《三角形的内角和》教学反思
作为一位优秀的老师,课堂教学是重要的工作之一,借助教学反思我们可以学习到很多讲课技巧,教学反思应该怎么写呢?以下是小编为大家收集的《三角形的内角和》教学反思,欢迎大家分享。
《三角形的内角和》教学反思1
课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”、“剪—拼”、贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;
第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:
1、 学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,让他用黑色水笔画出来。为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的'时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一 条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析, 留给学生的时间不足,这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。并会运用三角形的内角和解决实际问题,但整堂课引导的比较急躁,今后我要朝着更加完美的方向努力,我愿意锻炼和改变自己。
《三角形的内角和》教学反思2
笔者在执教四上数学时,接到数学片开课的通知,反复思量最后选择了四下的《三角形的内角和》这一教学内容。一开始有的老师认为不可以,因为四下的《三角形的内角和》这个内容之前需要先上三个内容,即:认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边。如果给四上的学生上这个内容就违背了教材内容编排的有序性和知识的连续性。但是,难道一定要了解了三角形的特性,对三角形进行分类,知道三角形的三边关系之后再来研究三角形的内角和?难道就不能在学生对三角形有一定的感性认识的基础上,学习了角的分类和会量角之后,让学生去探究三角形的内角和进而研究多边形的内角和?最后经过反复思考,笔者作大胆的尝试,最终还是选择了这一教学内容。因为我们不能过于迷信我们的教材,不能盯死一套教材,不能过分的依赖教材。正如开头时讲到的,教材是滞后的,生活是现实的,我们教师则应该勇于探索,敢于实践,充分发挥教材的优势,把握教材的体系,做教材的开拓者。
新一轮基础教育课程改革,改变了课程内容难繁偏旧和过于注重书本知识的现状,赋予教师更多的权力,教师不仅仅是课程的实施者,同时还是课程的开发者。而把握教材提出自己的教学目标和教学重难点是对一个教师最基本的要求。新课程背景下的数学教师要转变观念,不能成为教材的奴隶,而要对教材内容进行开发,变教材是学生的世界为世界是学生的教材,与学生共同讨论、探索,在不断的积累中形成开放而充满活力的课堂。
在实验教科书四年级上册数学第二单元《角的度量》的学习过程中,学生已经学会量角,知道了角的分类,于是笔者灵活的处理了教材,在学生对三角形有一定的感性认识,刚学会了量角以及对角的分类有了一定的认识的基础上制定了新的教学目标: 1、在学生已有的认知基础上,让学生经历量一量、拼一拼等数学活动验证三角形内角和是180°,并会应用这一知识解决四边形的内和角。2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。教学重点是引导学生用量、撕、拼等方法验证三角形的内角和是180度。教学难点是引导学生通过自主探索来得出任意三角形的内角和等于180度,进而利用这个知识来解决四边形的内角和。多次
试教下来,发现对教学目标的定位是比较明确的,重点放在让学生体验验证三角形的内角和等于180度这一数学探究过程。但对于教学重难点的把握是经过反复修改而形成的。因为,这一内容如果只是让学生知道三角形的内角和那么就没有深度,而本节课的深度究竟应该挖到哪里呢?事后发现,四年级上学期的学生在教师的引导帮助下,能够借助三角形的内角和等于180度进而得出四边形的内角和等于360度,但是,如果要学生进而得出五边形,六边形的内角和,最终发现所有多边形内角和的计算规律,在这一节课上是实现不了的。所以,本节课的难点定位是学生能够根据三角形的内角和等于180度,知道可以将四边形变成两个三角形,一个三角形的内角和等于180度,那么四边形的内角和等于360度。
肖川认为“对教师而言,上课是与人的交往,而不单纯是劳作;是艺术创造而不仅仅是教授;是生命活动和自我实现的方式,而不是无谓的牺牲和时光的耗费;是自我发现和探索真理的过程,而不是简单地展示结论”。
