计算化难为易的目的。题目的简便计算是千变万化的,主要是要让学生看懂根据题目特点,灵活选用简便计算。

  例如:28×25的计算方法可以是(A)(20+8)×25=20×25+8×25(B)(7×4)×25=7×(4×25)(C)28×(100÷4)=28×100÷4

  三、注重题目的对比。

  有些学生对于简便计算,你出10题,他做下来可能是题题错。学生很难掌握简便计算的一个原因就是将题目混淆,故就不知道该题该用哪种简便计算。教学中,教师要加强类似题目间的对比。

  例如:(25×20)×4与(25+20)×4的比较,前者是运用乘法结合律,后者是运用乘法分配律

  例如:125×88和88×102的比较,前者是拆88,把88拆成8×11或88拆成80+8,后者是拆102,把 102拆成100+2。

  总之,教学要根据教学内容的特点,为学生提供了多种探究方法,才能激发了学生的自主意识,才能唤醒了学生的求知欲望,才能促使学生对知识进行更新、深化、突破和超越。

简便计算教学反思15

  长期以来,课堂上教师滔滔不绝,学生默默聆听的教学方式和“以本为本”的教学准则阻碍着学生的发展。尤其在计算教学中,教师总是严格、忠实地执行教材。学生的计算虽不成问题,但他们往往只知其然,不知其所以然,并且缺乏自主构建、自主探索,不利于学生的思维发展和能力的培养。在新课程的推进中,学生的学习方式是我们关注的焦点。因此,在新理念的引领下,我作了如下尝试。

  [片断一]

  师:同学们喜欢去超市购物吗?今天,老师先让大家尽兴地去超市逛逛,好吗?

  [推出购物超市流动车,上面有98元的足球、1999元的'彩电、395元的VCD、48元的乒乓拍、4999元的电脑、29元的《三国演义》、159元的大衣等,让学生分别以顾客和营业员的角色进行买卖。待每个同学都有了购物体验后,回到座位。]

  师:大家的收获真不少,能介绍一下你买到的东西,描述一下付款的经过吗?

  生1:我买了1只足球98元,我付出100元,营业员找给我2元。

  师:为什么能找到2元?

  生1:因为足球只要98元,而我付了100元,多付了2元,所以营业员要找给我2元。

  师:噢,原来这样。

  生2:我买的是彩电,我付出20xx元,找回1元。

  生3:我也买了1只足球,我先付出90元,再付出8元,这样就不用营业员找了。

  ……

  师:在买东西的过程中,你们感到哪种付款方式最方便?

  生1:我认为付出整十、整百、整千元,再让营业员找一些零钱比较方便,这样我们不必带一些零钱去购物了。

  生2:我认为身边正好有零钱的话,要多少钱就付多少钱,不用营业员找了,也好把零钱用了,减轻负担。

  师:营业员们,你们的收款过程又是怎样的呢?

  生:他们买足球的话,大部分都付100元,我收了钱后,再找给他们2元。

  师:为什么还要找给他们2元?

  生1:因为足球是98元,我多收了2元,所以要找给他们,否则就占人家的便宜了。

  生2:我记得有一位顾客买了一台VCD,他付给我3张100元,1张50元,2张20元和1张5元,正好是395元,我就不用找钱给他了。

  师:看来,你们都有丰富的购物经验,利用生活中的这些经验来进行计算,会不会给我们一些启示呢?想试试吗

  [解读]

  数学来源于生活,从学生的生活经验和已有的知识出发,将数学活动与他们的生活、学习实际相连,创造生动有趣的活动情境,在活动的体验中,去探索与之相关的数学问题。这不仅能够较好地激发学生的学习兴趣和求知欲望,使他们积极主动地参与数学活动,而且能最大限度地发挥他们的聪明才智和创造潜能。

  在这个教学片断中,教师为学生创设了模拟购物的活动情境,再现生活原型,让学生投入到愉悦的“购物”活动中。热闹、欢快的购物场面,似乎使他们忘却了那是在上数学课,而考虑较多的就是怎样付款和收款,从中不断地体验到“多收了钱要找给人家,多付了钱要找回”。在热热闹闹购物之后,让学生交流购物经历时,教师不失时机地追问:“为什么要找给2元?”“为什么能找回2元?”“哪种付款方式最方便?”为学生探究简算方法,突破教学难点起了良好的铺垫。