中心对称教学反思
身为一名刚到岗的教师,课堂教学是我们的工作之一,对学到的教学新方法,我们可以记录在教学反思中,写教学反思需要注意哪些格式呢?下面是小编精心整理的中心对称教学反思,仅供参考,欢迎大家阅读。
中心对称教学反思1
讲过[轴对称]这节课,我有了新的熟悉,以下是我的几点收获:
第一、要明白课一开始复习对称轴是为了什么,也就是要明白你的每一节课上每一处的教学设计的意图。我想,在这里复习对称轴是为了唤起学生已有的轴对称图形对称轴的生活经验,同时为本节课进一步熟悉轴对称图形的对称轴,探究轴对称图形的对应点与对称轴之间的关系——轴对称图形上两个对称点到对称轴的方格数(距离)相等做铺垫吧!
第二、在我让孩子举例说明“生活中你见过哪些轴对称图形?”,学生说的都是生活中的物体,这时老师可以指出我们今天钻研的轴对称图形是平面图形,比如他们说黑板,课桌时,我可以适当的加以纠正“黑板,课桌的面是轴对称图形”!
第三、开始让学生指出图形的对称轴时,不能只让她们简单地用手比划一下,而是应该让他们在书上画一画,语言上的叙述也要在老师的引导下进一步规范严谨。比如说:中间那条线是对称轴,应该是“上下两条线的中点的连线所在的直线是对称轴”。
第四、在处理本节课的重点“在操作中探究轴对称图形的特征和性质时”,老师一定要放手,主动权给孩子,重点要让学生说,,然后他们才会画。先让学生找一对对称点,然后连接对称点,从图中发明两条虚线相交之处有直角符号,直角符号表示两条虚线垂直,这样才会清晰地发明对称点的连线与对称轴是垂直的关系。接着再数一数点A和其对称点到对称轴的距离,知道点A与其对称点到对称轴的距离都是3小格。这两个特征要给孩子时间去操作去发明去尝试,尝试才有发明,发明才有创新!耐下心来,总有学生会发明的!
然后再找其他对称点,去验证这两个特征,这个过程是需要时间的,没有经过具体的操作,学生是发明不了的。经过几次这样的操作活动,使学生明白轴对称图形上两个对称点到对称轴的方格数(距离)相等,加深学生对轴对称图形特征的熟悉。
第五、在发明对称轴两边的对称点到对称轴的距离相等之后,还要指出特殊的一类点:对称轴上的点,他们的对称点在哪?使学生明白点沿着对称轴折过去之后跟谁重合对称点就是谁,从而他们才明白这一类点的对称点就是它本身,也在对称轴上。
第六、要给学生强调画图的.时候要用铅笔和直尺,而我在课堂上只强调了画图要用直尺,这一点以后一定改正。
第七、在讲本节课的第二个知识点补全轴对称图形的另一半时,最后要引导学生归纳总结这类画图题的方法步骤:
1 “找”,找出图形上的端点或者说要害点。
2 “定”,根据对称轴确定每一个端点的对称点。
3 “连”,依次连接这些对称点,得到轴对称图形的另一半。
小学阶段的画图,还是要给学生规范方法步骤的。
我课堂上的组织管理能力还有待提高,假如有学生提出质疑,要及时肯定赞扬,激励他的思量过程,思维习惯,久而久之,数学课堂上该有的思量味儿才会越来越浓!
中心对称教学反思2
成功之处:
(1)本节课,我通过复习中心对称的定义和性质,大胆的放手让学生自主画图,使学生顺利的找到了要学的新知识与已学知识之间的联系,通过学生的观察顺利得到了中心对称图形的定义和性质,学生理解的很准确。
(2)通过欣赏图片,比如奥迪、现代等车标,精美的地毯、风车、电风扇等,激发了学生的学习兴趣。
(3)练习问题的设置能够让学生主动参与到学习中来,例如在判断扑克牌中哪些是中心对称图形的探究活动中,师生的相互沟通调动了学生的积极性,培养了学生的相互合作能力;通过问题的解决,培养了学生独立思考的能力,激发出学生的.积极思维的火花。
(4)通过4道小练习检测了学生对知识的掌握情况,课堂实践证明学生掌握了中心对称图形的概念,会判断一个图形是否为中心对称图形。
不足之处:
(1)拓展延伸没有进行,因为时间把握得不很理想。
(2)创设情境方面做得还不足,应在这方面继续加强,更加重视创设情境的作用。
中心对称教学反思3
本节课是建立在“轴对称”、“图形的旋转”基础之上,进一步学习特殊的图形旋转——中心对称,主要介绍中心对称的概念和性质。本节课的重点是中心对称的概念;难点是中心对称的性质和应用。 为了使学生感受、理解知识的产生和发展过程,鉴于本节教学内容的特点和学生的心理特征,我确定了以启发、实践、交流为主的教学方法。努力培养学生观察、思考、交流、合作的学习品质和猜想、类比、归纳、概括的思维习惯,对激发学生探索精神和创新意识等方面都具有重要意义。为了培养学生的抽象思维,我通过了大量课件,把动态的问题直观地表现出来,使学生更容易理解并掌握中心对称的概念和性质。
本节课,从学生已有的生活经验出发,引导学生通过各种形式的活动,从数学的角度去观察事物、思考问题,使学生真正实现由“学会”到“会学”的质的飞跃。
1、创设情景,引入新知
首先,复习轴对称的概念与旋转的定义、性质。观察课件,回答问题:
①请观察左图(课件)的变化,你有什么发现?
