数对问题教学反思
身为一名到岗不久的老师,课堂教学是重要的工作之一,借助教学反思可以快速提升我们的教学能力,怎样写教学反思才更能起到其作用呢?下面是小编整理的数对问题教学反思,仅供参考,希望能够帮助到大家。
数对问题教学反思1
本课主要教学倍的认识以及“求一个数是另一个数的几倍”的简单实际问题。教学本课时主要做到了:
一、通过观察、操作、游戏等活动,多渠道促进学生内化对“倍”概念的理解。教学中首先让学生欣赏图片说一句话“谁是谁的.几倍”,接着让学生根据“倍”的知识灵活、开放地摆小棒,使学生牢固建立起“倍”与“几个几”之间的联系,内化对“倍”概念的理解。
二、教学中,我充分提供给学生活动和发展的空间,让他们亲身经历将“求一个数是另一个数的几倍”转化为“求一个数里面包含有几个另一个数”的过程,并要求学生会用自己的语言表达解决问题的大致过程和结果。如提问:要求这个问题必须知道什么?用什么方法计算?为什么?
本节课仍存在一些不足之处,在今后的教学中一定注意改进:比如应强调:“倍”不是单位名称,它表示两个数之间的倍数关系,所以商的后面不要写“倍”字,应关注一些细节,使学生答题更加规范严谨。再如:在比较“求10、15、30分别是5的几倍”时,可引导学生发现:现阶段的解决问题,一般是“求一个大数是较小数的几倍”。这样能避免学生提出“求一个较小数是大数的几倍”的错误问题。
数对问题教学反思2
教学目标:
1、正确掌握求稍复杂的已知一个数的百分之几是多少求这个数的应用题的解题方法,并能正确地解答这类应用题。
2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学过程:
一、复习
1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了 。现在图书室有多少册图书?
2、学生找出这道题目的分率句,确定单位1,并根据数量关系列式:1400(1+ )
二、新授
1、教学例3
(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
(2)学生读题,找条件和问题,明确这道题是把谁看成单位1。
(3)引导思考:从今年图书册数增加了12%这句话中,你能知道些什么?
① 今年图书增加的部分是原有的12%。
② 今年图书的册数是原有的'120%。
(4)学生讨论后分小组交流,并独立列式计算:
人教版数学《用百分数解决问题(3)》教学设计第一种:140012%=168(册)
1400+168=1568(册)
第二种:1400(1+12%)
=1400112%
=168(册)
2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)
3、巩固练习:完成P93做一做第1题。
三、练习
1、补充练习
(1)出示练习:
①油菜子的出油率是42%。2100千克油菜子可榨油多少千克?
②油菜子的出油率是42%。一个榨油厂榨出油菜子2100千克,用油菜子多少千克?
(2)分析理解:
A、出油率是什么意思?这两道题有什么相同和不同?
B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?