所以,为了实现教学过程的创新与生成,笔者经过多次的实践,本节课最后的教学过程设计方案如下:从平面图形引入,然后通过长方形来揭示内角概念,通过探究长方形的内角和是多少?自然引入三角形有几个内角,三角形的内角和是多少?你们确定吗?让学生大胆的猜想,学生都能想到三角尺中的两个特殊的三角形的内角和等于180度,然后追问:我们手中的三角尺的内角和是180度,是不是说明三角形的.内角和都等于180度?这样通过特殊三角形到一般的三角形,引导学生自主探索三角形的内角和是多少度。学生大多认为通过测量可以来验证,但是活动之后用测量的方法难免有误差,于是老师就追问:有的同学量出来是正好是180度,有的是接近180度?这样你能确定三角形的内角和等于180吗?那么怎么办呢?你有什么其他的好办法呢?接着教师引导“如果三角形的内角和是180度,那么把它的三个内角拼起来,你觉得会拼成什么?”引出了用拼一拼一方法将三角形的三个内角拼成一个平角。而学生对于怎么拼还有疑惑,于是教师就在黑板上演示用撕的方法将三个内角拼在一起,然后再让各小组试试用拼一拼的方法,最后在交流的时候特地找那些量的不准的小组进行展示,所有的小组拼出来的结果都是等于180度,这样就能得出我们想要的结论。练习环节先是知道其中的两个角求第三个角,交流时体现了算法的多样化,然后是让学生用两块完全一样的三角形拼成一个图形,这样的题目比较有思考的空间,也有创意性,因为拼成的图形可以是大三角形,长方形,正方形,平行四边形。如果是看成大三角形,那么这个三角形的内角和还是等于180度,即又巩固和深化了三角形的内角和等于180度,而长方形,正方形的内角和在一开始上课时已经知道是360度,那么现在我们学习了三角形的内角和等于180度之后,现在我们可以将它们的内角和看成什么呢?学生会说看成两个一样的三角形,两个三角形的内角和相加等于360度。而接着追问平行四边形的内角和呢?学生也能自然的说出。最后追问一个任意的四边形的内角和呢?有学生会说,可以看成两个三角形,但这两个三角形的大小形状不同。但是,任意三角形的内角和都等于180度,所以四边形的内角和都可以看成是两个三角形的内角和,进而得出了四边形的同角和,同时发了练习纸引导学生在课外探究五边形、六边形的内角和是多少。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神,顺利的达成了教学目标,解决了教学重难点。
几节课上下来,笔者越来越肯定,教师完全可以做教材的开拓者,只要合理的对教材进行了整改分析,巧妙的设计练习,准确的了解学生的认知起点,反复的琢磨教学过程并进行创新,对学习材料进行思考与选择,就能打破教材的编排次序,让学生重新整合知识,实现知识的优化与提升,最终促进学生创造与发展。
《三角形的内角和》教学反思3
有许多内容我们教过多次,但如何教教学效果更好,值得我们不断地去探索。
学习了《三角形的内角和》一课,回想一下,有许多想法:三角形的内角和为180°这一结论学生在小学就已经知道,只不过那时是通过度量得出来的。因此这一结论的证明思路和方法成为本节课的重点。
如何证明这一结论,是小组合作学习的契机。在上新课之前,我事先让每个学生剪好了一个三角形,这样,就可以让学生通过小组合作交流的.方式来验证。教学中,让学生把三角形的任意两个角剪下来,把三个内角拼合在一起,会得到一个180°的角。在这一过程中,学生很快进入状态,积极性较高。并且有的小组整出了多种拼合方法,还有一个小组通过折叠的方式来验证,我都及时给予肯定。接下来让学生把得到的图形画在练习本上,从中有没有受到启发,探索出证明思路。这一过程中,有些同学能拼出但画不出图形,导致了找不出证明的方法。下一步在证明的时候,有的同学能说出理由,但写的时候无从下手。说明学生不论是在逻辑思维方面还是几何语言方面的表达上都存在着相当大的困难。在后续的学习中需要慢慢培养学生这方面的能力。
教学有法,教无定法,学生能学会的方法就是好方法。
《三角形的内角和》教学反思4
“合作探究,实验论证”生动地诠释了新教育的基本理念,我在本节课新知识传授时很好的把握三个环节。
一、通过两个三角形因为内角和大小吵架导出新课,提出问题到底是谁的内角和大,激发了学生的求知欲,和学习兴趣。
二、让学生先猜想内角和的大小。教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。
三、动手操作验证猜想。要求学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的.内角和的确是180°的结论。
四、练习设计,由易到难。
这节课在练习的安排上,我注意把握练习层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角度数,求另一个角。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决,在没有告知直角三角形的另一个角时,如何求出第三个角。
通过一节课的学习,同学们基本掌握三角形内角和的知识,并能运用知识点进行习题练习。小组合作也激发了学生们的学习兴趣,效果不错!