②线段AC与BD相交于点O,OA=OC,OB=OD,观察△AOB的变换过程,你有什么发现?从旋转变换的角度引入中心对称的概念,让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称中要求旋转角必须为180°),渗透了从一般到特殊的数学思想。
2、动手实践,探究新知
学生在教师的引导下动手操作,完成63页探究,旋转三角板,画关于点O对称的两个三角形,通过学生的动手操作,自主探索中心对称的性质:学生画出两个中心对称的三角形后,及时开展中心对称性质的研究,归纳出中心对称的性质: (1) 关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分; (2) 关于中心对称的两个图形是全等图形。让学生尝试自己证明△AOB与△A′B′C′全等。
3、应用新知
(1)讲授64页例1。
在本次活动中,教师应重点关注:学生画出图形后,能否加深对中心对称的性质的理解;学生不同的作图方法。
(2)课后练习。以适当的练习巩固本节课的知识点,使学生能熟练画出两个关于某点成中心对称的图形,巩固学生的作图能力,并会简单应用中心对称的性质。
4、归纳小结
说说你在本节课的收获。学生总结发言,不足之处由其他学生补充完善,教师应重点关注不同层次的学生对本节知识的理解、掌握程度,相互交流学习过程中的感受、收获。
本课由问题引入概念,从而激发学生研究问题、解决问题的欲望。接着,让学生动手操作,直观地得出两个图形关于某点对称这一概念,并加深对概念的理解。充分利用多媒体演示,尽量使问题直观化,帮助学生掌握概念、性质和画法,效果较明显。
通过本节课的`教学,我有如下建议:
1、从旋转定义引入中心对称的概念。先让学生弄清旋转角等于180°的两个图形之间的关系(借助多媒体演示,加深学生印象),进而引出中心对称的定义。
关于中心对称的定义,学生要体会到以下三层意思:
(1)有两个图形,能够完全重合,即形状大小都相同;
(2)对重合的方式有限制,也就是它们的位置关系必须满足一个条件:将其中一个图形绕某点旋转180°后能够与另一个图形重合;
(3)也就是说,全等的图形不一定是中心对称的,而中心对的两个图形一定是全等的。
2、可以将中心对称和轴对称进行对比:
轴对称中心对称区别对应点连线被对称轴垂直平分对称点的连线均经过对称中心,且被对称中心平分联系对称的两个图形全等
3、学生通过观察可以发现:中心对称是旋转的一种特殊情况,中心对称的性质与旋转的性质类似,主要区别在于对应点在一条直线上,旋转角是固定的180°。第一个性质很重要,要使学生明确关于中心对称的两个图形中:
(1)对称中心在两个对称点的连线上;
(2)对称中心到两个对称点的距离相等。
4、例1是画出与已知图形关于已知点的对称图形。此内容易于理解,可让学生自己摸索得出画法,教师稍做归纳即可。
5、中心对称的性质是中心对称应用的核心,是作图的基础。
中心对称教学反思4
本节课难度较大,一方面显示了数形结合的抽象性,另一方面也反应了学生对于知识迁移力不够。上节课我们要求学生掌握关于X、Y轴的对称点的表示,及相关知识点的应用,学生表示易于接受,但是把对称轴换成为X=1、Y=2等等学生就表示成在问题,我认为是学生对于知识的迁移力不够。不是一两个学生还是一个较大的面,因此我们在引导学生进入本节课时,从具体的简单的问题入手。
例如学生对于X=1,Y=2表示什么意义入手,逐渐的深入下去。