(3)学生独立列式解答。
2、学生做教科书练习二十二的第1、3、4题。
课后反思:
本部分内容是求比一个数多(少)百分之几的应用题,这部分内容与求比一个数多(少)几分之几的应用题相似,只是相应的分率转换成了百分率。因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。因为题型及解题方法几乎都相同,学生学起来也较为容易。
数对问题教学反思3
本节课是数学广角内容,也叫“抽屉原理”。是利用数学模型思想来解决生活中的问题。具体如下:
1、结合游戏,引出问题兴趣是最好的老师,在导入新课时,我以魔术游戏引入,激发学生的兴趣,让学生初步感受到为什么5张牌中至少有两张是同一花色是现象,这个游戏虽然简单却能真实地反映鸽巢原理的本质。通过游戏,一下子就抓住了学生的注意力。让学生觉得这节课要探究的.问题,好玩又有意义。
2、建立数学模型在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,组织学生展开讨论交流。我引导学生借助平均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。最后,组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:
(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。从探究具体问题到类推得出一般结论,初步了解“鸽巢问题”。然后,到实际生活中加以应用,找到实际问题和“鸽巢问题”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。总之,“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。本节课存在很大的不足就是教学节奏有点快,个别学生思维跟不上。
数对问题教学反思4
例5是已知朝阳小学美术组的总人数,以及其中女生人数是男生的百分之几,求男、女生各有多少人的实际问题。这是两个相对独立的数量之间进行比较的问题,对题中的两个数量关系学生并不难理解,难点在于如何合适的用字母或含有字母的.式子表示题中两个未知的数量。
教学中,我进行了铺垫。我将“女生人数是男生的80%”改成了“女生人数是男生的 ”后,让学生方程解决问题。集体订正时,要求学生说说单位“1”是哪个,怎么找,解方程后要注意什么。然后将题目改回“女生人数是男生的80%”让学生尝试。结果是出乎意料的好,仅有两人做错。一问,学生齐答:“80%就是 ,跟刚才的题目一样的。”
哈哈,以不变应万变。
数对问题教学反思5
列方程解决问题是在学生掌握了解方程的方法并且能够根据图式列方程并计算的基础上进行教学的。在这一章节内容中包含用方程解简单的实际问题,也包含用方程解复杂问题。
成功之处:
学生在学习中最大的困难是如何正确找到等量关系的问题。因此,在教学中,我首先通过例1的教学让学生明确一个数比另一个数多(少)几可以得出如下等量关系:一个数=另一个数+几(或-几)一个数-另一个数=多几(少几)
还通过练习中出现的倍数之间的关系如一个数是另一个数的几倍得出如下等量关系:几倍量÷一倍量=倍数一倍量×倍数=几倍量
单价×数量=总价总价÷单价=数量总价÷数量=单价
速度×时间=路程路程÷速度=时间路程÷时间=速度
在例2的`教学中通过一个数比另一个数的几倍多几(少几)让学生自己得出等量关系:几倍量=一倍量×倍数+多几(或-少几)
在例3的教学中通过找两个量的和(或差)得出等量关系,如梨的价钱+苹果的价钱=总钱数一个量-另一个量=相差数
在例4的教学中,是比较典型的倍数和(差)问题,可以根据例3的方法去寻找等量关系。
在例5的教学中,是典型的相遇问题,其等量关系既可以根据例3的方法寻找,也可以采用速度和×时间=路程速度差×时间=路程之差
不足之处:
在练习中出现个别学生找不到有关等量关系的信息,导致无法正确列出方程。
再教设计:
在之前的算术法教学中,也应强调等量关系,这样学习方程的时候,学生不至于感觉有难度。
数对问题教学反思6
