- 三年级上册数学知识点总结 推荐度:
- 相关推荐
三年级上册数学知识点总结
总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,因此,让我们写一份总结吧。总结你想好怎么写了吗?以下是小编为大家收集的三年级上册数学知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
三年级上册数学知识点总结1
一、时分秒
1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长
2、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。
3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。
4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。
5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。
6、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分;1分=60秒;60分=1时;
7、常用的时间单位:时、分、秒、年、月、日、世纪等。
1世纪=100年,1年=12个月
二、分数的初步认识
1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、比较大小的方法:
①分子相同,分母小的分数反而大,分母大的分数反而小。②分母相同,分子大的分数就大,分子小的分数就小。
4、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。
5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)
三、测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的`物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
3、在计算长度时,只有相同的长度单位才能相加减。
4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,
②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
6、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克
四、万以内的加法和减法
1、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
2、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。
五、倍的认识
1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍
六、长方形和正方形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:①对边相等、对角相等。②平行四边形容易变形。(三角形不容易变形)7、封闭图形一周的长度,就是它的周长。
8、公式:长方形的周长=(长+宽)×2或长×2+宽×2长方形的长=周长÷2—宽长方形的宽=周长÷2—长正方形的周长=边长×4正方形的边长=周长÷4
七、多位数乘一位数
1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
2、
①0和任何数相乘都得0;
②1和任何不是0的数相乘还得原来的数。
3、三位数乘一位数:积有可能是三位数,也有可能是四位数。
4、多位数乘一位数(进位)的笔算方法:
相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
5、一个因数中间有0的乘法:
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
7、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)
8、减法的验算方法:
①用被减数减去差,看结果是不是等于减数
②用差加减数,看结果是不是等于被减数。
9、加法的验算方法:
①交换两个加数的位置再算一遍。
②用和减一个加数,看结果是不是等于另一个加数。
三年级上册数学知识点总结2
1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
2、一个因数中间有0的乘法:
① 0和任何数相乘都得0;
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
③一个因数末尾有0的乘法的`简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
3、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数
路程÷时间=速度
路程÷速度=时间
5、(关于“大约)应用题:
问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)
例:387×5≈
把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950。
所以:387×5≈1950
小学数学运算定律
1、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)
2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加,或者先把后两个数相加,和不变。
3、乘法交换律:a×b=b×a交换因数的位置积不变。
4、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。
5、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。
数学三角形体积知识点
三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
三年级上册数学知识点总结3
一、填空题。
1、看谁算的又快又准。
05=
354=
3006=
6307=
0+7=
165=
323=
777=
2、计算25(6+3)时,先算法,再算()法。
3、长方形的周长= ()
正方形的周长= ()
4、小丑表演节目时有2顶不同的帽子可戴,有3条不同的裤子可穿,他共有()种搭配穿法。
5、今年有()天,其中2月有()天,3月有()天,24个月是()年。
6、小兔上午拔了15根萝卜,下午拔了20根萝卜。如果每筐装5根萝卜,装这些萝卜需要( )个筐。
7、1角=()元,6角就是6个()元,是()元,1分米=()米,12个1分米就是12个()米,就是()米。
8、通过学习,我们发现0乘任何数都得(),0加任何数都得(),任何数减0都得()。
9、下午5时是()时,14时20分是下午() 。
10、一家服装店,早晨8时开始营业,一直到下午7时30分关门,这一天总共营业时间是() 。
二、判断题。
1、北京奥运会于8月8日在北京开幕,其中20是闰年。( )
2、周长相等的两个长方形,它们的长和宽也一定相等。 ( )
3、今年是中华人民共和国成立70周年。 ( )
4、长方形的'周长=边长4。 ( )
5、在50米赛跑中小明成绩是9.4秒,小亮是10.5秒,小亮快。 ( )
三、选择题。
1、一个长方形的长是6厘米,款是4厘米,周长是( )。
A、12厘米
B、24厘米
C、20厘米
D、10厘米
2、站在一个立方体的边上,最多能看到几个面? ( )
A、一个
B、两个
C、三个
D、四个
3、淘气下午17:50放学,16:10到餐厅吃晚饭,路上他走了多长时间?( )
A、10分
B、20分
C、40分
D、1时40分
4、在一百米短跑比赛中,小新的成绩是17.4秒,小亮20.5秒,小军20.1秒,小海22.4秒。他们的成绩从快到慢依次是( )。
A、小新、小亮、小军、小海
B、小新、小军、小亮、小海
C、小海、小军、小亮、小新
D、小海、小亮、小军、小新
5、小数30.50读作( )。
A、三十点五零
B、三零点五零
C、三十点五十
D、三零点五十
四、计算题。
1、竖式计算。
618+269
840-805
344
2036
7.2+2.6
6.5-4.6
2、计算(注意:要有步骤)。
74-(100-48)
81(72-63)
(23+25)6
7208-56
五、解决问题。
1、三年级(1)班有男生和女生各18人参加队列和团体操表演,队列表演时每4人站一行,能站几行?
2、亮亮有200元钱,奶奶有800元钱,亮亮和奶奶八月花了745元,八月节余了多少元?