首先学生对x=1表示的是什么不清楚,有些认为是线段,有些人为是射线,甚至有些认为是一个点,通过取点引导之后学生基本上能理解x=1表示的是一条直线,关于直线x=1,x=2和x=3对称的点的坐标的规律,在教师的提示和引导下学生能总结出来,但是过渡到一般的直线x=m,绝大多数学生想不到,就是优秀学生总结起来有一定的难度,这时教师的.引导必须非常细致到位,即使得出规律后总结也是一个问题,因为涉及到坐标中点问题,坐标中点以前有作业中提过,不过没有细讲,很多学生已经没印象了,因此我们有必要帮助学生理解中点公试。从具体例子中让学生理解两点关于直线x=m对称,那么他们中点的横坐标就是m,两点关于Y=n对称,那么它的中点的纵坐标就是n。我们引导到这个时候,学生也要经过一番探究和思考才会明白,所以这节课的知识点虽然很少,但理解解起来很有挑战性,每一个环节都必须耐心的慢慢的指引和等待,要给学生足够的时间理清思维,整节课下来,还是有些学生很混乱,可能讲得还是不够细致,由于时间问题,练习的设置也很少,这也是本节课的不足之处。我认为这节课对于我们的生源水来说。
随笔:我认为这节课对于我们的生源水平来说难度大。教师的引导在规律探究课中显得尤其重要,除了语言的引导,还要结合板书及课件,最好能有动感的课件不断牵引学生的思维,使学生能逐步的发现问题,如果让我们的学生能自己总结规律,不是一件容易的事,我不会在这些问题上“恋战”。
中心对称教学反思5
第一课时学习了轴对称图形的有关知识以后,接下来就是今天的第二课时,画轴对称图形的另一半,对于每一个孩子来说,动手能力差空间思维能力差是普遍存在的现象,就比如说简单的一件事,作业本中垫格纸的使用,教师已经要求了孩子们在作业本的使用过程中,要注意书写的格式,以及作业本中的上、中、下部分的留白,可走上一大圈,你仍然会发现,原来孩子们不是不知道,就是不知如何来操作,如果没有一个合适的垫格纸,他们是很难把这项要求做到位的,于是一节课中,我逐一的教孩子们怎样使用垫格纸,也许正是由于我们过多的关注了孩子们的学习,而忽视了孩子们的动手能力,更忽视了孩子们的动手对于智力和生活能力的培养的重要性,才让孩子们面对如此小的问题,竟然不知所措,在教他们的过程中,我也发现了很多孩子也做了,但做的或是相反,或是不知如何下手,在我的内心深处,真的是有一种既焦急,同时,又觉得自己的责任重大的感觉。
接着说这节画轴对称图形的另一半的课堂。我先是提出了研究的问题“仔细观察画在方格中的轴对称图形,你发现了什么?”接下来让他们与小组同学交流,由小组长负责梳理报告,与全班同学交流,接下来的时光,孩子们能够展示出了对称点距离对称轴的距离都是相等的,同时,也让同学们更清楚地知道在轴对称图形中,各个部分与整体之间的关系,接下来的.自己画另一半,孩子们展示了自己的画法,一种是找距离,一种是找对称点的方法,最后,让同学们使用找对称点的方法,孩子们在大屏幕前的操作,让同学们又一次得到了正确方法的启示。
整个活动是紧凑的,但其中另外的惊喜才是更可贵的,一是孩子们不由自主地发现,找图形中角的顶点的对称点是非常关键的,二是在方格图中,斜线与横线竖线的距离是不能用一个标准来衡量的,三是在交流的时候要与大家一起交流,不要顾左右而言它,要能够积极的参与进来,而非是一种想说自己的意见的情况,四是要敢于把自己不同的想法说出来,不要人云亦云。
正是在不断地锤炼中,我们的课堂才会越来越成熟,也正是在不断地打磨中,你才能发现原来我们可以在细微之处做的更好,一是坚持去做,一是不断地用慧眼去发现,在做与思中让自己的课堂更适合孩子们的发展!
