百科大全

目前上世界最小的细菌 是多大

时间:2022-03-29 11:54:45 百科大全 我要投稿

目前上世界最小的细菌 是多大

  从显微镜问世以来,人们才发现显微镜下的微生物是世界上最小最小的生物,微生物是生物界最大的王国,那么你知道世界目前上世界最小的细菌是多大吗?一起来看看吧。

  世界最小的细菌: 最小直径为50纳米

  一般细菌直径都在1微米以上,而芬兰科学家发现了一种能引起尿结石的纳米细菌,其细胞最小直径为50纳米,甚至比最大的病毒更小。这种细菌分裂缓慢,三天才分裂一次。是目前所知最小的具有细胞壁的细菌。

  细菌

  广义的细菌即为原核生物。是指一大类细胞核无核膜包裹,只存在称作拟核区(nuclear region)(或拟核)的裸露DNA的原始单细胞生物,包括真细菌(eubacteria)和古生菌(archaea)两大类群。人们通常所说的即为狭义的细菌,狭义的细菌为原核微生物的一类,是一类形状细短,结构简单,多以二分裂方式进行繁殖的原核生物,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者。

  基本信息

  细菌(英文:germs;学名:bacteria)广义的细菌即为原核生物是指一大类细胞核无核膜包裹,只存在称作拟核区(nuclear region)(或拟核)的裸露DNA的原始单细胞生物,包括真细菌(eubacteria)和古生菌(archaea)两大类群。人们通常所说的即为狭义的细菌,狭义的细菌为原核微生物的一类,是一类形状细短,结构简单,多以二分裂方式进行繁殖的原核生物,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者。

  细菌的发现

  细菌最早是被荷兰人列文虎克(Antony van Leeuwemhoek,1632-1723)在一位从未刷过牙的老人牙垢上发现的,但那时的人们认为细菌是自然产生的。直到后来,巴斯德用鹅颈瓶实验指出,细菌是由空气中已有细菌产生的,而不是自行产生,并发明了“巴氏消毒法”,被后人誉为“微生物之父”。

  细菌这个名词最初由德国科学家埃伦伯格(Christian Gottfried Ehrenberg,1795-1876)在1828年提出,用来指代某种细菌。这个词来源于希腊语βακτηριον,意为“小棍子”。

  1866年,德国动物学家海克尔(Ernst Haeckel,1834-1919)建议使用“原生生物”,包括所有单细胞生物(细菌、藻类、真菌和原生动物)。

  1878年,法国外科医生塞迪悦(Charles Emmanuel Sedillot,1804-1883)提出“微生物”来描述细菌细胞或者更普遍的用来指微小生物体。

  因为细菌是单细胞微生物,用肉眼无法看见,需要用显微镜来观察。1683年,安东·列文虎克(Antony van Leeuwenhoek,1632-1723)最先使用自己设计的单透镜显微镜观察到了细菌,大概放大200倍。路易·巴斯德(Louis Pasteur,1822-1895)和罗伯特·科赫(Robert Koch,1843-1910)指出细菌可导致疾病。

  用途与危害

  细菌对环境,人类和动物既有用处又有危害。一些细菌成为病原体,导致了破伤风、伤寒、肺炎、梅毒、霍乱和肺结核。在植物中,细菌导致叶斑病、火疫病和萎蔫。感染方式包括接触、空气传播、食物、水和带菌微生物。病原体可以用抗菌素处理,抗菌素分为杀菌型和抑菌型。

  细菌通常与酵母菌及其他种类的真菌一起用于酦酵食物,例如在醋的传统制造过程中,就是利用空气中的醋酸菌(Acetobacter)使酒转变成醋。其他利用细菌制造的食品还有奶酪、泡菜、酱油、醋、酒、优格等。细菌也能够分泌多种抗生素,例如链霉素即是由链霉菌(Steptomyces)所分泌的。