三年级上册数学知识点总结4
1、时间单位有:时、分、秒。
2、计量很短的时间,常用“秒”。计量很长的时间,常用“时”。
3、会选择正确的时间单位填空:
如:妈妈一天工作8(时)
小明每天睡眠9(时)
拍一下皮球大约用1(秒)
做一遍眼保健操大约用5(分)
小华跑50米的.时间是9(秒)
小明跳50下绳约需30(秒)
4、钟面上最长最细的针是秒针。
5、秒针走1小格的时间是1秒,秒针走几小格的时间是几秒。
6、钟面上有12个大格,60个小格,每个大格里有5个小格。
7、秒针从2走到10是(40)秒。想:10—2=8(大格)8×5=40(秒)
8、时针走1大格是1时,走一圈是12时。
分针走1小格是1分,走1大格是5分,走一圈是60分。
秒针走1小格是1秒,走1大格是5秒,走一圈是60秒。
9、时针走1大格,分针走60小格,是60分,就是1时。
分针走1小格,秒针走60小格,是60秒,就是1分。
10、时间单位的换算:
1时=60分60分=1时
1分=60秒60秒=1分
1时=3600秒
(1)把大单位化成小单位,要乘进率60
7时=(420)分9分=(540)秒
想:7×60=420 9×60=540
(2)把小单位化成大单位,要除以进率60
240分=(4)时480秒=(8)分
想:240÷60=4 480÷60=8
(3)2时40分=(160)分4分30秒=(270)秒
想:2×60+40=160 4×60+30=270
(4)90分=(1)时(30)分75秒=(1)分(15)秒
想:1时=60分90—60=30 1分=60秒75—60=15
11、比较大小
(1)当单位相同时,比较数字,数字大的它就大:8秒(>)6秒
(2)当数字相同时,比较单位,单位大的它就大:8时(>)8分8分(>)8秒
(3)当数字和单位都不相同时,要先统一单位,再进行比较:
5时(>)200分300秒(<)6分180秒(<)3分10秒
300分360秒190秒
12、计算时间:结束时间=开始时间+经过时间
开始时间=结束时间—经过时间
经过时间=结束时间—开始时间
三年级上册数学知识点总结5
第一单元时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。(时针最短,秒针最长)
2、每两个相邻的时间单位之间的进率是60
1时=60分60分=1时1分=60秒60秒=1分
半时=30分30分=半时
3、(1)计量很短的时间,常用比分更小的单位——秒。
(2)计算一段时间,可以用结束的时刻减去开始的时刻。
经过时间=结束时刻—开始时刻。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
第二、四单元万以内的加法和减法
1、笔算加减法时:(1)相同数位要对齐;(2)从个位算起。(3)哪一位上的数相加满10.就向前一位进1;哪一位上的数不够减,就从前一位退1当作10;如果前一位是0.则再从前一位退1.
2、两个三位数相加的和:可能是三位数,也有可能是四位数。
3、加法公式:加数+加数=和
加法的验算:①交换两个加数的位置再算一遍。
②加数=和-另一个加数
4、减法公式:被减数-减数=差
减法的验算:①被减数=差+减数②减数=被减数-差
5、求一个数的近似数:
看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
最大的三位数是位999.最小的三位数是100.最大的四位数是9999.最小的四位数是1000.最大的三位数比最小的四位数小1.
第三单元测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
长度单位从大到小:千米>米>分米>厘米>毫米
2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
3、在计算长度时,只有相同的长度单位才能相加减。
4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )
①进率是10:1米=10分米, 1分米=10厘米, 1厘米=10毫米,10分米=1米, 10厘米=1分米, 10毫米=1厘米,②进率是100:1米=100厘米, 100厘米=1米,1分米=100毫米, 100毫米=1分米
③进率是1000:1千米=1000米, 1公里=1000米,1000米=1千米, 1000米= 1公里
5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
6、相邻两个质量单位进率是1000.
1吨=1000千克1000千克= 1吨
1千克=1000克1000克=1千克
7、单位换算:小到大除,大到小乘。
第五单元倍的认识
求一个数是另一个数的几倍用除法:“是前”除以“是后”。
求一个数的几倍是多少用乘法。
第六单元多位数乘一位数
1、多位数乘一位数的笔算方法:(1)相同数位对齐,(2)从个位乘起.(用一位数分别去乘多位数每一位上的数,与哪一位相乘,积就写在哪一位下面。)(3)哪一位上的数相乘满几十,就向前一位进几,(4)搬答案。
2、一个因数中间有0的乘法:
0和任何数相乘都得0
3、一个因数末尾有0的乘法的简便计算:
(1)先算0前面的数(2)添0
1和任何不是0的数相乘还得原来的数。
三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:总价=单价×数量
单价=总价÷数量数量=总价÷单价
问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,一般都是求近似数,用估算。→(≈)
第七单元长方形和正方形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,对边相等,四个角都是直角。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的`特点:对边平行且相等、对角相等。
7、封闭图形一周的长度,就是它的周长。
8、公式:长方形的周长=(长+宽)×2
①长方形的长=周长÷2-宽②长方形的宽=周长÷2-长
①正方形的周长=边长×4 ②正方形的边长=周长÷4.
第八单元分数的初步认识
1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。
几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
4、比较大小的方法:
①分子相同,看分母,分母越大,分数反而越小,分母越小,分数反而越大。
②分母相同,看分子,分子越大,分数越大,分子越小,分数越小。
5、同分母的分数加、减法的计算方法:分母不变,分子相加、减。
1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。
6、求一个数是另一个数的几分之几是多少的计算方法:
先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)
第九单元数学广角——集合
会用集合思想解决实际问题。
三年级数学上册知识点总结
第一单元 时 分 秒
1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)
2、计量很短的时间,常用秒。秒是比分更小的时间单位。
3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。
4、秒表:一般在体育运动中用来记录以秒为单位的时间。
5、常用时间单位:时、分、秒。
6、时间单位:时、分、秒,每相邻两个单位之间的进率都是60.
1时=60分 1分=60秒 半时=30分 30分=半时
7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。
8、计算一段时间,可以用结束的时刻减去开始的时刻。
第三单元 测量
1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
量比较长的物体,常用米(m)做单位。
量比较长的路程一般用千米(km)做单位。
2、运动场的跑道,通常1圈是400米,2圈半是1000米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。
4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
5、1厘米中间的每一小格的长度是1毫米。
6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
8、常用长度单位:米、分米、厘米、毫米、千米。
9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10.
1米=10分米, 1分米=10厘米, 1厘米=10毫米
1米=100厘米 1千米(公里)=1000米
10、质量单位 :吨、千克、克,每相邻两个单位之间的进率都是1000 。
1吨=1000千克 1千克=1000克
三年级上册数学知识点总结6
第一单元时分秒
1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)
2、计量很短的时间,常用秒。秒是比分更小的时间单位。
3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。
4、秒表:一般在体育运动中用来记录以秒为单位的时间。
5、常用时间单位:时、分、秒。
6、时间单位:时、分、秒,每相邻两个单位之间的进率都是60.
1时=60分1分=60秒 半时=30分 30分=半时
7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。
8、计算一段时间,可以用结束的时刻减去开始的时刻。
第三单元测量
1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
量比较长的物体,常用米(m)做单位。
量比较长的路程一般用千米(km)做单位。
2、运动场的跑道,通常1圈是400米,2圈半是1000米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。
4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
5、1厘米中间的每一小格的长度是1毫米。
6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
8、常用长度单位:米、分米、厘米、毫米、千米。
9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10.