中心对称教学反思6
本节课主要是画对称图形的对称轴。在课的导入时,我出示飞机图,奖杯图,蝴蝶图,问学生这些图有什么共同特征?设计此环节,可以引起学生对有关知识的回忆,并对对称轴的画法我为学生作了示范,说明对称轴一般应画成点划线,提出本节课重点研究对称轴,使学生明确了学习目标。新授时,我让学生折长方形纸的`对称轴,一开始,学生只折了一条对称轴,我问了学生还可以怎么折?,学生又折出了一种,我分别展示了两种折的方法,有一个学生说还有,沿对角线折,我让他折出来给大家看后,排除沿对角线折的方法,学生明白了长方形只有两条对称轴。然后研究怎样画长方形的对称轴,让学生自主发现、找出规律:量出长度,并取中点再画。教学“试一试”时,因为有了探究长方形对称轴的基础,所以放手让学生尝试折纸、作图。大部分学生找出了四条对称轴,还有小部分学生只找出了两条。在评讲时,通过操作,提高了后进生的认识。
后面的练习是重点让学生画出一个轴对称图形的所有对称轴。但是学生找不全,甚至把第2题的第四幅图也认为是对称图形。我事先准备好的图形让学生折一折,进一步体会轴对称图形的对称轴条数不只一条。并概括出是正几边形就有几条对称轴。并强调学生要规范地去画。效果还可以。
中心对称教学反思7
“新课程标准”强调学生的“经历,体验和自主探索”,突出过程性目标,实现教的转变、学的转变、课堂气氛的转变。下面以《中心对称》一课为例,进行反思。
一、关于概念的教学
中心对称概念的引出。学生在初二上学期学习了轴对称的有关知识,我设计先复习轴对称概念和性质。本课在揭示中心对称的概念和性质时,加强了和轴对称的辨析,让学生在类比和辨析中更好地掌握中心对称这一概念,从而达到理想的效果。
二、教的转变:本节课我把自己的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画中心对称图时,我只给出一个三角形,让学生把对称中心定在不同的位置。突出以学生为主体的要求。让学生通过画图归纳出中心对称的性质,达到激发学生自觉地探究数学问题,体验发现的乐趣的'目的。
三、学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。让学生设计上面的各种类型图,学生自己去解答,学生通过自主活动发现了规律,增强了学生自主学习的意识,增加了他们学习数学的信心。
四、课堂氛围的转变:整节课以流畅、开放、合作、隐导为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以对话、讨论为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
五、重视知识与生活的联系
数学的教学不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力情感态度与价值观等多方面得到进步。本节我设计如下联系生活的题:利用中心对称测量河宽
六、不足之处
1、轴对称的概念强调不到位、不够细致,尤其是对称点的概念。给学生消化理解的时间太短。
2、没讲中心对称与旋转对称的关系。
3、联系生活的例子离学生经历太远,如举测小口瓶子的内径,能使学生亲自动手就更好了。
中心对称教学反思8
在教学中以出示旋转对称图形为切入点,让学生在复习旋转对称图形的知识上导出新的知识,这样有助于学生在原有的知识体系的基础上构建新的知识体系,有助于新的概念的掌握。
学生在初一下学期学习了轴对称的有关知识,在学习中心对称知识时一方面要用这一知识作类比,另一方面又要防止轴对称概念对中心对称概念的干扰,在教学中本课在揭示了中心对称图形的概念,加强了和轴对称图形的辨析,并在练习中掌握它们的'区别,让学生在类比和辨析中更好地掌握中心对称图形这一概念。
中心对称图形的概念是本课重点,课前我和学生一起玩魔术,准备四张扑克牌,三张不是中心对称图形的牌,一张是中心对称图形的牌,老师背过身,让学生任意转一张牌,老师都能猜出,让学生想为什么,同学们想不想学会这个本领?学习这节课的知识,你也会这个本领了。对于刚才所提出的问题学生急于知道,但仅利用现有的知识技能又无法解决,从而形成认知的冲突,这就激发了他们的求知欲,使学生在问题最集中,思维最活跃的状态下开始学习。通过一堂课的学习,在课堂结束时又回到了这个问题上,同学们明白了课前魔术表演的奥秘,也其乐融融地投入了游戏中,让他们体味到了数学的趣味和神奇。