  细菌能降解多种有机化合物的能力也常被用来清除污染,称做生物复育(bioremediation)。举例来说,科学家利用嗜甲烷菌(methanotroph)来分解美国佐治亚州的三氯乙烯和四氯乙烯污染。

  细菌也对人类活动有很大的影响。例如奶酪及优格的制作、部分抗生素的制造、废水的处理等,都与细菌有关。在生物科技领域中,细菌有也着广泛的运用。

  【拓展】细菌简介

  细菌的个体非常小,目前已知最小的细菌只有0.2微米长,因此大多只能在显微镜下被看到。细菌一般是单细胞,细胞结构简单,缺乏细胞核、细胞骨架以及膜状胞器,例如线粒体和叶绿体。基于这些特征,细菌属于原核生物(Prokaryote)。原核生物中还有另一类生物称作古细菌(Archaea),是科学家依据演化关系而另辟的类别。为了区别,本类生物也被称为真细菌(Eubacteria)。

  细菌广泛分布于土壤和水中,或者与其他生物共生。人体身上也带有相当多的细菌。据估计,人体内及表皮上的细菌细胞总数约是人体细胞总数的十倍。此外,也有部分种类分布在极端的环境中,例如温泉,甚至是放射性废弃物中,它们被归类为嗜极生物,其中最著名的种类之一是海栖热袍菌(Thermotoga maritima),科学家是在意大利的一座海底火山中发现这种细菌的。然而,细菌的种类是如此之多,科学家研究过并命名的种类只占其中的小部分。细菌域下所有门中,只有约一半是能在实验室培养的种类。

  细菌的营养方式有自养及异养,其中异养的腐生细菌是生态系中重要的分解者,使碳循环能顺利进行。部分细菌会进行固氮作用,使氮元素得以转换为生物能利用的形式。细菌也对人类活动有很大的影响。一方面,细菌是许多疾病的病原体,包括肺结核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由细菌所引发。然而,人类也时常利用细菌,例如乳酪及酸奶的制作、部分抗生素的制造及废水的处理等,都与细菌有关。在生物科技领域中,细菌也有着广泛的运用。

  细菌是一种单细胞生物体,生物学家把这种生物归入“裂殖菌类”。细菌细胞的细胞壁非常像普通植物细胞的细胞壁,但没有叶绿素。因此,细菌往往与其他缺乏叶绿素的植物结成团块,并被看作“真菌”。细菌因为特别小而区别于其他植物细胞。实际上,细菌也包括存在着的最小的细胞。此外,细菌没有明显的核,而具有分散在整个细胞内的核物质。因此,细菌有时与被称为“蓝绿藻”的简单植物细胞结成团块,蓝绿藻也有分散的核物质,但它还有叶绿素。人们越来越普遍地把细菌和其他大一些的单细胞生物归在一起,形成既不属于植物界也不属于动物界的一类生物,它们组成生命的第三界——“原生物界”。有些细菌是“病原的”细菌,其含义是致病的细菌。然而,大多数类型的细菌不是致病的,而的确常常是非常有用的。例如,土壤的肥沃在很大程度上取决于住在土壤中的细菌的活性。“微生物”,恰当地说,是指任何一种形式的微观生命。“菌株”一词用得更加普遍,因为它指的是任何一点小的生命,甚至是一个稍大一点的生物的一部分。例如,包含着实际生命组成部分的一个种子的那个部分就是胚芽,因此我们说“小麦胚芽”。此外,卵细胞和精子(载着最终将发育成一个完整生物的极小生命火花)都称为“生殖细胞”。然而,在一般情况下,微生物和菌株都用来作为细菌的同义词;而且确实尤其适用于致病的细菌。

  大部分细菌是分解者,处在生物链的最底层。还有一部分细菌是消费者和生产者。比如硫细菌,铁细菌等,他们是化能合成异养型,属于生产者,可以利用无机物硫铁等制造自身需要的有机物。而根瘤菌则是消费者,它们与豆科植物互利共生,消耗豆科植物光合作用所生产的有机物,因此为消费者。当然,细菌最主要的作用还是分解者,如果没有细菌真菌等微生物,世界将是尸体的海洋。