1米=10分米,1分米=10厘米,1厘米=10毫米
1米=100厘米1千米(公里)=1000米
10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000 。
1吨=1000千克1千克=1000克
第二、四单元万以内的加法和减法
1、最大的几位数和最小的几位数:
最大的一位数是9.最小的一位数是0.
最大的二位数是99.最小的二位数是10
最大的三位数是999.最小的三位数是100
最大的四位数是9999.最小的四位数是1000
最大的五位数是99999.最小的五位数是10000
最大的三位数比最小的四位数小1.
2、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的'数相加满10.就向前一位进1;哪一位上的数不够减,就从前一位退1当作10.加本位再减;如果前一位是0.则再从前一位退1.
3、两个三位数相加的和:可能是三位数,也有可能是四位数。
4、加法公式:
加数+加数=和
和—另一个加数=加数
5、减法公式:
被减数—减数=差
差+减数=被减数或被减数=差+减数
被减数—差=减数
6、口算时:
例:(1)35+48.先算35+40=75.再算75+8=83.
(2)72—28.先算72—20=52.再算52—8=44
或先算72—30=42.再算42+2=44
7、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。
第五单元倍的认识
求一个数是另一个数的几倍是多少?用除法计算:一个数÷另一个数=倍数
36是4的几倍? 36÷4=9
已知一个数的几倍是A,求这个数。用除法计算:A÷倍数=这个数
已知一个数的5倍数是35.求这个数? 35÷5=7
求一个数的几倍是多少?用乘法计算:一个数×倍数=结果
9的6倍是多少? 9×6=54
第六单元多位数乘一位数
1、多位数乘一位数(进位)的笔算方法:
相同数位对齐,从个位乘起,用一位数依次去乘多位数的每一位,哪一位上乘得的数数积满几十,就向前一位进几。
2、在乘法里,乘数也叫做因数。
3、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
第七单元长方形和正方形
1、用相同的小正方形拼长方形或正方形时,拼成的图形长和宽越接近(或长、宽相等)时,周长最短。
2、四边形的特点:有4条直的边,有4个角。
3、长方形的特点:对边相等,有4个直角。
4、正方形的特点:4条边都相等,有4个直角。
5、封闭图形一周的长度,是它的周长。
6、长方形的周长=(长+宽)×2正方形的周长=边长×4
7、在一个长方形中剪出一个最大的正方形,长方形的宽就是这个正方形的边长。
第八单元分数的初步认识
1、分数的意义:把一个整体平均分成若干份,表示1份或几份的数就是分数。
表示:把一个整体平均分成5份,取其中的两份
表示:把一个整体平均分成4份,取其中的一份
2、比较大小的方法:
(1)分子相同,分母小的分数就大。
(2)分母相同:分子大的分数就大。
3、同分母分数相加减,分母不变,只把分子相加减。
三年级上册数学知识点总结7
第一单元 混合计算
6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
第二单元 观察物体
计算连加式题时,要按从左往右的顺序依次计算
连减
786-284-249=253
计算连减式题时,可以按从左往右的顺序依次计算,也可以先把两个减数加起来,再从被减数里减去两个减数的和。
786-(284+249)=253
加减混合
259+148-342=65
不带小括号的加减混合式题的运算顺序,:按从左往右的顺序依次计算。带小括号的加减混合式题的运算顺序:先算小括号里面的,再算小括号外面的'。
里程表中的问题
求两地间的路程,要找准起点,用较远的路程减去较近的路程就得到两地间的路程
里程数=终点数-起点数
第四单元 乘与除
2.月:
小月:4、6、9、11月
平月(二月):平年28天
闰年29天
3.日历:学会看日历,知道某年某月是星期几
4.钟表:24时记时法 12时记时法
4.公式:
1时=
60分 1分= 60秒 半时= 30 分
60分=1时
60秒=1分 30 分=半时
第八单元 可能性
1.‘不可能和一定’,都表示确定的现象。‘可能’,表示不确定的现象。
2.请用“一定、可能、不可能”来说一说。
一定:太阳一定从东边升起;月亮一定绕着地球转;地球一定每天都在转动;每天一定都有人出生;人一定要喝水……
可能:三天后可能下雨;花可能是香的;明天可能有风;下周可能会考试。……
不可能:太阳不可能从西边升起;地球不可能绕着月亮转;我不可能从出生到现在没吃过一点东西;鲤鱼不可能在陆地上生活;空中不可能盖楼房;我不可能比姐姐大……
三年级上册数学知识点总结8
一、知识框架
一级知识点数与代数二级知识点数的运算三级知识点
1、列竖式计算除法。
2、两位数除以一位数;
除法的验算
3、一步计算的问题
4、两步计算的问题
1、质量单位千克、克数与代数常见的量
2、千克、克之间的换算,简单的实际问题
3、24时计时法空间与图形空间与图形统计与概率图形的认识
从三个方向观察用小正方体搭成的立体图形形状
1.周长的认识
2.长方形、正方形的周长计算描述事件发生的可能性。
二、期末知识点
第一单元除法(除法是乘法的逆运算)
两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。
1.计算:列竖式计算除法。
2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。
3.笔算:两位数除以一位数;除法的验算(用乘法验算)。
4.估算:估计两位数除以一位数的商是几十多。
5.一步计算的问题:在解决的实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价
6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。
练习:
(1)用竖式计算,并验算:62÷266÷672÷347÷7
(2)口算:36÷360÷268÷290÷3
(3)列竖式计算:39÷389÷467÷274÷3
(4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3
(5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?
(6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。
整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。
练习:
(1)口算:201+4000800030006000201000+100
(2)写一写:两个千加两个百加一个十是多少?
(3)三千零二是由几个千和几个一组成?
(4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。
2.大小比较
比较大小时的数学思考,比较大小的实际应用,非整千数最接近几千。
练习:
比较大小:3650和2520,7890和8790第三单元千克和克
千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。
1.称一个物体有多重,一般用千克为单位。
2.净含量是指包装袋内物品实际有多重。
3.千克可以用KG表示,又叫公斤。
4.从秤上读出物品的重量。
5.称比较轻的物品,一般用克为单位。
6.认识天平。
7.千克和克之间的关系。1千克=1000克。
练习
(1)一袋盐重500克,两袋盐重()克?