本课在两个图形成中心对称的特征的导出由学生自主探索而得,在演示给学生两个三角形关于点成中心对称,让学生观察图形中对应线段的位置和数量关系,对应点的连线与对称中心的关系,然后让学生自己通过连线测量发现了对应线段平行且相等,对应点的连线经过对称中心,且被对称中心平分。学生通过自主活动发现了规律,增加了他们学习数学的信心。
我在课尾安排了让学生欣赏生活中的中心对称图形,让学生知道中心对称图形与人们生活密切相关,而且充满了对称美,也让学生知道自己也能设计这些图形,再次让学生体味数学的魅力——图形美,在课后作业中布置学生搜集生活中的中心对称图形,并设计中心对称图形,让学生将课堂中所学的知识用到生活中去。
中心对称教学反思9
本课教学重点是使学生初步认识轴对称图形的一些基本特征,难点是掌握判别轴对称图形的方法。在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物有很多,也为学生奠定了感性基础。
这是一堂集欣赏美与动手操作为一体的综合实践课,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,因此,本课的教学设计力求体现:数学问题生活化,注重培养学生观察、交流、操作、探究能力的培养,让学生充分经历知识的形成过程,在教学过程中建构具有教育性、创造性、实践性、操作性的学生主题活动为主要形式,以鼓励学生主动参与、主动探索、主动思考、主动实践为基本特征,以学生的自主活动和合作活动为主。
纵观这节课的教学过程,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点。学生始终保持着高昂的'学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦。
一、创设情境,激发兴趣
追求美、崇尚美是人之天性。整堂课以欣赏美为线索展开教学,本课就创设了这样一个情景动画:“碧草青青花盛开,彩蝶双双久徘徊”,在优美的小提琴协奏曲的渲染中,两只小企鹅到北京旅游,介绍沿途参观的很多著名景物(这些景物都是对称的),带领学生一起畅游了一番,学生在愉悦的气氛中开始观察优美的画面,仿佛身临其境,领略了对称物体之美,从学生熟知的生活情境出发,让学生初步感知对称的事物。这种赢造宽松愉悦、开放式的环境,学生纷纷自觉投入到学习活动中,观察这些实物的特点——它们的两边都是一模一样的,从而引入对称,逐步将实物抽象成平面图形,通过操作实践发现其共同特征,导入教学新授,达到串连教材的效果,让学生在这种欣赏美的教学情景中快乐的学习,激发学生学习数学的兴趣,开拓学生的思维,发展学生的联想、想象能力,引导学生感受美、鉴赏美、领悟美,达到情境(景)交融的教学效果。
二、实践操作、激活思维
本课为了让学生充分体验到轴对称图形的这一特征,安排了折一折,剪一剪,画一画,等一系列活动,让学生多种感官参与教学活动。在新授教学时并没有采用传统的灌输手段,而是把学生看作是课堂的主角,让学生通过观察平面图形的特征,大胆地加以猜测,说出这些图形都是对称的,并通过小组动手操作来验证它们为什么是对称的,采用对折的方法来折一折,让每位学生都参与活动,从只重视知识的教学转变为注重学生活动的课堂生活,给学生多一点思维的空间和活动的余地;在对折的过程中引导学生观察图形的特点,通过操作发现图形的两边是完全相同的,这时教师就引入“完全重合”,让学生反复地操作体会,再配合课件的动画演示,初步感知什么是“完全重合”;最后教师在学生动手操作、形成初步感知的基础上配合课件动态出示“轴对称图形”的概念,让学生了解这些图形的基本特征,形成感性的认识。
在整个教学的过程中,始终以学生动手操作实践为主导,在巩固练习中也安排了一些学生操作的活动,让学生在操作过程中体会“完全重合”和“不完全重合”的区别,为辨别是否轴对称图形奠定了基础。在最后的制作轴对称图形时完全放手让学生去操作,活动的设计体现了以学生为主体,引导学生主动探索,让学生在活动中感悟,在活动中体验,使学习知识和提高能力同时得到发展。
三、小组合作、发挥特效
每个学生在活动中的经验与收获不尽相同,为了使学生个体的、群体的活动促进学生的整体的发展,教学中常发挥合作交流的功能,采用集体讨论和交流的形式,将个人的经验或成果展示出来,弥补一个教师难以面向众多有差异的学生的不足。在本课中,有很多活动都是采用小组合作的形式,由于低年级学生作图能力不强,对于正确美观地制作出一个轴对称图形还有一定的难度,但由于学生学习发展的进程不同,针对一部分学生已会制作的实际情况,我组织学生展开分小组合作讨论活动:怎样剪一个轴对称图形,然后评一评小组成员中制作的轴对称图形,在动手操作时也把自己的想法在小组里交流。在引出轴对称图形时,也是通过小组合作,在操作、交流中感知,这样尽可能地将每个人的收获变成学生集体的共同精神财富。