“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。
我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。一、通过课前活动,以中央电视台公益广告为素材,让学生感知植树与数学的联系。二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。四、多角度的应用练习巩固,拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几点做得比较好:
一、抓住《植树问题》的数学本质,注重学习方法的培养
因为现在的家长都非常重视对孩子的,因此许多孩子都通过各种各样的途径或多或少的接触过此类问题,甚至部分学生可能已经完全掌握此类问题。但是可以肯定还有许多孩子对此类问题还是感到陌生,毕竟我们的数学课堂要顾及每一位同学的发展。因此对于此类问题的教学因采用发现学习。通过孩子对问题的探索和讨论逐步得到结论再用得到的结论回到生活中解决问题。例如在《植树问题》中,因为课始了解到许多孩子已经接触或听说过,因此课的开始教师故意把问题复杂化,把路的'长度拉长,在处理教材时我把例题中的100米改为500米。其优点是让学生产生矛盾冲突,产生不同的结果,然后提出解决或验证的方法,引导学生可以采用画图的方法,因为路太长,在画图过程中学生就会发现没法解决。从而启发学生可以自己选择短一点的路来进行研究,围绕问题解决过程中的中心环节,指导学生通过分析、比较、判断、推理等思维活动,积极探究和挖掘具体事物的数学本质,并最终将问题以数学模型的方式呈现出来,使复杂的问题本质化、简洁化、一般化,从中寻找规律,再来判断和确认课始的猜想或结果是否正确,最后方法解决问题。这样一来,学生对这一类问题的解决就有了共同的程序与方法。而这对学生数学思想的培养,无疑有着无可替代的作用。
二、注重学生的自主探索,体验探究之乐
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽
松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,根据不同路长的路设计植树,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变路长后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:500米长的小路,按5米可以平均分成100段,也就是共有100个间隔,而栽树的棵数比间隔数多1,因此一共要准备101棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、关注植树问题模型的拓展和应用
植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,老师加强了模型应用功能的练习,本课练习有以下两个层次:
(1)直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学
生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。
(2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如公共汽车站台的事件,街道两旁路灯的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以精美图片的形式让孩子们了解生活中与植树问题相似的现象,感受数学的美。
从本节课的教学效果来看,由于考虑到学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,预设的教学目标是顺利完成的。尽管本节课有值得高兴之处,但仍存在一些不足,如:课堂上生成的资源,没能及时的点拨学生,小组合作学习形式太少,因此生生交流不够充分等。这些问题有待今后教学中引起重视并加以改善。
数对问题教学反思7