(2)2千克=()克
(3)9000克=()千克第四单元加和减
1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。
练习
口算:44+2532+5714+6876642.画线段图解决问题。
练习
手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。
1.24时记时法及它与普通记时法(12时记时法)的联系
2.联系实际问题求经过时间的`基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。
求经过时间:
记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。
普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时
早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时
深夜12时24时(也是第二天的0时)
记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。
练习
(1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?
(2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形
1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的长边叫做长,短边叫做宽。把正方形的每一条边都叫做边长。)
2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体某个面上一周边线的长度就是该物体某个面的周长)。
练习
(1)篮球场长26米,宽14米,求篮球场的周长。
(2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?
第七单元乘法
1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)
2.三位数的中间或末尾是0时的乘法计算。3.连乘计算。练习:
(1)200×3152×4261×3224×5(2)124×3×2115×2×4
(3)一头牛一天吃20千克草,两头牛两天吃多少千克草?
第八单元观察物体
安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。
1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。
2.在不同的位置观察,看到的物体的面的个数往往是不相同的。
3.进行简单几何体与其三视图之间的转化。
第九单元统计与可能性
学习简单的统计知识。
练习
(1)在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?
第十单元认识分数
理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。
1.分数的表示:分子、分母、分数线。
2.同分母分数比较大小。
3.同分母分数的加减。
三年级上册数学知识点总结9
第一单元混合运算
知识点一、
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
知识点二、
关于“0”的运算
1、“0”不能做除数;
字母表示:a÷0错误
2、一个数加上0还得原数;
字母表示:a+0=a
3、一个数减去0还得原数;
字母表示:a-0=a
4、被减数等于减数,差是0;
字母表示:a-a=0
5、一个数和0相乘,仍得0;
字母表示:a×0=0
6、0除以任何非0的数,还得0;
字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
第二单元观察物体
1、生活中的简单物体观察总结:同一个物体从不同的角度看会有不同的形状。
2、总结:同一立体图形从不同角度观察会有不同的形状。
第三单元加与减
第一节捐书活动
知识点:
1、在计算脱式计算连加时,按从左到右的顺序,先把前两个数相加,再加第三个数,也可以把三个数直接用一个竖式计算相同数位对齐,从个位加起,哪一位上的数字满几十就要向前一位进几,不要认为满十进一。
2、在计算三个三位数连加时,如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。
第二节运白菜
1、用脱式计算连减时,按从左到右的顺序,先把前两个数相减,再减第三个数。也可以先把后两个数相加,写在小括号里面,再用第一个数减去这两个数的和。
2、如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。
第三节节余多少钱
三位数加减混合运算的顺序:没有小括号的按从左到右的顺序依次计算,有小括号的先算小括号里面的,再算小括号外面的。
第四节里程表(一)
1、根据里程表提出问题,一般先把里程表转化成线段图来观察,再列式计算。
2、解决此类问题时,一定要从多个角度画图去理解三者之间的位置关系。位置变化,列式也随之变化。
第五节里程表(二)
1、当天行驶的里程数=当天里程表的读数-前一天里程表的读数
2、解答算式谜时,要通过观察推理找到从哪一位先计算,然后一步一步推算出答案。
第四单元乘与除
第一节小树有多少棵
知识点:
1、整十数乘一位数,根据表内乘法,先用整十数0前面的数与一位数相乘,再在积的末尾添上一个0。
2、整百数乘一位数,根据表内乘法,先用整百数0前面的数与一位数相乘,再在积的末尾添上两个0。
3、整十、整百数乘一位数,先根据表内乘法用整十、整百数0前面的数与一位数相乘,再在积的末尾添上相应个数的0。
4、在口算整百、整千数乘一位数时,先看清楚整百、整千数的末尾有几个0,就在积的末尾添上几个0。要注意一位数与0前面的数相乘时得到的0不能丢。
第二节需要多少钱
知识点:
1、两位数乘一位数(不进位)的口算方法:先把前两位数看作几个十和几个一相加的和,再用一位数分别与它们相乘,最后把所得的两个积相加。
2、计算混合运算时,要先明确运算顺序,再计算。
第三节丰收了
知识点:1、整十数除以一位数的口算方法:
(1)、先看一位数与什么数相乘能得到这个整十数(也就是被除数),结果就是那个数。
(2)、按表内除法计算:先不看被除数末尾的0,按照表内除法算出商,再将被除数末尾的0填写在商的末尾。
2、在除法算式里,被除数不变(被除数不为0)。除数越大,商越小,除数越小,商越大;除数不变,被除数越大,商越大,被除数越小,商越小。
第四节植树
知识点:1、口算两位数除以一位数,先把被除数看成一个整十数和一个一位数,然后分别除以除数,再把所得的两个商相加。
2、(两个连续自然数之和+1)÷2=较大自然数,(两个连续自然数之和-1)÷2=较小自然数,(两数之和+两数之差)÷2=较大数,(两数之和-两数之差)÷2=较小数。
第五单元周长
知识点1:什么是周长
1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的总和就是这个图形的周长。
2、不规则物体或图形的测量方法:绳子测量法。
3、规则物体或图形的测量方法:(1)绳测法,(2)直尺测量法。
知识点二:长方形的周长
1、求长方形的周长必须满足两个条件:已知长和宽的长度。
2、长方形周长的计算方法:
(1)长方形的周长=长+宽+长+宽
(2)长方形的周长=长×2+宽×2
(3)长方形的周长=(长+宽)×2
(4)已知长方形的周长和宽,求长;“长=(周长-宽×2)÷2”或“长=周长÷2-宽”
(5)已知长方形的周长和长,求宽;“宽=(周长-长×2)÷2”或“宽=周长÷2-长”
3、正方形周长的计算方法:
(1)可以把4条边长加起来;
(2)用一条边长乘以4,即正方形的周长=边长×4
4、靠墙围成的长方形有两种情况:
(1)长边靠墙,
(2)宽边靠墙。
5、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。
第六单元乘法
第一节蚂蚁做操
知识点:
1、两、三位数乘一位数(不进位)的笔算方法:从个位算起,用一位数依次去乘多位数每一位的数,与哪一位上的数相乘,就在那一位的下面写积。
2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。
第二节去游乐园
知识点:
1、两、三位数乘一位数(进位)的笔算乘法,列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。
2、两位数乘一位数(进位)的笔算,要把进位的数写到正确的位置上,不要写在积中。
第三节乘火车
知识点:
1、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。
2、笔算乘法时,哪一位上满十就向前一位进1,向哪一位进1,就在那一位加1。
第四节去奶奶家
知识点:
借助里程图解决问题时,一定要明确里程图中的数学信息,理解题意后再进行计算。
第五节:0×5=?