《三角形的内角和》教学反思5
这节课作为四年级下册中三角形的一个重要组成部分,它是学生学习三角形内角关系和其它多边形内角和的基础。即使在以前没有这部分内容,大部分教师在课后也会告诉学生三角形的内角和是180度,学生容易记住。本节课我具体抓住以下2个方面。
1、为学生营造了探究的情境。在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生通过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。
2、充分调动各种感官动手操作,享受数学学习的快乐。在验证三角形的内角和是180度的过程当中,大部份同学都是用度量的方法,此时,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,出现了很多种方法,有的是把三个角剪下来拼成一个平角。有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连平时对数学不感兴趣的学生也置身其中。充分让学生进行动手操作,享受数学学习的乐趣。
一、教学现状的思考。
我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1。通过量一量算一算拼一拼折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2。通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。
3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。
(三)教学重,难点
因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
二,说教法,学法。
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。
因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式。
三,说教学过程
我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
(一)引入
呈现情境:出示多个已学的平面图形,让学生认识什么是"内角"。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。
【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出
(二)猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢
【设计意图】引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的.三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。
(四)深化
质疑: 大小不同的三角形, 它们的内角和会是一样吗
观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)
结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。
实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。
结论:活动角就是一个平角180°, 另外两个角都是0°。
【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。
对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。
(五)应用
1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。
2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗
3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少
(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少
4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题
【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。
能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
《三角形的内角和》教学反思6
《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。然后由这一结论练习各种题型的练习。经过2次的试课,多次的修改,我最终的课有一下特点。
一、创设情境,营造探究氛围。
怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在即将到来的五一劳动节为切入点,在学生感兴趣的旅游话题中,由欣赏世界的图片中引入三角形,由金字塔顶端度数的求法中启发学生思考“三角形的内角和真的是180度吗,所有三角形的.内角和都是180度吗?”。由两个三角形的争论使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。
二、小组合作,自主探究。
“是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
三、练习设计,由易到难。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层次是判断三角形的三个角是否是一个三角形的内角,第二层练习是已知三角形两个内角或一个内角的度数,求另一个角。第三层开始就有了一定的难度,层层深入。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。最后是让学生用学过的知识解决身边的问题打碎的三角形玻璃该取哪一块才能拼出与原来一样的玻璃,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。