四、课外延伸、丰富情感
本堂课的结尾让学生欣赏古今中外著名的对称建筑,配上古典的轻音乐,拉近了生活与数学的距离。古建筑又是一种艺术,渗透在数学学科中,既是学习数学的好材料,又是渗透民族文化的好题材,选择切合教学符合儿童学习规律的素材,需要一些有民族特色的题材,如本课例中的背景音乐、古建筑、平剪纸等就是在这方面作出的有益尝试和探索。
本节课的不足之处:导入虽很贴近学生生活,体现欣赏美,也很自然,但总觉有些平淡。在判断学过的几何平面图形是否轴对称图形,这是本节课的一个重点,在汇报时处理得过急没有注意到个别差异。
中心对称教学反思10
本课教学内容在课本的基础上作了一些调整,包括作线段的垂直平分线、作对称轴、作轴对称图形等内容。
最大的优点是:两个重要的题型能够比较地理解和掌握,已知直线和直线的'同侧有两点A、B,在直线上求一点P,使点P到点A、B的距离相等;已知直线和直线的同侧有两点A、B,在直线上求一点P,使点P到点A、B的距离和最小相等。
最难处理的问题是第二个典型应用的引导,作法为:作点A关于交直线l的对称点A′,连接A′B,交直线l于点P,证明这个点使距离之和最小很好启发引导,但是为什么能够想到这样作图,是比较难处理的问题,我在设计这个问题时,要求学生把直线想象成镜子(平面镜),由点A经过平面镜看点B,光线经过的路线就是最短的路径,因此,使我们选择了这样的作图方法。更难的应用,已知∠XOY,和角内部的点A,在OX、OY上分别作点B、C,使△ABC的周长最小。引导学生思考时,还是可以把OX、OY看成两面镜子,学生理解起来能够更便利些。
中心对称教学反思11
轴对称图形这一课的教学目标:
1、使同学通过观察、操作初步认识轴对称现象,并能在方格子上画出简单图形的轴对称图形。
2、通过学生活动,发展学生的空间观念,培养学生观察能力和动手操作能力,学会欣赏数学美。
3、培养学生的合作意识,让学生在合作中交流、学习、互动。教学重难点能辨认对称图形,并能在方格子上画出简单的轴对称图形。
开课伊始,我便拿了剪子和彩纸,告诉学生们:“老师要送给你们一些礼物,只有细心观察,发现秘密的'孩子才能得到礼物。”激发孩子们的好奇心后,我快速地开始剪纸,不一会见出了一只漂亮的蝴蝶,孩子们很兴奋,我让孩子们说说老师这怎样剪出来的,因为孩子们观察细致,所以说得准确。由此便引出了轴对称图形的概念。相继,我又剪了一些美丽的对称图形。
这样一节好的教学内容,我当然不会让学生错过动手操作的机会了,孩子们的创造力是无穷无尽的,它们撕或剪出许多美丽的对称图形。然后我又让孩子们找找生活中的对称图形。
这一节课孩子们在轻松愉快的氛围中度过。
中心对称教学反思12
昨天讲了青年教师素质汇报课《轴对称》一节,讲完之后让我最大的反思就是自己语言的匮乏,以及语言的随意性,即使之前已经设置好要说的话,但是对于处理学生生成的问题时,语言过于随便,深深的忏悔自己语言的失误真的怕给孩子带来影响。
讲课过程中反思如下:
1、开头让学生找对称轴时有点着急进入主题,虽然是学过的.东西但也应该让学生自己回忆起来并用语言叙述,而这里老师说的有点多。
2、让学生发现什么的时候,一定不能机智的把孩子的偏离拉到正题上,以至于绕了个圈子。
3、应该多找几个同学上前去说画另一半的过程,并让学生们结合方法叙述一遍,这样效果会更好。
4、觉得自己这节课真正的与学生融在了一起,而不是停留在自己是否落环节。并且能够锻炼孩子们的表达能力,让学生尽情的说。
中心对称教学反思13
本节课初步教学对称现象和轴对称图形。通过学习,意在让学生体会生活中的对称现象,初步认识轴对称图形,并能根据其特征准确进行判断,同时在活动中让学生领略轴对称图形的美妙和神奇,感悟数学与生活的联系。三年级孩子第一次接触轴对称图形,四年级和中学还将进一步进行研究,对四年级孩子来说,这初始的第一课,如何激发学生的学习需求,把握好教学的尺度,提升学生的数学素养,是我们在备课时,着力思考和深入研究的问题。
一、把握知识的生成点。
虽然本节课是孩子第一次接触轴对称图形,但是对于对称现象,学生却并不陌生,再加上从幼儿开始,学生就有机会进行折纸、剪纸等活动,有时也会用“对称”来描述一些现象,因此我们认识到学生学习轴对称图形有着丰厚的生活经验。但物体的对称特点与轴对称图形是两个不同的概念。“对称性”是某些物体的特征,“轴对称”是部分平面图形的特征。正如平是对称的物体,画下来的平图形才是轴对称图形,平这个物体不是轴对称图形。因此找准知识的生长点,帮助学生正确地建立相关概念,并能主动灵活地应用概念进行判断分析,是本节课的重点所在。