知识点:
1、0和任何数相乘都等于0。
2、一个乘数末尾有0的乘法的计算方法:
(1)先用这个乘数0前面的数乘另一个乘数;
(2)再看这个乘数末尾有几个0,就在积的末尾添上几个0.
3、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。
4、结论:
(1)因数的末尾有0,乘积中一定有0。
(2)因数的中间有0,乘积中不一定有0。
第六节买矿泉水
知识点:
1、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。
2、连乘的运算顺序:按从左到右的顺序依次计算。
3、三个数连乘时,可以先把前两个数相乘,在乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。
第七单元年月日
第一节看日历(一)
知识点:
1、一年有12个月。
2、1、3、5、7、8、10、12月每月有31天,是大月;4.6.9.11月每月有30天,是小月;2月有28天或29天,2月既不是大月,也不是小月。
3、一个月只有28天时,这个月有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天;一个月有31天时,这个
第二节看日历(二)
知识点:
1、2月29日是个特殊的日子,只有4年才出现。
2、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。
3、认识平年和闰年:
(1)公里年份是4的倍数的是闰年,不是4的倍数的是平年,公立年份是整百年的,是必须是400的倍数的才是闰年。
(2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数,如果是整数倍就是闰年,否者就是平年.
(3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。
(4)平年一年有52个星期零1天,闰年一年有52个星期零2天。
365÷7=52(个)......1(天)
366÷7=52(个)......2(天)
4、推算几周年的的时间问题,可以用终止年份直接减去起始年份,所得的差即为所求。
第三节一天的时间
知识点:
1、24时记时法:在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法。
2、普通计时法与24时记时法的表示时刻的'换算:从凌晨0:00到中午12:00与普通计时法相同;中午12:00以后,普通计时法与24时记时法的整点时刻相差12,普通计时法去掉限制词后加12就是24时计时法,24时计时法减12后就是普通计时法,
3、计算从一个时刻到另一个时刻所进过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。
4、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。
5、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。
第四节:时间表
知识点:1、时间表是管理时间的一种手段,是将某一段时间中已经明确的工作任务清晰的记载和表明的表格,用来提醒使用人和相关人按照时间表的进程活动。
2、制作时间表,最主要的是做好时间的分配,合理分配时间有助于我们养成良好的生活规律和守时习惯。
3、判断谁跑得快,只要看谁用的时间短就可以了。
第五节数学好玩
知识点:
1、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。
2、地面上一定范围内的直线距离可以直接用直尺来测量。
3、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。
4、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。
5、日历中的数有很多规律,如横向左边的数比右边的数少1;纵向上面的数比下面少7等。
第八单元认识小数
第一节文具店
知识点:1、像3.15,0.50,1.06,6.66,...这样的数,都是小数。“.”叫作小数点。
2、小数由整数部分、小数点、和小数部分组成。
3、一个小数的小数部分有几位数,它就是几位小数。
4、读小数时,整数部分按整数的读法读,中间的小数点读作点,小数部分依次读出每一数位上的数。
5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。
6、把以元为单位的小数改写成以元、角、分的数的方法:小数的整数部分是几,就改写成几元;小数点后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若那一位上是0,那一位就省略不写。
7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。
第二节货比三家
知识点
1、比较小数大小的方法:先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。
2、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。
第三节存零用钱
知识点1、小数加法的计算方法:小数相加,先把小数点对齐(也就是把相同数位对齐),再按照整数加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。
2、小数减法的计算方法:小数相减,先把小数点对齐(也就是把相同数位对齐),再按照整数减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。
第四节寄书
1、小数进位加法的计算方法:先把小数点对齐,然后按照整数进位加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。
2、小数退位减法的计算方法:先把小数点对齐,然后按照整数退位减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。
3、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1,千万不要忘记满十进一,也不要忘记下一位进上来的一。
第五节能通过吗
1、小数在现实生活中的应用非常广泛,小数可以使数据更加精确。
2、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。
3、如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。
三年级上册数学知识点总结10
一、填空。
1、常见的长度单位有()()()()()。
2、常见的重质量单位有()()()。
3、1只大象重约4()。
4、一台拖拉机可以装货物1()。
5、直尺上从0到1的这一段长度是()厘米。把这一段长度平均分成10小格,每小格的长度是()毫米。
二、判断题。
1、飞机每小时飞行800千米。()
2、8千克=8000吨。()
3、一头猪重135千克。()
4、一袋大米重50千克,20袋大米重1吨。()
5、40毫米与4分米同样长。()
三、选择。
1、李平的身高146()。
a、米
b、分米
c、厘米
2、回形针的长度是28()。
a、厘米
b、毫米
c、分米
3、一本书大约重150()。
a、克
b、千克
c、吨
4、一袋大米重10()。
a、克
b、千克
c、吨
5、比较下面的重量,最重的是()。
a、5吨500千克
b、5900千克
c、5550千克
四、在括号里填上适当的单位。
1、一个鸡蛋重50()。
2、汽车每小时行80()。
3、一辆货车载重4()。
4、一头牛重约200()。
5、跑步每秒钟约8()。
6、1袋水泥重约50()。
7、小明的身高是146()。
8、小宇的体重是32()。
9、数学课本长约2()。
10、标准运动场跑道一圈是400()。
五、解决问题。
1、一只蜗牛从24厘米深的杯底往上爬,每爬6厘米要用3分钟,然后停2分钟。问:蜗牛从杯底爬到杯口要用多少时间?
2、某学校的学生进行__训,在晚上的行__中,二班步行了2100米,一班比二班要多行160米,那么一班和二班共行__多少米?
3、一段16米长的布带,每次剪去2米,剪了5次后,还剩多少米?
4、一头大象重6吨,一头牛重400千克,一头大象比一头牛重多少千克?
5、一根木料在24秒内被切成了4段,用同样的速度切成5段,需要多少秒?