  基本形态与大小

  (1)球菌:

  球菌是外形呈圆球形或椭圆形的细菌,直径0.5-1微米,有以下几种类型:①单球菌:单独存在,如尿素小球菌;②双球菌:如肺炎双球菌;③链球菌:如乳酸链球菌;④四联球菌:形成的4个细胞排列在一起,成田字,如四联球菌;⑤八叠球菌:如尿素生孢八叠球菌;⑥葡萄球菌:如金黄色葡萄球菌(Staphylococcus aureus)。

  (2)杆菌:

  外形为杆状的细菌称杆菌,常有长宽接近的短杆或球杆状菌,如甲烷短杆菌属(Methano—brevibacter);长宽相差较大的棒杆状或长杆状菌,如枯草芽孢杆菌(Bacillus subtilis)、梭状杆菌(Bacterium fusiformis);分枝状或叉状菌,如双歧杆菌属(Bifidobacterium);竹节状(两端平截),如炭疽芽孢杆菌(Bacillusanthracis)等。

  按杆菌细胞的排列方式不同则有成对的双杆菌、呈链状的链杆菌,另外,常有栅状、“八”字状以及由鞘衣包裹在一起的丝状等多种。典型的杆菌有大肠杆菌、枯草杆菌、链杆菌、变形杆菌。

  (3)螺旋状:

  螺旋状的细菌称螺旋菌,一般长5-50微米,宽0.5-5微米,根据菌体的弯曲可分为:①弧菌(Vibrio):螺旋不足一环者呈香蕉状或逗点状,如霍乱弧菌(Vibrio cholerae);②螺菌(Spirillum):满2-6环的小型、坚硬的螺旋状细菌,如小螺菌(Spirillum minor);③螺旋体(Spirochaeta):旋转周数多(通常超过6环)、体长而柔软的螺旋状细菌,如梅毒螺旋体(Treponema Pallidum)。

  结构

  细菌的结构分为基本结构和特殊结构。基本结构是各种细菌都具有的结构,包括细菌的细胞壁、细胞膜、细胞质、核质。某些细菌特有的结构称为特殊结构,包括细菌的荚膜、鞭毛、菌毛、芽胞。

  (1)细胞壁

  细胞壁(cell wall)位于菌细胞的最外层,包绕在细胞膜的周围,组成较复杂,并随细菌不同而异。革兰阳性菌和革兰阴性菌细胞壁的共有组分为肽聚糖,但各自有其特殊组分。

  细胞壁厚度因细菌不同而异,一般为15-30nm。主要成分是肽聚糖,由N-乙酰葡糖胺和N-乙酰胞壁酸构成双糖单元,以β-1,4糖苷键连接成大分子。N-乙酰胞壁酸分子上有四肽侧链,相邻聚糖纤维之间的短肽通过肽桥(革兰阳性菌)或肽键(革兰阴性菌)桥接起来,形成了肽聚糖片层,像胶合板一样,粘合成多层。

  肽聚糖中的多糖链在各物种中都一样,而横向短肽链却有种间差异。革兰阳性菌细胞壁厚约20-80nm,有15-50层肽聚糖片层,每层厚1nm,含20-40%的磷壁酸(teichoic acid),有的还具有少量蛋白质。革兰阴性菌细胞壁厚约10nm,仅2-3层肽聚糖,其他成分较为复杂,由外向内依次为脂多糖、细菌外膜和脂蛋白。此外,外膜与细胞之间还有间隙。