本着“学贵在思,思源于疑”的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。
另外,本次课也有不足之处,首先是语言不够准确和精炼,比如发现了三角形内角和的秘密而不能说”发明”,还有量一量是可以验证三角形的内角和的,只不过存在误差,不是很科学,而在我的口误之下变成了“不能”。其次是对于最后出现的小问题我没有足够的教学机智来好好的融错。如果对此借机引导是由误差造成的,并借此教育学生一点点的马虎就会导致不一样的结果该有多好。还是缺少教学机智。
《三角形的内角和》教学反思7
新课标提出“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。
根据这一教学理念来设计这堂课。引导学生小组合作,出示不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的.结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。
总之,在上课的过程中,给了我学习的机会,在今后教学过程中该如何预设好每一环节,如何说好每一句话,让自己的课堂效率更高。
《三角形的内角和》教学反思8
背景:在课前学生已备好了直尺、三角板、量角器、剪刀和三角形纸板数张。在老师引导学生经过猜想三角形内角和为180度后。
师:请你用你自己的方法去验证结论……
于是乎学生兴趣浓厚,积极性非常高,只见学生在剪剪,画画,拼拼,好像非要弄一个明白不可…。一会儿,师示意学生停止了验证、探索,接着老师用多媒体课件演示教材上的拼剪方法验证…。
请你从小组合作学习的角度谈谈对以上教学片段的看法。
张彦彬
这是一节非常好的让学生动手实践、亲自操作、亲身体验的课题。恰当有效的开展小组合作学习,有利于学生探究能力和合作意识的培养。但是在这一片段中存在许多值得我们思考的地方。
密士娜
片段中虽然“学生兴趣浓厚,积极性非常高”,但给人的感觉是学生的活动有些流于形式,没能较好的发挥好小组学习的优势。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力。因此,我认为本节课的重点是引导学生从“猜测―——验证”展开学习活动,让学生感受这种重要的数学思维方式。而在开展小组验证活动时,我认为要分三步:首先,可以提出:“你有什么方法可以验证?”(结合学生实际情况,教师要予以点拨)。然后,在学生独立思考的基础上,提出分小组探究验证的方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到验证的切入点,体验成功。最后,就是要注重学生的小组汇报,在汇报中培养学生的数学语言表达能力。
周晓芹
在片段中注重了小组的合作学习,抓住了合作的时机,但是在小组合作的过程中真正发挥了每个学生的主观能动性吗?在学生进行要验证的时候,教师首先应该放手,通过学生自己发现、验证,这样的合作才能发展学生的思想,学生才会有学习的动力,才能让学生经历思考、探究、验证的过程,其次,注重学生的个人认识和小组认识的结合,最后,综合认识,让学生的思想进行碰撞、交流,达到合作的有效性。
刘维舟
学生的合作交流应是在自己的思考基础上进行的,只有在自己的充分思考基础上产生人交流才可能碰撞出思维的.火花。否则这样的合作交流就成了一部学生在探讨,而有部分学生就成了看客。同时要给学生充分的时间,不能流于形式,像上面的场景一样“一会儿”这样的合作表面上是热闹的,学生也动了,但可能具体的效果并不太好。既然让学生探索,就应有足够的时间,并给学生展示自己的思维能力过程的机会,这样才能展现出学生的思维过程,在教学中才能有的放矢。同时也可让学生在这一过程中让学生体会一些基本的数学思想和数学方法。
刘维舟
学生的合作交流应是在自己的思考基础上进行的,只有在自己的充分思考基础上产生人交流才可能碰撞出思维的火花。否则这样的合作交流就成了一部学生在探讨,而有部分学生就成了看客。同时要给学生充分的时间,不能流于形式,像上面的场景一样“一会儿”这样的合作表面上是热闹的,学生也动了,但可能具体的效果并不太好。既然让学生探索,就应有足够的时间,并给学生展示自己的思维能力过程的机会,这样才能展现出学生的思维过程,在教学中才能有的放矢。同时也可让学生在这一过程中让学生体会一些基本的数学思想和数学方法。
武鹏
对于合作学习,我有很多想法但从这节课来看还没有做到小组合作学习!合作学习就是为了把课堂交还给学生,并通过学生的交流去完成具体的目标。而这位老师的做法只是让学生去想,而没有交流,还是老师的讲授为主!
刘维舟
建议以后听课由讲课老师调课,这样听课老师就不用大面积调课了,相对来说要方便一些。
奚传武
这个案例,教师的小组合作学习有些流于形式,在学生合作学习时,教师应参与学生的讨论,合作学习结束以后,学生处于兴趣浓厚积极性非常高的时候,教师应组织学生进行全班交流、反馈合作学习的信息,并根据反馈的信息进行有效指导。小组合作学习,必须在独立学习的基础上进行。
首先应给学生独立的学习时间。然后组织学生小组合作学习,在组内交流意见,统一意见,再到全班交流,再次形成统一的意见,逐渐形成正确认识。小组合作学习要做好小组分工。注重发挥小组合作学习的有效功能,才能促进学生的发展。
卫秀红
我认为片段中的这位老师没有抓住小组合作的时机,他根本没有提出让小组合作去探究,而是让学生毫无目的地用自己的方法去验证。看上去学生在动手很热闹,其实是低效的活动。
孩子们虽然都能猜测回答出三角形的内角和是180度,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课研究的重点应是:让学生在小组合作中动手操作,验证三角形的内角和是180度。这也是本节课的难点。如果老师能抓住在动手探究验证这一环节提出在小组中进行合作学习,就抓住了合作的时机。在学生合作前,可以先简单交流验证的方法、明确合作学习的要求,在小组成员明确分工后再开始合作探索验证。在学正充分探究后,再交流验证的结论!最好让学生演示拼剪方法,展示不同的思路,从而突出学生的主体地位。
孙静
看完这个片段,我的感觉只是让学生做了探究,但是少了小组汇报和小组之间的交流,老师展示教材上的方法我觉得完全可以在学生汇报之后在进行总结是再展示!既然谈小组合作就要给学生一个展示的平台,给谈们充分的时间去说!