三年级数学上册知识点总结
1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
量比较长的物体,常用米(m)做单位。
量比较长的路程一般用千米(km)做单位。
2、运动场的跑道,通常1圈是400米,2圈半是1000米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。
4、量比较短的物体的'长度或者要求量得比较精确时,可以用毫米作单位。
5、1厘米中间的每一小格的长度是1毫米。
6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
8、常用长度单位:米、分米、厘米、毫米、千米。
9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。
1米=10分米,1分米=10厘米,1厘米=10毫米
1米=100厘米1千米(公里)=1000米
10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000。
1吨=1000千克1千克=1000克
三年级上册数学知识点总结11
测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,
10分米=1米,10厘米=1分米,10毫米=1厘米,
②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克
万以内的加法和减法
1、认识整千数(记忆:10个一千是一万)
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的.数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。
的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。
的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、公式被减数=减数+差
和=加数+另一个加数
减数=被减数—差
加数=和—另一个加数
差=被减数—减数
符号/是什么意思数学
/在数学中是“除”的意思。例如:4/5我们可以说4除以5或者四分之五。数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
实数知识点
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
三年级上册数学知识点总结12
1、有4条直的边和4个角的封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:
长方形的周长=(长+宽)×2
变式:①长方形的长=周长÷2—宽
②长方形的宽=周长÷2—长
正方形的周长=边长×4
变式:正方形的边长=周长÷4
数学圆的周长知识点
环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。
推导圆周长最简洁的办法是用积分。在平面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的.幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)。如果不需要更多的理论讨论,上面的做法就足够了。
小学数学简便计算知识点
1、连加的简便计算:
①使用加法结合律(把和是整十、整百、整千的数结合在一起)
②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
2、连减的简便计算:
①连续减去几个数就等于减去这几个数的和。如:106—26—74=106—(26+74)
②减去几个数的和就等于连续减去这几个数。如:106—(26+74)=106—26—74
3、加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38—23=123—23+38 146—78+54=146+54—78
4、连乘的简便计算:
使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等看见25就去找4,看见125就去找8;
5、连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
6、乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13 7。乘法分配律的应用:
①类型一:(a+b)×c(a—b)×c= a×c+b×c = a×c—b×c
②类型二:a×c+b×c a×c—b×c=(a+b)×c =(a—b)×c
③类型三:a×99+a a×b—a= a×(99+1)= a×(b—1)
④类型四:a×99 a×102= a×(100—1)= a×(100+2)= a×100—a×1 = a×100+a×2
三年级上册数学知识点总结13
《四边形》
1、知识点:认识四边形的特征,掌握长方形、正方形的特征
①能正确辨认四边形。
②掌握长方形、正方形的特征。
注:应注重引导学生在长、正方形的对比中找出图形边和角的特征。
2、知识点:在方格纸上画出长方形和正方形
能在方格纸上画出长方形和正方形。
3、知识点:初步认识平行四边形
①能正确辨认平行四边形。
②能感悟到平行四边形易变形的特性。
③能在方格纸上正确画出平行四边形。
注:学生寻找平行四边形时,要注意与长方形、正方形的区别,逐步让学生在对比中感悟平行四边形的特征。
4、知识点:周长的含义
结合具体情境理解周长的含义。
5、知识点:计算长方形和正方形的周长
①能正确计算长方形、正方形等平面图形的周长。
②能运用周长的知识解决实际问题。
6、知识点:长度和周长的估计
在估量物体长度的'过程中,逐步建立空间观念,养成估计的意识和习惯。
注:应注重引导学生说出估计相应长度的依据,逐步建立长度单位的表象。
《测量》
1、知识点:长度单位毫米、分米、千米及1毫米、1分米、1千米
①认识长度单位毫米、分米、千米,建立1毫米、1分米、1千米的长度观念。
②根据具体情境选择恰当的长度单位。
2、知识点:单位间的进率
①知道1厘米=10毫米,1分米=10厘米,1米=10分米,1千米(公里)=1000米。
②会进行简单的单位换算。
3、知识点:估计、测量物体的长度
能估计一些物体的长度,会选择不同的方式准确测量给定物体的长度。
4、知识点:质量单位吨及1吨
①认识质量单位“吨”,建立1吨的质量观念。
②能根据具体情境选择恰当的质量单位。
5、知识点:1吨=1000千克
知道1吨=1000千克,并会进行吨与千克的单位换算。
三年级上册数学知识点总结14
第一单元 测量
1、在生活中,测量比较短的物品,可以用(毫米、厘米、分米 )做单位;测量比较长的物体,常用( 米 )做单位;测量比较长的路程一般用( 千米 )做单位,千米也叫( 公里 )。10个100米就是1千米,1千米(公里)=1000米。
2、1厘米的长度里有( 10 )小格,每个小格的长度( 相等 ),都是( 1 )毫米。所以,毫米是比厘米小的长度单位。1厘米=10毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、10厘米的长度就是1分米,因此1分米=10厘米。1米=10分米。