  肽聚糖是革兰阳性菌细胞壁的主要成分,凡能破坏肽聚糖结构或抑制其合成的物质,都有抑菌或杀菌作用。如溶菌酶是N-乙酰胞壁酸酶,青霉素抑制转肽酶的活性,抑制肽桥形成。

  细菌细胞壁的功能包括:①保持细胞外形,提高机械强度;②抑制机械和渗透损伤(革兰阳性菌的细胞壁能耐受20kg/cm2的压力);③介导细胞间相互作用(侵入宿主)④;防止大分子入侵;⑤协助细胞运动和生长,分裂和鞭毛运动;⑥赋予细菌特定的抗原性以对抗生素和噬菌体的敏感性。

  其中还有一些缺壁细菌,分为四类:①L型细菌,是指某些在实验室或宿主体内,通过自发突变,形成细胞壁缺陷的变异菌株;②原生质体,是指在人为条件下(用溶菌酶或青霉素)处理革兰阳性细菌,获得的无壁细胞;③球状体,是指在人为条件下,处理革兰阴性菌,获得的残留部分细胞壁的细胞;④支原体,是指在进化过程中获得的无壁的原核微生物。

  (2)细胞膜

  是典型的单位膜结构,厚约8-10nm,外侧紧贴细胞壁,某些革兰阴性菌还具有细胞外膜。通常不形成内膜系统,除核糖体外,没有其它类似真核细胞的细胞器,呼吸和光合作用的电子传递链位于细胞膜上。某些进行光合作用的'原核生物(蓝细菌和紫细菌),质膜内褶形成结合有色素的内膜,与捕光反应有关。某些革兰阳性细菌质膜内褶形成小管状结构,称为中膜体(mesosome)或间体,中膜体扩大了细胞膜的表面积,提高了代谢效率,有拟线粒体(Chondroid)之称,此外还可能与DNA的复制有关。

  (3)细胞质与核质体

  细菌和其它原核生物一样,只有拟核,没有核膜,DNA集中在细胞质中的低电子密度区,称核区或核质体(nuclear body)。细菌一般具有1-4个核质体,多的可达20余个。核质体是环状的双链DNA分子,所含的遗传信息量可编码2000-3000种蛋白质,空间构建十分精简,没有内含子。由于没有核膜,因此DNA的复制、RNA的转录与蛋白质的合成可同时进行,而不像真核细胞的这些生化反应在时间和空间上是严格分隔开来的。

  每个细菌细胞约含5000-50000个核糖体,部分附着在细胞膜内侧,大部分游离于细胞质中。细菌核糖体的沉降系数为70S,由大亚单位(50S)与小亚单位(30S)组成,大亚单位含有23SrRNA,5SrRNA与30多种蛋白质,小亚单位含有16SrRNA与20多种蛋白质。30S的小亚单位对四环素与链霉素很敏感,50S的大亚单位对红霉素与氯霉素很敏感。

  细菌核区DNA以外的,可进行自主复制的遗传因子,称为质粒(plasmid)。质粒是裸露的环状双链DNA分子,所含遗传信息仅为2-200个基因,能进行自我复制,有时能整合到核DNA中去。质粒DNA在遗传工程研究中很重要,常用作基因重组与基因转移的载体。

  胞质颗粒是细胞质中的颗粒,起暂时贮存营养物质的作用,包括多糖、脂类、多磷酸盐等。

  (4)荚膜

  许多细菌的最外表还覆盖着一层多糖类物质,边界明显的称为荚膜(capsule),如肺炎球菌,边界不明显的称为粘液层(slime layer),如葡萄球菌。荚膜对细菌的生存具有重要意义,细菌不仅可利用荚膜抵御不良环境;保护自身不受白细胞吞噬;而且能有选择地粘附到特定细胞的表面上,表现出对靶细胞的专一攻击能力。例如,伤寒沙门杆菌能专一性地侵犯肠道淋巴组织。细菌荚膜的纤丝还能把细菌分泌的消化酶贮存起来,以备攻击靶细胞之用。

  另外在细菌入侵免疫系统时,荚膜可以防止免疫系统识别细菌,从而存活下来。

  (5)鞭毛

  鞭毛是某些细菌运动的特殊结构,由一种称为鞭毛蛋白(flagellin)的弹性蛋白构成,结构上不同于真核生物的鞭毛。细菌可以通过调整鞭毛旋转的方向(顺和逆时针)来改变运动状态。