马艳伟
把课堂交给学生,让学生在思考,讨论、探究中体验学习的乐趣。怎样把课堂交给学生是我们应该思考的问题。小组合作能有效的发挥学生的主观能动性。调动学生学习的积极参与学习的过程。于是有的老师就热衷于让学生小组合作,而不管他们是不是真的在合作,是不是合作的有意义,有效果。是不是所学的内容适合小组合作。
三角形的内角和是180。这节课的内容适合小组合作。可这位老师在教学中忽视了学生的合作是不是真的有效,学生在合作中有没有探究出结论。而让小组合作流于形式,看起来学生热热闹闹,其实没有效。教师急于把应该学生呈现的验证过程,利用多媒体呈现出来。应该所他的小组合作是失败的。
马艳伟
把课堂交给学生,让学生在思考,讨论、探究中体验学习的乐趣。怎样把课堂交给学生是我们应该思考的问题。小组合作能有效的发挥学生的主观能动性。调动学生学习的积极参与学习的过程。于是有的老师就热衷于让学生小组合作,而不管他们是不是真的在合作,是不是合作的有意义,有效果。是不是所学的内容适合小组合作。
三角形的内角和是180。这节课的内容适合小组合作。可这位老师在教学中忽视了学生的合作是不是真的有效,学生在合作中有没有探究出结论。而让小组合作流于形式,看起来学生热热闹闹,其实没有效。教师急于把应该学生呈现的验证过程,利用多媒体呈现出来。应该所他的小组合作是失败的。
高春美
这节课中看上去很热闹,学生的积极性非常高。但学习效率不高。本节课老师让学生用个种方法去剪、画、拼。看上去老师让学生用多种方法,方法非常灵活,其实老师没有提出合作探究的要求,学生没有目的去探究学习的内容效果很低效的。既然是让学生去动手操作了,为什么不去展示学生作品呢?应让学生去展示并汇报,师要注意学生汇报时语言表达能力。
高春美
这节课中看上去很热闹,学生的积极性非常高。但学习效率不高。本节课老师让学生用个种方法去剪、画、拼。看上去老师让学生用多种方法,方法非常灵活,其实老师没有提出合作探究的要求,学生没有目的去探究学习的内容效果很低效的。既然是让学生去动手操作了,为什么不去展示学生作品呢?应让学生去展示并汇报,汇报时教师注意学生的语言表达能力。
李飞飞
小组合作学习是一种很好的学习方式,也是非常必要的,他可以让学生自主发现问题,解决问题但是有时候,在实施过程中难免要出现为了做课而进行的小组合作,搞形式上的小组合作.没有实际意义,纯属于浪费时间.我认为小组合作的前提是应当老师在备课过程中发现的学生不容易理解的问题以及提出他们能够力所能及的问题,让学生自己想办法去解决,而不是我们一味的传授死板的教学法法,进行有效的积极的小组合作学习小组合作是学习数学很重要方式,我觉得这个学习方法也是学习其他课的学习方式,所以小组合作事非常重要的。
周荣花
小组合作学习是老师在抛出一个问题,经过思考、讨论而不能解决后,通过小组的讨论,动手合作进而把问题明确,最后在经过各个小组不同的汇报,集全体学生的智慧而把问题解决。老师只是这一活动的组织者。而这一片段只是为了合作而合作,并不是为了解决问题而合作,因此合作学习对于这一节课毫无意义。因而合作学习这一活动要谨慎应用,只有这样它才能为我们的课堂增光添彩。
侯艳芬
小组合作学习形式多样,可以是几个学生的观点方法相互交换、交流;可以是差生看并学优生的一些方法,并“据为己有”。可以是几个学生在一起共同完成掌握知识的过程;也可以是小组内组织有关学习的实践活动、问题争论或组组间的辩论等。这都需要在平时的教学中不断培养!