5、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
6、长度单位的关系式有:
① 进率是10
1 米 = 10 分米 1 分米 = 10 厘米 1 厘米 = 10 毫米
10 分米=1 米 10 厘米= 1 分米 10 毫米= 1 厘米
② 进率是100
1 米 = 100 厘米 1分米=100毫米 100 厘米=1 米 100毫米=1分米
③ 进率是1000
1千米=1000米 1公里= 1000米 1000米=1千米 1000米 = 1公里
7、当我们表示物体有多重时,通常要用到(质量单位 )。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;把千克换算成吨,是在数字的末尾去掉3个0。如:3吨=3000千克 5000千克=5吨
7、(相邻)质量单位进率是1000 。
1 吨 = 1000千克 1千克=1000克
1000千克 = 1 吨 1000克=1千克
第二单元 万以内的加法和减法(二)
1、笔算加、减法要注意:
(1)相同数位要对齐;
(2)从个位算起;
(3)哪一位上的数相加满十,就向前一位进1;哪一位上的数不够减,就从前一位退1作十再减。
2、估算的方法:
结合实际,把题目中的数分别看作与它接近的整百或整十的数,再通过口算确定它们的得数范围。
3、加、减法验算的方法:
(1)加法的验算:
①交换加数的位置再加一遍,看看两次相加的和是不是相同;
②用“和”减去“其中一个加数”,看看结果是不是等于“另一个加数”。
(2)减法的验算:
①用“被减数”减去“差”,看看结果是不是等于“减数”;
②用“差”加“减数”,看看结果是不是等于“被减数”。
第三单元 四边形
1、由4条直的边和4个角组成的图形叫做四边形。
2、四边形的特点:有四条直的边;有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的.特点:有4个直角,4条边相等。
5、长方形和正方形都是特殊的平行四边形。
6、平行四边形的特点:对边相等、对角相等。平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、要求长方形的周长必须知道长方形的(长)和(宽);要求正方形的周长必须知道正方形的(边长)。
9、公式。
长方形的周长 = (长+宽)×2 长方形的长 = 周长÷2-宽 长方形的宽 = 周长÷2-长
正方形的周长 = 边长×4 正方形的边长 = 周长÷4
第四单元 有余数的除法
1、余数和除数之间的关系:进行有余数的除法计算时,结果中的余数一定要比除数小。
2、公式。
被除数 =商×除数+余数 除数 = (被除数-余数)÷商 商 = (被除数-余数)÷除数
第五单元 时分秒
1、钟面上有3根针,它们是(时针)、(分针)和(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有( 12 )个数字,( 12 )个大格,( 60 )个小格;每两个数间是( 1 )个大格,也就是( 5 )个小格。
3、时针走1大格是( 1 )小时;分针走1大格是( 5 )分钟,走1小格是( 1 )分钟;秒针走1大格是( 5 )秒钟,走1小格是( 1 )秒钟。
4、时针走1大格,分针正好走( 1 )圈,分针走1圈是( 60 )分,也就是( 1 )小时。
5、分针走1小格,秒针正好走( 1 )圈,秒针走1圈是( 60 )秒,也就是( 1 )分钟。
6、时针从一个数走到下一个数是( 1小时 )。分针从一个数走到下一个数是( 5分钟)。秒针从一个数走到下一个数是( 5秒 )。
7、公式。
1时= 60分 1分= 60秒 半时= 30 分 60分=1时 60秒=1分 30 分=半时
8、时间单位间的简单换算。
例如:2时=( )分
因为1时=60分,2时有2个60分,2×60=120,所以2时=(120)分。
例如:180秒=( )分
因为60秒=1分,180秒里面有3个60秒,所以180秒=(3)分。
例如:1分35秒=( )秒
因为1分=60秒,60+35=95,所以1分35秒=(95)秒。
9、计算简单的经过时间:经过的时间=结束的时刻-开始的时刻。
例如:小明晚上7:30开始写作业,8:40写完作业,小明完成作业用了多长时间?
8:40-7:30=1小时10分
第六单元 多位数乘一位数
1、口算。
整十、整百、整千的数乘一位数,可以先把题目转化成一位数乘一位数,直接用乘法口诀来算,算出积后,再看因数末尾共有几个0,就在积的末尾添上几个0。
2、多位数乘一位数的计算方法:
计算两、三位数乘一位数,都是把这个多位数的每个数位上的数依次乘一位数。哪一位上的乘积满几十,就要向前一位进几。
3、0和任何数相乘都得0。
4、多位数乘一位数的估算。
把因数中的两位数或三位数看成和它最接近的整十、整百的数来与一位数相乘。
如:48×9≈ 可以这样想:因为48接近50,50×9=450,所以48×9≈450
第七单元 分数的初步认识
1、分数的初步认识:
(1)几分之一:把一个物体或图形平均分成几份,每份就是它的几分之一。
(2)几分之几:有几个几分之一,就是几分之几。
(3)分数的表示方法和各部分的名称:
2 ……分子(表示取了其中的几份)
……分数线(表示平均分)
5 ……分母(表示平均分成了几份)
第八单元 可能性
1、确定现象与不确定现象。
(1)确定现象:事件发生的结果是确定的。(如:太阳不可能从西方升起;太阳每天从东方升起。)
(2)不确定现象:事件发生的结果无法确定。(如:下星期一会下雨。)
2、事件发生与否有三种情况。
(1)一定(如:正方体一定有6个面。)
(2)可能(如:明天可能是晴天。)
(3)不可能(如:地球不可能绕着月球转。)
3、事件发生的可能性是有大小的。
例如:盒子里有10个红球,3个白球,红球与白球的数量不相等,那么摸到红球的可能性与摸到白球的可能性是不一样的。红球多,摸到红球的可能性较大;白球少,摸到白球的可能性就小。
第九单元 数学广角
简单的排列与组合:
在解决问题时,要弄清楚实际问题与事物的顺序有没有关系,做到既不重复也不遗漏。
1、与顺序有关的是排列数。例如:用数字卡片组数、排队、站不同位置照相、扮演不同的角色等问题。
2、与顺序无关的是组合数。例如:衣服和早餐的搭配、行走路线的选择、两两通话、两两握手、安排比赛场次等问题。
三年级上册数学知识点总结15
第二、四单元万以内的加法和减法
1、最大的几位数和最小的几位数:
最大的一位数是9. 最小的一位数是0.
最大的二位数是99. 最小的二位数是10
最大的三位数是999. 最小的三位数是100
最大的四位数是9999. 最小的四位数是1000
最大的五位数是99999. 最小的五位数是10000
最大的三位数比最小的四位数小1.
2、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10.就向前一位进1;哪一位上的数不够减,就从前一位退1当作10.加本位再减;如果前一位是0.则再从前一位退1.
3、两个三位数相加的和:可能是三位数,也有可能是四位数。
4、加法公式:
加数 + 加数 = 和
和 - 另一个加数 = 加数
5、减法公式:
被减数 - 减数 = 差
差 + 减数 = 被减数或 被减数 = 差 + 减数
被减数 - 差 = 减数
6、口算时:
例:(1)35+48.先算35+40=75.再算75+8=83.