我们在备课的过程中,充分尊重学生的基础性资源,从生活中收集了大量的对称物体,如人民大会堂、故宫、巴黎埃菲尔铁塔、伦敦塔桥、蝴蝶、奖杯、向日葵……让学生在静静的欣赏中,在同类物体的观察比对中,主动发现它们的共同特征:即这些物体都是对称的。在学生充分认识了生活中的对称现象之后,我们又通过多媒体课件的演示,将生活中常见的一些物体画了下来,让学生真切地体验从立体到平面,从具体到抽象的过程。这样的设计充分调动了学生的经验储备,符合学生的认知规律,学生在熟悉的生活场景中体悟到,今天这堂课研究的不再是生活中对称现象,而是平面图形的对称。
“对折”是“轴对称图形”的研究方法,以往教学中,教师一般都会直接要求同学进行下列操作活动:请你们先把图形对折,再观察一下这些图形对折后有什么特点。这样的做法显然忽视了学生学习的主动性,漠视了学生学习的心理需求,如果没有要动手折一折的强烈愿望,学生只能处在被动接受的状态,因为老师要我们折,所以我要折一折,至于为什么折,学生是茫然而盲目的。怎样才能激发学生主动学习的欲望?课堂上,我们先引导学生回顾:我们以前学过不少平面图形,像长方形、正方形等,在研究这些平面图形的时候,我们都采用了哪些研究方法?借助学生对平面图形已有的研究经验,调动学生的学习方法储备,促使他们主动寻求既有的研究方法解决问题,提出本节课的研究方法——“对折”,这样的处理使接下来学生的操作活动,目标变得清晰起了,同学们带着明确的方法和活动目标进行活动,感受学习材料的特征,习得知识的过程自然而流畅,凸显了数学学习方法价值。
对于判断常见平面图形是不是轴对称图形,我们也采用了先自由发表想法,再在意见产生分歧时,及时跟进:怎样才能知道它们中到底哪些是轴对称图形呢?由此,学生主动的利用轴对称图形的特征,寻求解决问题的方法,学习活动的开展完全顺应了学生学习的实际需求,学生学得深入而快乐。
二、找准研究的聚焦点。
轴对称图形的教学,要求学生利用初步的概念进行判断,通过判断哪些图形是轴对称图形,哪些图形不是轴对称图形,加强对概念的理解,因此课堂上不可避免的会涉及到一系列学过的平面图形:如长方形、正三角形、平行四边形、等腰梯形等,这里只对图形个案,即只对这个三角形、这个梯形、这个平行四边形和这个长方形进行判断,不对一类图形的整体进行判断。但学生在判断时总是会说“三角形是轴对称图形”、“平行四边形不是轴对称图形”等诸如此类并不科学的结论,教师面对这种情况,也总是只能在学生得出结论后一再强调:要说“这个三角形”是轴对称图形,“这个平行四边形”不是轴对称图形,更有甚者,会出示各种类型的三角形和平行四边形,让学生判断,从而归纳出:不是所有的三角形都是轴对称图形,也不是所有的平行四边形都不是轴对称图形。这样的处理常常会让学生摸不着头脑,产生疑惑,无形之中增加了学习的难度,拔高了学习的要求。怎样避免这样的尴尬?课上我们给每个平面图形都注上了序号,学生在猜想判断、研究交流时,就自然而然地从关注图形本身是不是轴对称图形,聚焦到了判断轴对称图形的方法和得出结论的.过程上来,这样的处理看似简单实则经过了精心的设计,序号的使用既避免了让整堂课的教学目标被拔高,也凸显了三年级同学学习轴对称图形的价值和意义。
三、关注能力的提升点。
数学课仅仅有生活味是远远不够的,做足“数学味”才是数学课的根本。
1.让思维外化。
数学是思维的体操,语言是思维的外壳。爱因斯坦曾经指出:“一个人的智力发展和他形成概念的方法,在很大程度上是取决于语言的。”虽然本课是轴对称图形的初始学习阶段,对孩子的要求比较低,但是如果在判断轴对称图形的过程中,只要求学生简单的凭借感觉判断,显然并没有着眼于发展孩子数学思维能力的提升。因此,我们在备课过程中,总是尽量多的考虑学生语言表达所需要的支架与拐棍。课上,我们着力营造出分享交流的平台,让合作小组在操作活动后,充分展示出自己的想法,通过教师点评、生生互评的方式,鼓励学生将思维过程用外化的语言来表达,课堂上预留充分的时间和空间让学生阐述观点,提出困惑,当学生的数学表达不顺畅时,我们适时采用同伴互助、教师点拨的方式,努力实现学生数学素养的提升,而课堂也因为丰厚的数学表达,绽放出浓浓的“数学味”。
2.让概念内化。