王甲荣
本片段老师注重了小组合作学习,只是走过场,没有实效性。在合作结束后没有让学生展示自己的思维过程,教师无法了解学生的合作动态,教师成了看客。
《三角形的内角和》教学反思9
在课间我有意问了一下学生你们知不知道三角形的内角和是几度,发现有一些学生已经知道三角形三个内角的和是180°,因此在导入环节中插入了一个猜角游戏中,请量出自己准备的三角形的三个角的度数,只要你们说出其中两个角的度数,我能猜出第3个角的度数,让生说我猜,要求用自己准备的三角形进行操作。有一部分学生已经能跟着我说出第三个角的度数。当时我并没有批评这些学生,而是采用了表扬的方式,学生很开心。
在接下来的实验验证环节中,那些知道三角形内角和是180°的学生就猜度数,而没有进行真正的实验验证,反倒是刚学到的学生真正做到用实验去验证“三角形的内角和中180°”。因此我一直在想,是不是能设计一些新的方式让已经知道三角形内角和是180°的学生也能真正参与到实验验证的环节中来。于是让学生请观察自己手中的三角板,问它们是什么三角形?你知道三角板三个内角的和是多少度吗?问学生发现了什么?
三角尺的三个内角和是180°。然后让学生撕下三角形的`三个内角并把它们拼在一起和折三角形的三个内角,使它们正好折在一起,都能拼成一个平角,
最后拿出课前准备好的长方形、正方形,让学生自己想办法验证三角形内角和是180°。我个人认为学生通过亲自动手操作实验得出三角形内角和是180°,这样使他们大胆地想,学生课上注意力比较集中。教师也能在教学活动中从一个知识的传播者自觉转变为与学生一起发现问题、探讨问题、解决问题的组织者、引导者、合作者。
在“想想做做”第2题中,学生在还没有拼的时候先看了书,就猜拼出来的大三角形的内角和是360°,经过提醒“内角”的含义,学生才真正体会到“任何一个三角形的内角和都是180°”,不管这个三角形是大还是小。
《三角形的内角和》教学反思10
三角形的内角和一课,知识与技能目标并不难,但我认为本节课更重要的,是通过自主探究与合作交流,使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上里面,本节课,我也准备引导学生采用自主探究、动手实践、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。
由于是借班上课,学生对于三角形了解的内容还不够多,所以我才用了直接导入的形式来进入新课,让学生自己探讨什么是三角形的内角,三角形有几个内角,三角形的内角和又是多少呢?来揭示内角和内角和的概念,学生明确了内角与内角和的概念,然后让学生大胆的猜测,三角形的内角和是多少,有的同学猜测是100度、90度、200度,但猜测不等于结论,在这里我追问大家猜测的依据是什么?同学们并没有说出来,于是我引导大家怎样才能知道他们的内角和是多少呢,同学们想到了测量每个内角是多少,然后再求和。我又追问:怎样才能知道每个内角是多少呢?于是同学们想到了量一量,这时让同学们动手进行测量记录数据,但由于学生动手操作前教师没有对操作步骤进行要求,导致同学们在测量时分不清测量的是哪一个角,我及时引导大家把每个内角都标上序号,在进行测量,分别把他们测量的数据填写的报告单当中,因为这样导致了同学们测量的速度较慢,最终由于时间关系钝角三角形的内角和学生操作完成,在展示成果时没有进行展示,同学们只得到了钝锐角、直角三角形的内角和是接近180度的。如果我能再给学生一点点时间,学生就可以完成了,以后教学中还是应该多多放手,给学生留有先足的动手空间和时间。
我认为数学课不仅是解决数学问题,更重要的是思维方式的点拔,使数学思想的种子播种在学生的头脑中。由于在量一量、算一算的环节中,学生初验证了三角形的`内角和接近180度的,于是引导学生由180度想到平角,让学生探讨交流:怎样才能把一个三角形的三个内角转化平角。撕拼这一环节过程主要向学生展示渗透转化的数学思想的教学目标。四年级学生在以往的数学学习过程中都积累了不少转化的体验,但在这种体验基本上处于无意识状态,只有合理呈现学习素材,才能使学生对转换策略形成清晰的认识。操作之初,一部分学生没有明确操作目的,把三个不同的三角形的角拼在了一起,我在巡视的过程中发现了这一现象后,让学生再次谈操作要求,明确操作目标,之后引导学生如何把三个角从三角形分离出来,从而部分学生想到了撕拼法,一部分学生想到了折拼法,于是我请撕拼法的你同学上台展示后,再让用折拼法的同学展示他们的方法,并给予肯定和评价,至此教学目标基本完成,学生明确知道了:三角形的内角和为180度。为了让学生更深刻的理解这一结论,我设计了一变二,和二变一的图形展示,使学生明确了所有三角形的内角和都是180度,与形状大小无关,如果时间充裕的话我想让学生探一下,增加和减少的度数源于哪里。