(2)72-28.先算72-20=52.再算52-8=44
或 先算72-30=42.再算42+2=44
7、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。
第五单元 倍的认识
求一个数是另一个数的'几倍是多少? 用除法计算:一个数÷另一个数=倍数
36是4的几倍? 36÷4=9
已知一个数的几倍是A,求这个数。 用除法计算: A÷倍数=这个数
已知一个数的5倍数是35.求这个数? 35÷5=7
求一个数的几倍是多少? 用乘法计算:一个数×倍数= 结果
9的6倍是多少? 9×6=54
第六单元 多位数乘一位数
1、多位数乘一位数(进位)的笔算方法:
相同数位对齐,从个位乘起,用一位数依次去乘多位数的每一位,哪一位上乘得的数数积满几十,就向前一位进几。
2、在乘法里,乘数也叫做因数。
3、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
第七单元 长方形和正方形
1、用相同的小正方形拼长方形或正方形时,拼成的图形长和宽越接近(或长、宽相等)时,周长最短。
2、四边形的特点:有4条直的边,有4个角。
3、长方形的特点:对边相等,有4个直角。
4、正方形的特点:4条边都相等,有4个直角。
5、封闭图形一周的长度,是它的周长。
6、长方形的周长=(长+宽)×2 正方形的周长=边长×4
7、在一个长方形中剪出一个最大的正方形,长方形的宽就是这个正方形的边长。
第八单元 分数的初步认识
1、 分数的意义:把一个整体平均分成若干份,表示1份或几份的数就是分数。
表示:把一个整体平均分成5份,取其中的两份
表示:把一个整体平均分成4份,取其中的一份
2、比较大小的方法:
(1)分子相同,分母小的分数就大。
(2)分母相同:分子大的分数就大。
3、同分母分数相加减,分母不变,只把分子相加减。
三年级数学上册重要知识点整理
一、学习目标:
1.认识长度单位毫米,建立1毫米的长度概念,会用毫米厘米度量比较短的物体的长度;
2.较透彻地理解万以内笔算加法的计算法则,并能应用法则准确地计算两位数连续进位的加法题;
3.初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类;
4.知道有余数除法的含义,体会有余数出发的实际背景;
5.认识时间单位“秒”,知道1分=60秒;会进行一些时间的简单计算;初步建立时、分、秒的时间观念,养成遵守和爱惜时间的意识和习惯;
6.掌握一位数乘整十、整百、整千数的口算方法,会进行相应的口算;知道一位数乘整十、整百、整千数的简便算法;
7.初步认识几分之一,会读会写几分之一,能比较分子是1的分数大小;
8.理解一位数乘整十数的口算法。
二、学习难点:
1.认识时间单位时、分、秒,知道1分=60秒,会一些有关时间的简单计算;
2.知道有余数的除法的含义,来自生活中;
3.根据四边形的特点对四边形进行分类;
4.哪一位上的'数相加满十,要向前一位进1.而且在前一位上的数相加时,要记得加上进上来的1;
5.认识长度单位毫米,会用毫米度量物体长度。
三、知识点概括总结:
1.毫米:毫米是长度单位和降雨量单位,英文缩写mm。
1毫米=0.1厘米=0.01分米=0.001米=0.000001千米
2.厘米:是一个长度计量单位,等于一米的百分之一。长度单位,符号为cm.,1厘米=1/100米。
1厘米=10毫米=0.1分米=0.01米=0.00001千米
3.分米:是长度的公制单位之一,1分米相当于1米的十分之一。
0.0001千米(km)=1分米
0.1米(m)=1分米
10厘米(cm)=1分米
100毫米(mm)=1分米
4.千米:千米又称公里,是长度单位,通常用于衡量两地之间的距离。是一个国际标准长度计量单位,符号km。
1千米(公里)=1.000米(公尺)=100.000厘米(公分)=1.000.000毫米(公厘)
5.吨:质量单位,公制一吨等于1000公斤。
6.加法:基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。
表达加法的符号为加号(+)。
进行加法时以加号将各项连接起来,把和放在等号(=)之后,例:1、2和3之和是6.就写成∶1+2+3=6.
加法各部分名称:“+”是加号,加号前面和后面的数是加数,“=”是等于号,等于号后面的数是和。
例:100(加数)+(加号)300(加数)=(等于号)400(和)
加法性质:(1)加法交换律:a+b=b+a
(2)加法结合律:a+b+c=a+(b+c)
7.减法:四则运算之一,将一个数或量从另一个数或量中减去的运算叫做减法。
已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。
减法的性质:减去一个数,等于加这个数的相反数。
8.验算:算题算好以后,再通过逆运算(如减法算题用加法,除法算题用乘法)演算一遍,检验以前运算的结果是否正确。
验算的作用:验算能够有效地检查出计算过程中出现的错误,但对解题思维上的错误无太大用处,通过验算(用结果来推导条件)所得的数据与原数据比较来建议运算是否正确。
9.四边形:由不在同一直线上四条线段依次首尾相接围成的封闭的立体图形叫四边形。由凸四边形和凹四边形组成。
10.平行四边形:两组对边分别平行的四边形叫做平行四边形。
11.周长:环绕有限面积的区域边缘的长度积分,叫做周长,图形一周的长度,就是图形的周长。周长的长度因此亦相等于图形所有边的和。
12.估计:根据情况,对事物的性质、数量、变化等做大概的推断。
13.余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:1.指整数除法中被除数未被除尽部分。
例:27除以6.商数为4.余数为3.
余数的性质:余数有如下一些重要性质(a,b,c均为自然数):
(1)余数小于除数;
(2)被除数=除数×商+余数。
除数=(被除数-余数)÷商;
商=(被除数-余数)÷除数;
余数=被除数-除数×商。
14.秒:时间单位时间单位秒(second)是国际单位制中时间的基本单位,符号是s。
15.分:时间单位,等于1/60小时,或60秒。
16.乘法:将相同的数加法起来的快捷方式。其运算结果称为积。
乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20__(积)
18.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。
分子在上分母在下,也可以把它当做除法来看,用分子除以分母,相反乘法也可以改为用分数表示。
19.分数线、分子、分母:分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。
分数可以表述成一个除法算式:如二分之一等于1除以2.其中,1分子等于被除数,分数线等于除号,2分母等于除数,而0.5分数值则等于商。
20.分数由来:分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,像7/3就是一种新的数,我们把它叫做分数。
21.可能性:可能性是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。
【三年级上册数学知识点总结】相关文章:
初三数学上册的知识点总结12-20
初三数学上册知识点总结12-20
人教版三年级数学上册知识点归纳总结10-23
初三数学上册知识点总结【必备12篇】10-18
小学三年级上册的知识点总结02-09
五年级上册数学知识点总结01-17
数学集合知识点总结03-11
八年级数学上册知识点总结03-07
二年级数学上册知识点总结03-31
中考数学知识点总结01-02