“轴对称图形”是个比较长的名字,它的特征——对折后能完全重合,也是相对较长的一段话,几次试教中发现,孩子对概念的识记总是困难重重,怎样将新的数学概念纳入到学生的知识系统之中?我们认识到小学生获得概念的认知心理活动过程是:“充分感知——建立表象——抽象概念——形成概念”,针对孩子的年龄特征,我们做了各种尝试:我们精心准备了各种学具,创设活动,让学生在“折一折”、“看一看”、“想一想”、“指一指”等实践活动中,充分感悟轴对称图形的特征;我们利用多媒体精心制作了动画,演示出图形对折的过程,深化学生对“完全重合”特征的理解;我们设计了简练而精美的板书,以突出轴对称图形概念的本质特征:为了真正打开学生的心扉,我们在课堂上预留充分的时间,让孩子用自己的语言来解释“完全重合”的含义;我们设计了图形分类的活动,通过“不完全重合”图形与”完全重合”图形的比较,深化学生对对折后两边“完全重合”的理解;课上,我们请孩子来领着大家读一读注上拼音的“轴”字,化解了由于生字对名称识记的干扰……学生在动手、动眼、动口的多感官参与下,数学概念慢慢地建立起来,原来艰涩的概念,开始变得顺畅而熟悉起来,当概念潜入孩子的意识之中,课堂才真正洋溢起数学之味。
中心对称教学反思14
本课是明确中心对称图形与中心对称的教学,我非常重视本节开头的教学内容,采用做游戏摆扑克的方法引入教学,激发学生的学习兴趣,在进行了解中心对称的概念时我采用了让学生观察分析探讨,使学生从感性认识上升到理怀的认识。从实例出发,展现知识的形成过程,使学生不会感到数学知识学习的单调乏味,逐步提高学生抽象概括的能力。
初二学生对一些“动”图形很感兴趣,为此本节采用了动画形式,让学生亲身体验;从而使学生易于发现、总结。教学时以启发和小组讨论交流为主,进行谈话式的引导,并注意利用变式练习题,准备开放性的习题配合,归纳小结注意点,以期达到调动学生学习的积极性,使学生的思维更加活跃,迸发出创新的火花,让学生在理解的基础上掌握中心对称的有关知识。
为了突破重点、难点,我采用了分组讨论、学生启发、实例分析的方法让学生自主说出来;相互补充,学会合作。培养了学生的`良好学习习惯与和谐融洽的教学气氛。在整个教学过程的设计中师是朋友、是合作者;讲解则是学生探索结果的概括,对学生的鼓励调动了学生的积极性。
本节在调动学生积极上还存在着一定的不足。比如:有的学生发现问题却不能主动提出来。教学中的学困生虽然有了一定的进步,但还有待于提高。
中心对称教学反思15
本课教学重点是使学生初步认识
轴对称图形的一些基本特征,难点是掌握判别轴对称图形的方法。
成功之处:
纵观这节课,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生的学习主动性,使他们真正成为学习的主人,积极地参与教学的每一个环节,努力地探索解决问题的方法,大胆地发表自己的观点。学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦。
在教学过程中,本课的教学设计体现:数学问题生活化,注重培养学生观察、交流、操作、探究能力的培养,让学生充分经历知识的形成过程,在教学过程中建构具有教育性、创造性、实践性、操作性的学生主题活动为主要形式,以鼓励学生主动参与、主动探索、主动思考、主动实践为基本特征,以学生的自主活动和合作活动为主。使学生始终保持着高昂的学习情绪,切身经历了“做数学”的全过程,感受了学习数学的快乐,品尝了成功的喜悦。结合观察和操作活动,引导学生欣赏有关图案、图片的对称美,使学生在获取数学知识的同时,受到了美德熏陶,培养学生积极健康的审美情趣。让学生剪自己喜欢的图形然后给他们分类,即通过大量的现实生活中的轴对称图形来认识轴对称的概念,让学生观察、体验生活中的对称现象,从而探索、发现出图形中的轴对称特征,然后让学生体验轴对称在现实中的`广泛应用、数学与生活紧密联系,教学中让学生带着数学走出课堂,走进生活去理解生活中的数学,去体验数学的价值。本节课我抓住对称图形的特点师生一起欣赏生活中一幅副精美的对称图片,给学生带来美的感受。让学生在学习中感受到生活中处处有数学,让学生在学习中体验学数学、用数学的乐趣,培养学生积极探索的精神,激发对数学学习的兴趣,培养学生感受美的能力。采用多种方式进行评价:
1、对能否列举出生活中的一些对称现象,能否根据轴对称图形的基本特征“做”出一些轴对称图形。都能给与恰当的评价。
2、在评价过程中,关注学生的情感,价值观。
不足之处:
1、练习的层次性。在设计教案时我就在思考如何在练习中体现层次性,一直没有能够得到满意的解决。
1、导入自然贴近学生生活,但有些平淡。在处理本节课的重点时,处理得过急没有注意到个别差异。
3、教师的语言不够丰富,对学生激励性的语言不够,希望以后在这方面能做得更好一些。