数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,已达到练习的有效性。对此,我设计了有层次的练习,但由于时间只有了30分钟,这一部分没有来得急提供给学生,可以说是这节课的遗憾之一。
总之,本节课力图学生通过自主探究、合作交流,让学生充分经历知识的形成过程,让学生学会数学、会学数学、爱学数学。在教学过程中,随时会生成一些新的教育资源,课堂的生成大于课前的预设,如何有效的利用生成、有效的进行评价,是我该思考的问题,也是我今后课堂的努力方向。
《三角形的内角和》教学反思11
1、情境的创设
课伊开始让学生猜角游戏,这时学生对三角形的三个角的关系产生好奇。引发他们探究的欲望。再从他们熟悉的三角板出发,联系他们以有的知识说说,感觉一下。从而很快的进入新课。
2、引导独立思考和合作交流
独立思考是合作交流的.前提,经过独立思考的合作才是有效的合作。在想办法求三角形内角和这一核心问题时,先给学生独立思考的时间,再通过小组合作,剪一剪,折一折,拼一拼等方法去探求三角形内角和的秘密。这样学生在动手,动脑,动口的过程中全员参与学习过程,经历知识形成的过程。
《三角形的内角和》教学反思12
《三角形的内角和》在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。让学生猜测-质疑-验证得出“三角形的内角和等于180°”,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。
爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过观察长方形的内角和连接对角线把它分成两个直角三角形让学生猜测三角形的内角和是180°,然后质疑:那是不是所有的三角形的内角和都是180°呢?这个问题一抛出去马上激发学生的学习
热情。接着就让学生来验证三角形的内角和。验证过程分两部分来进行,先通过量一量、算一算的方法让学生验证各类三角形的内角和,一是加深对三角形内角和的理解就是三个内角的度数之和,二是让学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,没有以小组的形式展示,给学生交流的空间太小没有达到小组合作的真正目的。再让学生通过拼一拼、折一折的方法来发现各类三角形的三
个内角都可以拼成一个平角,从而得出三角形的内角和的确是180°的结论。汇报展示这个环节只是口头叙述的形式描述验证的结果,若先还原原图,再展示验证过程与结果效果更佳。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。第一层练习是已知三角形两个内角度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的`严密性。第三层是解决多种类型三角形的内角问题,有等边三角形、等腰三角形、直角三角形,根据自身特点来解决问题。
本节课我采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
《三角形的内角和》教学反思13
我在讲“三角形的内角和”时,开始就由求两个我们已经熟悉的直角三角尺的内角和入手。在学生的认知结构中,他们已经知道了两块三角尺的内角和是180°了。在此基础上,引导学生猜测,其他三角形的内角和是不是也是180°。这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的'主体意识与参与意识。当学生通过量一量、折一折、撕一撕之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……
但试想一下,如果我上课之初,就告诉孩子三角形的内角和为180°,并且告诉孩子我的验证方法,即便告诉的方法再多,再详细,他们学到的也只是我的有限的方法,而且是老师的方法,不是自己发现的方法。
不过在进行动手操作的时候,有些小组没有抓到很好的要领,而我也没给予及时的指导;或者说,因为时间的关系,我的指导没有很好的说清楚,导致个别小组动手的时候不是很清楚。
对于活动性课程,我的把握不是很到位。在活动中出现的小问题,有的时候我经常会不知所措,不知道应该怎样及时解决,这个是我今后要努力的方向。