排队问题是一年级上册第六单元的最后一课时,以“排队问题”展开数学上方法或策略的学习。学生利用数序体验解决一般生活问题的过程,积累解决问题的经验,感受生活和数学的密切联系。本节课的难点在于学生能运用画图法解决问题,何时去掉两边,辩证看待问题,具体问题具体分析。
我们一年级组教师,经过讨论和集体备课,决定把教学重点放在算法的学习和运用上,学生能利用多种方法解决问题,解决排队问题的方法有很多,有数一数、画一画、列算式等方法,考虑到一年级孩子抽象思维能力较弱,注重引导孩子掌握数数和画图的方法,尤其是画图,一定要简洁、明确、规范。我们一年级组的三位数学教师进行了同课同构,在一轮一轮的上课中打磨这节课,力求上出一节高效课,在上课之后我们集体评课,其他老师给以了我们许多宝贵的建议,其中赵老师提出应该进行适当拓展,启发学生思维,画图应当更加简洁,学习数学的重要目的之一是便利生活,越方便越好。
值得反思的几个内容:引导学生探究解决问题的策略,而不是直接告诉他。学生在获取数学信息和问题后,引导学生思考如何解决问题是重点。根据两个班级的教学情况,我发现有些孩子遇到问题后,手足无措,不知道该怎么做。这个时候老师引导孩子能不能画出来或者写数字表示出来。提示要明确,否则有些孩子可能会当成美术课来上,画图的目的`是解决问题,方便简单才是我们选择画图的理由。当时在一个班级,学生不太熟悉画图法,我提醒也不够明确,可提醒孩子我们所熟悉的图形,或者找有想法的孩子进行板书,在学生自我分享、互相学习中引导孩子,这比老师直接告诉孩子更加有效。
有些孩子还利用列算式的方法进行,算式虽然没列对,但孩子能想到这种方法并使用都是值得鼓励的,引导孩子进行数形结合,算式和画图都是相通的。根据学生的最近发展区,进行适当拓展。教师不能高估孩子,也不能低估孩子。教学应该先于学生发展,给学生适当的提升机会。因此,结合两次磨课的效果,进行了之间问题的拓展,如推迟问题、放假问题、读书问题,这些题目需要学生灵活处理,运用画图法解决并验证。注意培养学生的检查意识。通过学生的板书展示和教师巡视,多数孩子能画一画解决问题,但不够规范,数字标记不明确,该去掉的没有标记,在教学上我提醒孩子解决完问题还需要检查,学生就能想到数一数的方法检查,教师需要告诉孩子不仅要数出来,还要标上数字,这样就可以确保画图的准确性和明确性。及时反馈学生的作业。在这节课上完后,绝大多数学生都能运用画图法解决问题,通过习题练习,很多孩子还需要进一步规范画图,画图是为了简便,仍然有一些孩子把所有的数字画出来,这需要老师在后续的练习和教学中进一步规范学生画图。
这节课在不断打磨下,改进了不少,但是仍然存在一些不足,比如由于自身紧张,过于关注教学,对学生的评价不够充分及时。口令性的命令需要加强。给以学生机会可以再多一些,放手给学生,教师少说一些。板书需要加强等。这样解决问题类型的课,比较适合问题导向型的学习方式,多给以学生一些思考的时间,让学生充分探究、谈论,当然也不能高估学生的能力,毕竟是一年级的孩子,探究学习能力需要逐步培养,教师恰当的引导是非常重要的。我觉得充分备课是高效课堂的首要前提,要备教材、备学生、备资料,吃透教材、了解学生、适当拓展是我们上好一节课的基础,路漫漫其修远兮,在数学教学上我需要学习的地方还有很多。
数对问题教学反思8
本节课我的教学内容是第六单元的解决问题例8,这个例题要求学生通过看直观图,将抽象的数学信息具体化,进而探讨如何解决含有“归一”数量关系的实际问题。
本节课以买碗为主线,通过学生熟悉的两步计算,建立归一问题的基本模型,让学生理解归一问题的解题思路:先算出一个单位的.数量是多少,在根据题目中的其他条件算出最后的结果。由于三年级的学生抽象思维不强,在课件的设计中,主要采用示意图的方式,让学生看图理解题意,从课堂表现来看,效果还是不错的,只是有个别差生开始不理解,到后来的练习也能基本完成。本节课的两个例题同属于归一问题,但略有不同,第一个是正归一,后一个是反归一,我在处理这两题时,采用了对比方式,让学生在对比之下发现不同,进而减少了正反归一问题的混淆。在课堂的最后我设计了一个“我会提问题”的环节,给出学生一个条件,让学生补充提问题,巩固了学生的新知,但是由于例题时间用了过长时间,本环节没有顺利完成。
本次课后,通过听课教师的提点和自我反思,发现了自己的许多不足,主要有以下几点:
1、课堂讲的太多,不敢放手给学生。在讲例题时,总是怕学生不会,课堂上只是教师主要在讲,学生被动在听。
2、分析题目时重复过多。在分析问题时,总觉得学生没读懂题目,就反复带领同学分析,这就是造成教学内容完不成的主要原因。3、教学中不想让学生犯错。总想着要让学生一次就对,不懂让学生先犯错。
4、课堂中口头用语过多。
5、在全课小结时,学生对于“求单一量”这一问题不会用自己的语言表达出来,最后只能我自己总结,这个环节就没有起到效果。今后改进的方向:1、课堂要大胆放手给学生,能不讲的就不讲或少讲。2、学生学习要以优带差。让优生教差生,这样既巩固了优生,也帮扶了差生。3、多让学生说自己的做题想法,不能只灌输老师的想法,让学生“活起来”。4、教学中不能怕学生出错,要让学生从错误中发现自己,然后在错误的基础上发现正确的知识。5、多听其他老师的课,积累教学经验,让自己不断进步。6、尽量减少口头习惯用语。
本次课给我的启发很大,揭露了我的诸多问题,在以后的教学中,我将不断改进自己的不足,让课堂尽量向优质与高效靠拢。
数对问题教学反思9
例6是这个单元比较难的内容,它集中了单位“1”未知和多(或少)百分之几两大知识点在内,上学期求单位“1”的方程,只学了单位“1”未知时求多(或少)多少的一步方程。所以这一知识点还是有难度的,难在找数量关系式。学生不太习惯从“比九月份节约20%”这样的条件中找数量关系式,虽然这一条件上学期已经常分析,但是主要是应用“九月份用水量×20%=十月份比九月份节约的用水量”,而本例题确要利用这一关系句和线段图找出“九月分用水量-十月份比九月份节约的用水量=十月分用水量”,因而这是此例的'难点所在。
今天教学了这一课的内容,从学生的学习情况来看,找单位“1”的量学生是没问题的,主要是数量关系式有一部分学生还是掌握得不好。
练习四的第6、8、9两题我是让学生在课堂上完成的,第六题形同例题,仅有3个孩子解答不正确。第八题正如我所料,错的学生不少。先让学生自己独立完成,再集体交流。单位“1”的量是已知的,用乘法。单位“1”的量是未知的,用解方程或除法。第9题的第(1)个问题学生错的较多,尽管在例题和做练一练的时候已经强调多的量或少的量,但做这题的时候有一部分学生还是不会把10%x与节约的量对应起来,学得不够灵活。
数对问题教学反思10
用方程解决问题,学生五年级的时候就已经学过,所以掌握这种方法并不难。在上课之前,我以为不会有很大的困难,因为之前也一直在练习找数量关系。可是课堂效果告诉我,要突破这节课的难点,一定要引导学生用画图的方法分析问题。
课的开始,我出示了一道复习题:青云小学九月份用水550立方米,十月份比九月份节约20%。十月份用水多少立方米?我让学生根据之前的解题经验分析问题,他们找到了单位“1”是“九月份用水量”,数量关系则找不出来。我引导学生理解“十月份比九月份节约20%”这句话,让学生明白十月份比九月份节约,表示十月份比九月份少,少了九月份的20%。接着出示例题:青云小学十月份用水440立方米,比九月份节约20%。九月份用水多少立方米?学生还是能找到单位“1”是“九月份用水量”,但是数量关系却还是找不清楚。我继续用刚才的方法,根据“比九月份节约20%”,说说谁比九月份节约?学生能知道十月份比九月份节约,节约九月份的20%,但是还是不能正确写出数量关系。
课后在其他老师的`指导下,我明白了,课上我没有引导学生用画图的方法来理解数量关系。虽然分析问题时,关键句、单位“1”都能找到,但就题目而讲题,学生并不能弄清楚其中的数量关系。通过画图,能让学生形象、直观地观察出数量之间的关系。于是我又重新进行了讲解,引导学生根据题意画图,从图中找到正确的数量关系。学生不再像第一次那样,告诉我没听懂,有了图形,学生觉得清晰多了。
虽然高年级的学生遇到的题会比较抽象,但是教师应有培养学生几何直观的意识,让学生在遇到较复杂的题时,能想到用画图的方法分析问题,解决问题。
数对问题教学反思11
本节课的内容是在学生已经学习了百分数解决问题的基础上进一步学习有关折扣、成数、税率、利率以及合理购物的内容。
成功之处:
1.联系旧知学习新知,理清解决问题思路。百分数问题在六年级上册已经学习了有关解决问题的思路,本册教材这方面的知识就是着重解决生活中关于百分数的内容。事实上,生活中的折扣、成数、税率和利率就是百分率,在解决问题过程中,就是把折扣、成数转化成百分数,然后再按照百分数问题的思路来解决问题。
2.注重们每个小节的内容之间的联系。在教学和折扣和成数时,几折和成数都表示十分之几,也就是百分之几十。例如:八折就表示十分之八,也就是80%;八成也表示十分之八,也就是80%;七五折就表示十分之七点五,也就是75%;七成五也表示十分之七点五,也就是75%。把这两个内容联系在一起,学生就不会感到所学知识是新知识,会把新知识融入到旧知识中,学生也会学得非常的'轻松无负担。在教学税率和利率时,也是把这些知识转化成百分数的乘法应用题,都是知道把总收入和总钱数看作单位1的量,用单位1的量×税率(利率)来解决问题,但也注重区分两者之间的不同,让学生不仅知其然,还要知其所以然。
不足之处:
关于折扣的写法。在练习过程中学生对于八五折写成了85折,虽然貌似都读作八五折,但是表示的意思却不同,正确的写法应为8.5折。
再教设计:
在教学中还是要把折扣的写法补充到新教学内容里面,不让学生出现易错的知识点,尽量写成汉字的写法。
数对问题教学反思12
百分率知识在实际生活和生产中有着广泛的应用,是小学数学中比较重要的基础知识,也是用百分数解决问题中最简单的题型。这部分内容是在学生掌握了百分数的意义、百分数和分数、小数的互化等知识的基础上进行教学的。百分率的实质是百分数意义的实际应用。
这节课的主要内容是求“百分率”,知识点看似简单,却没有什么引人注目的地方,提不起学生的兴趣。我只有联系生活实际,例举一些生活中常见的百分率,通过这些知识学习,学生有了一定的兴趣,回答问题有了一定的基础,突破了重点,难点。
教师教学的对象是以学生为主体,充分发挥学生的主观能动性。由学生看得见的出勤率、缺勤率、达标率、发芽率作基础,让自学书本。通过自学书本,学生发现百分率的计算除了我们之前所用的算式外,还可以有不同的写法,并能找到他们的联系与区别。看书后,让学生举一些日常生活中的.百分率的例子,学生也就很容易从他们的现实生活中去寻找有关百分率的例子。这一切都说明学生在学习百分率这一新知识之前,有关这方面的知识并不是一片空白,而是有一定的生活积累,教学时就应该从学生的实际出发,尊重学生、相信学生,这样才能充分发挥学生的主体作用。在教学百分率时,我应该采取合作探究的方法,同桌交流,给予他们充足的时间,说生活中的百分率,说出它们的意义,更好的理解百分率的概念。并且让他们感受生活中的数学知识。知道数学来源于生活,生活中有许多数学知识,以促进他们更好的学习数学。通过类比迁移,学生自主探究。
数对问题教学反思13
追及与相遇问题,这个问题的关键点在于两物体速度相等时,两物体之间的距离达到极值(相距最远或最近),在这个专题的教学中,教师的主要任务是引导学生理解速度相等时达到极值并加以应用,如何完成这个教学任务,可以有以下三种方式:
1、教师直接告诉学生,速度相等时两物体相距最远或最近,这是最传统的知识传授教法,我们一般不会这样处理。
2、教师首先从运动规律分析,速度小的物体加速追速度大的物体,在两物体速度相等之前,距离越来越远,直到两物体速度相等时相距最远,此后两物体相互靠近,或者速度大的减速追速度小的在两物体速度相等之前,距离越来越近,直到两物体速度相等时相距最近,此后两物体相互远离。
然后利用图像告诉学生,两物体速度相等时相距最远(或最近)。
最后,利用数学方法求极值,即找二次函数顶点坐标或利用配方法求极值。三种方法层层推进,对学生思维能力要求逐渐升高,作为一节内容,课堂会很丰满,很充实,教师的专业功底会让学生佩服,对大多数学生而言,会是一节认真但却听得很累的.课,在课堂的全过程,学生的思维应该可以被调动,但不是主动的,而是被老师带着走。
3、追及问题作为匀变速直线运动规律的应用,对于简单的追及问题,学生基本上能找到一种方法来处理,因此,我们应该尊重学生的这一认知特点,相信学生,给他们一个简单的追及问题的习题,让他们在课堂上进行处理,然后在学生自主处理的基础上,请不同的学生来告诉大家他们的解决办法,实践证明,学生的思维是很发散的,他们解决问题的办法覆盖了运动规律分析、图像、数学方法求极值(二次函数顶点坐标或配方法),课堂上,教师的主要任务是鼓励学生准确描述自己的做法,引导生生交流,共同总结,最后形成结论。