  (6)菌毛

  菌毛是在某些细菌表面存在着一种比鞭毛更细、更短而直硬的丝状物,须用电镜观察。特点是:细、短、直、硬、多,菌毛与细菌运动无关,根据形态、结构和功能,可分为普通菌毛和性菌毛两类。前者与细菌吸附和侵染宿主有关,后者为中空管子,与传递遗传物质有关。

  (7)芽胞

  有些细菌在生长发育的后期,个体缩小,细胞壁增厚,形成芽胞。芽胞是细菌的休眠体,对不良环境有较强的抵抗能力。小而轻的芽胞还可以随风四处飘散,落在适当环境中,又能萌发成为细菌。细菌快速繁殖和形成芽胞的特性,使它们几乎无处不在。

  某些细菌处于不利的环境,或耗尽营养时,形成内生胞子,又称芽胞,是对不良环境有强抵抗力的休眠体,由于芽胞在细菌细胞内形成,故常称为内生胞子。

  芽胞的生命力非常顽强,有些湖底沉积土中的芽孢杆菌经500-1000年后仍有活力,肉毒梭菌的芽胞在pH 7.0时能耐受100℃煮沸5-9.5小时。

  菌落特征

  当细菌划线接种到固体平板培养基上后,在适宜的培养条件下。细菌便迅速生长繁殖。由于细菌细胞受固体培养基表面或深层的限制,故不能像在液体培养基中那样自由扩散,因此繁殖的菌体常聚集在一起,形成了肉眼可见的细菌集落,通常称之为菌落(colony)。由于平板划线的分散作用,单个菌落来源于细菌的一个细胞,生长一定时间后便肉眼可见,挑选一个菌落移种到另一固体斜面培养基上,即可获得细菌的纯培养。

  各种细菌在一定条件下形成的菌落均具一定的特征,包括菌落的大小、形状、光泽、颜色、硬度、透明程度等.所以细菌菌落特征是细菌菌种鉴定的重要依据,在细菌分类学上具有重大意义。

  菌落特征决定于组成菌落的细胞结构与生长行为,如细菌的荚膜,它的存在与否和菌落形态等有直接关系。肺炎链球菌因具有荚膜就形成光滑型菌落,其表面光滑黏稠,不具荚膜的菌株形成的菌落为粗糙型,菌落表面干燥、有皱折,表明菌落特征和细菌细胞的结构密切相关。

  菌落的形状和大小不仅决定于菌落中细胞的特性,而且也受到周围菌落的影响,菌落靠得太近,由于营养物质有限,有害代谢物的分泌和积累,因而生长受到抑制。所以在平板分离菌种时,常可看到平板上互相靠近的菌落都较小,而那些分散开的菌落均较大。即使在同一菌落中,由于各个细菌细胞所处的空间位置不同,在营养物的摄取及空气供应等方面亦都不一样,所以在生理上、形态上或多或少会有所差异。

  在平板培养基上形成的菌落往往有三种情况,即表面菌落、深层菌落和底层菌落,上面所介绍的菌落特征都是指表面菌落。某些细菌在明胶培养基中生长繁殖时,能产生明胶酶水解明胶。如果将这些菌种穿刺接种在盛有明胶培养基的试管中,则由于明胶被水解形成不同形状的溶解区,由于特定的细菌形成一定形状的溶解区,所以是细菌分类的项目之一。

【目前上世界最小的细菌 是多大】相关文章:

气凝胶是世界上密度最小的固体12-06

梵蒂冈是世界上最小的国家——那世01-26

世界上最小的蜗牛12-14

世界上最小的蛇12-06

世界上最小的皇帝12-06

世界上最小的病毒12-06

世界上最小的车12-06

世界上最小的城市12-06

世界上最小的刺猬12-06

世界上最小的象12-06