《三角形的内角和》教学反思14
1、通过直观操作的方法,探索并发现三角形的内角和等于180度,在实验活动中,体验探索的过程和方法。
2、能运用三角形的内角和的性质解决一些简单的问题。上课时,我先出示了书本上的图片,大的三角形对小的三角形说:“我的三个角的和一定比你大”。问学生是这样的吗。起先就有同学问了,什么是内角和,我稍微解释后,同学们就开始些争论了,带着这个问题,我让孩子们自己在练习本上画三角形(什么样的三角形都可以)。然后让他们量出三个角的度数,并求出他们的和。我在巡视的过程中,选出了一些同学的三角形以及他们测量出来的结果。也发现有些同学已经忘记量角的方法,或者量的过程不认真,导致结果出错,我在巡视的过程中就给予纠正。
最后,同学们也都发现,大小、形状不同的三角形,其内角和都在180度左右。然后让他们看智慧老人的一句话“实际上,三角形三个内角和就是180度,只是因为测量有误差”,所以有些同学量出来的并不刚好是180度。那么智慧老人的话有没有道理呢?我抛出了这么一个疑问,让同学们想办法证明。最开始,有人提出了用折的方法,我就拿出了事先准备好的三角形,让他折给大家看,发现三个角拼在一起后就成了一个平角,也就是180度。但是问到还有没有其他方法的时候,就没有同学回答了,时间也快到了,我就自己匆匆忙忙的把先撕后拼的方法给讲了。之后讲了一道内角和的应用,然后就让他们下课了。
在这节课的过程当中,我对自己不满意的地方有几个,主要是后半节:
首先,同学在用折一折的方法证明三角形的内角和时,虽然上台演示的同学有折出来,但速度不是很快,而且但并不是没个同学都能折出来的,所以在上面的同学折出来后,我觉得让其他同学也试一下,肯定有人没办法,所以要提醒他们,折时要注意平行折。这样也会更有说服力。但是我也没让大家准备三角形,也就没办法了。这里我更体会到提前备好一周的.课的重要性了。这也是我们校长和教导时常强调的,以后一定得改正。
其次,让同学们想办法用令一种方法证明时,我显得急躁了,虽然同学们没有一下子想出来,但是我也应该多给他们些时间,让他们多思考,或者稍微给点提示。我想起上学期中关村的老师上认识角的时候,就很耐心的给孩子们时间去探索,去发现。所以在课堂的时间安排上,我还要思考如何才能更加合理。
最后,也是我经常在思考的。为什么我们班发言的情况总是那么不如人意呢。没次到我的师傅班上听课时,我都发现他们班孩子充满了激情,而到了我们班,情况就大大的改变呢?是提问的方式有问题吗?不过可能有一点,是因为我在课堂当中对于学生的回答激励性的语言太少了,导致有部分人失去热情,还有就是自己上课总是急于求成,让孩子们失去了思考的机会,也使有些人已经懒得思考了。在这方面我以后还得大大的改善才行。
《三角形的内角和》教学反思15
本节课的重点是引导学生探究三角形的内角和, 同时还要使学生学会用三角形的内角和是180°来解决有关计算问题。
课程开始前,我让学生计算三角尺的3个内角的和,很自然地引出了“其它三角形的内角和是否也是180°吗? ”的猜想。当时有同学说不是,又有同学说是的。我告诉学生:任何一项科学研究或发明创造都要经历从猜想到验证的过程。那么这个猜想可以用什么方法来证明呢?大部分同学首先想到先任意画一个三角形,再用量角器量一量的方法,我让学生去画去量了,结果有些学生量出的内角和的度数要高于180°或低于180°,我让学生讨论一下有哪些因素会影响到研究结果的'准确性。过后,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示学生想到把三个角剪下来拼成一个平角,还有学生想到折的方法。学生在操作过程中受到了启发,最后学生得出:任意三角形的内角和都是180°。学生在动手操作中享受到了学习数学的乐趣。后面通过一系列的练习活动,学生进一步明确三角形的内角和与三角形的大小无关,并体会到求直角三角形的一个锐角可以直接用90°减另一个锐角的度数来计算,培养了学生思维的灵活性,对三角形的内角和也有了更清晰的认识了。
第二次课我从学生常用的一副三角板出发,让学生说说每个角的度数,以及三个内角的度数和,有学生说出三角形的内角和是180度,我就接着问:为什么三角形的内角和是180度?是不是所有的三角形的内角和都是180度呢?学生无语。接下来,我就让学生将课前准备好的三角形拿出来进行研究,可以增强学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。在此过程中,我关注的重点除了学生最后论证的结果,更重要的是关注了学生思维的过程。