与前两种方法相比,第三种方法充分尊重学生的认知规律,让学生的主动性得到充分发挥,学生会觉得这些解决问题的办法是自己找到的,而不是老师交给他们的,他们在课堂上的主体地位得到了真正的实现,而老师需要做的就是驾驭课堂,让学生思维得到放飞的同时,引导学生讨论总结,在经历了过程之后,总结知识,形成方法,并使学生得到愉快的情感体验,即引导学生在课堂上实现三维目标。
数对问题教学反思14
转化是指把一个数学问题变更为一类已经解决或比较容易解决的问题,从而使原问题得以解决的一种策略。所以,转化是一种常见的、极其重要的解决实际问题的方法。转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关,掌握转化策略不仅有利于问题的解决,更有益于思维的发展。下面就解决问题的策略(转化策略)这一单元教学谈谈自己的得失:
一、感悟转化
运用转化的策略解决问题的关键是确定转化后要实现的目标和转化的具体方法。通常是把新的问题转化成熟悉的、能够解决的问题,把非常规的问题转化成常规的问题等,但要根据问题的具体情况具体分析。由于转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关。所以在开始的图形转化中,我放手让学生从不同的角度来理解、进行比较,感悟转化策略的优越性。
二、体验转化
策略不能直接从外部输入,只能在方法的实施过程中通过体验获得。体验是心理活动,是在亲身经历的`过程中获得的意识与感受。例2在解决较复杂的分数问题时应用转化策略,进一步体验转化的意义。有利于学生在体验策略的同时,归纳和总结具体的操作方法,使学生对面积问题中的转化策略有一个完整、系统的再体验和升华。这不仅从数学思想层面提升学生的素养,而且更从解决问题的具体方法上面给学生以丰富的经验积累。具体方法的丰富反过来又深化了对转化策略的认识,这样形成的策略才能深深扎根学生的心田,才具有方法论意义上的指导、调控作用。
三、反思转化
策略的有效形成必然伴随着对自己行为的不断反思。在教学的过程中,及时地引导学生对自己解决问题的过程进行反思,有利于提高学生对自身形成策略过程的认识,从而也更加有利于学生加深对策略的进一步理解。在学习过程中,学会合作交流,经常反思,不断调整,是一种高层次的认知能力,因此我在本节课教学中,充分关注学生的自我评价与回顾反思等习惯的形成。
数对问题教学反思15
用比例解决问题是在学生学习正比例、反比例关系的基础上来解决归一、归总应用题。通过解答使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。
成功之处:
1、抓住用比例解决问题的关键,体会用比例解决问题的优势。在教学中着重让学生找出题目中两种相关联的量,判断这两种量是否成比例,成什么比例。在例5中根据8吨水的水费是12、8元,可以得出每吨水的单价一定,所以水费和用水的吨数这两种量成正比例。也就是说,两家的水费和用水吨数的比值相等。因此可以写成y/x=y/x的形式。而在例6中根据每包20本和18包,可以得出总本数一定,所以包数和每包的本数成反比例。也就是说,每包的本数和包数的`乘积相等,因此可以写成xy=xy的形式。
2、理清思路,归纳概括解题步骤。在教学完两个例题之后,让学生思考怎样用比例来解决问题,步骤是怎样的。通过学生的归纳总结得出:一是解设未知数x。二是找到两种相关联的量,判断它们是否成比例,成什么比例。三是列出比例式子形如:y/x=y/x(成正比例)xy=xy(成反比例)。四是解比例检验。
不足之处:
1、学生对于算术法掌握的较牢,有的学生不愿意接受用比例来解决问题,没有体会到用比例解决问题的优势,主要受定势思维的影响。
2、个别学生没有掌握住用正比例解决问题用y/x=y/x的形式,用反比例解决问题用xy=xy的形式,导致不会列式子。
再教设计:
从学生出现的问题出发,避免出现类似的错误,从根本上去解决学生的易错易混淆的问题。