- 相关推荐
有理数的加法教案
作为一名人民教师,通常会被要求编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么应当如何写教案呢?下面是小编收集整理的有理数的加法教案,仅供参考,大家一起来看看吧。
有理数的加法教案1
教学目标
1,在现实背景中理解有理数加法的意义。
2,经历探索有理数加法法则的过程,理解有理数的加法法则。
3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。
4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。
5,在教学中适当渗透分类讨论思想
教学难点
异号两数相加
知识重点
和的符号的确定
教学过程
(师生活动)设计理念
设置情境
引入课题回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。
(出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。
分析问题
探究新知如果是球队在某场比赛中上半场失了两个球,下
半场失了3个球,那么它的得胜球是几个呢?算式应该
怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?
(学生思考回答)
思考:请同学们想想,这支球队在这场比赛中还可
能出现其他的什么情况?你能列出算式吗?与同伴交流。
学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。
2,借助数轴来讨论有理数的加法。I
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。
(2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的基础上,教师出示有理数加法法则。
有理数加法法则:
1,同号两数相加,取相同的符号,并把绝对值相加。
2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。
估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。
但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。
①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的`足能用自己的语言表达自己所发现的规律
解决问题解决问题
例1计算:
(1)(—3)+(—9);(2)(—5)+13;
(3)0十(—7);(4)(—4。7)+3。9。
教师板演,让学生说出每一步运算所依据的法则。
请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)
例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。
(让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)
学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过
程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。
拓宽学生视野,让学
生体会到数学与生活的密切联系。
课堂练习教科书第23页练习
小结与作业
课堂小结通过这节课的学习,你有哪些收获,学生自己总结。
本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。
2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。
3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听
别人的意见和建议。
附板书:1。3。1有理数的加法(一)
有理数的加法教案2
教学目标
1.了解有理数加法的意义,理解有理数加法法则的合理性;
2.能运用有理数加法法则,正确进行有理数加法运算;
3.经历探索有理数加法法则的过程,感受数学学习的方法;
4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.
教学重点
能运用有理数加法法则,正确进行有理数加法运算.
教学难点
经历探索有理数加法法则的过程,感受数学学习的方法.
教学过程(教师)
一、创设情境
小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?
1.试一试
甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.
你能把上面比赛的过程及结果用有理数的算式表示出来吗?
做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:
2.我们知道,求两次输赢的'总结果,可以用加法来解答,请同学们先个人研究,后小组交流.
你还能举出一些应用有理数加法的实际例子吗?
二、探究归纳
1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________
2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________
3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?
请用数轴和算式分别表示以上过程及结果:
算式:________________________
仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.
4.观察、思考、讨论、交流并得出有理数加法法则.
讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?
《2.5有理数的加法与减法》课时练习
1.七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少?
2.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.
(1)通过计算说明小虫是否回到起点P.
(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.
2.5有理数的加法与减法:同步练习
1.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km)
+17,-9,+7,-15,-3,+11,-6,-8,+5,+16
(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?
(2)养护过程中,最远外离出发点有多远?
(3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升?
有理数的加法教案3
一、教学目标
1、知识与技能
(1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算;
(2)在有理数加法法则的教学过程中,注意培养学生的运算能力。
2、过程与方法
通过观察,比较,归纳等得出有理数加法法则。能运用有理数加法法则解决实际问题。
3、情感态度与价值观
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二、教学重难点及关键:
重点:会用有理数加法法则进行运算、
难点:异号两数相加的法则、
关键:通过实例引入,循序渐进,加强法则的应用。
三、教学方法
发现法、归纳法、与师生轰动紧密结合。
四、教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
五、教学过程
(一)问题与情境
我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球数。章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球为4+(—2),黄队的净胜球为1+(—1),这里用到正数与负数的加法。
(二)师生共同探究有理数加法法则
前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算、这节课我们来研究两个有理数的加法、两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:
足球比赛中赢球个数与输球个数是相反意义的量、若我们规定赢球为“正”,输球为“负”,打平为“0”、比如,赢3球记为+3,输1球记为—1、学校足球队在一场比赛中的胜负可能有以下各种不同的情形:
(1)上半场赢了3球,下半场赢了1球,那么全场共赢了4球、也就是(+3)+(+1)=+4、
(2)上半场输了2球,下半场输了1球,那么全场共输了3球、也就是(—2)+(—1)=—3、
现在,请同学们说出其他可能的情形、
答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(—2)=+1;
上半场输了3球,下半场赢了2球,全场输了1球,也就是(—3)+(+2)=—1;
上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3;
上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(—2)+0=—2;
上半场打平,下半场也打平,全场仍是平局,也就是0+0=0、
上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和、但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法、现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?
这里,先让学生思考,师生交流,再由学生自己归纳出有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3、一个数同0相加,仍得这个数。
(三)应用举例变式练习
例1口答下列算式的结果
(1)(+4)+(+3);(2)(—4)+(—3);(3)(+4)+(—3);(4)(+3)+(—4);
(5)(+4)+(—4);(6)(—3)+0;(7)0+(+2);(8)0+0、
学生逐题口答后,师生共同得出:进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则、进行计算时,通常应该先确定“和”的'符号,再计算“和”的绝对值、
例2(教科书的例1)
解:(1)(—3)+(—9)(两个加数同号,用加法法则的第1条计算)
=—(3+9)(和取负号,把绝对值相加)
=—12、
(2)(—4.7)+3.9(两个加数异号,用加法法则的第2条计算)
=—(4.7—3.9)(和取负号,把大的绝对值减去小的绝对值)
=—0.8
例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数
下面请同学们计算下列各题以及教科书第23页练习第1与第2题
(1)(—0.9)+(+1.5);(2)(+2.7)+(—3);(3)(—1.1)+(—2.9);
学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。
(四)小结
1、本节课你学到了什么?
2、本节课你有什么感受?(由学生自己小结)
(五)作业设计
1、计算:
(1)(—10)+(+6);
(2)(+12)+(—4);
(3)(—5)+(—7);
(4)(+6)+(+9);
(5)67+(—73);
(6)(—84)+(—59);
(7)—33+48;
(8)(—56)+37、
2、计算:
(1)(—0.9)+(—2.7);
(2)3.8+(—8.4);
(3)(—0.5)+3;
(4)3.29+1.78;
(5)7+(—3.04);
(6)(—2.9)+(—0.31)
(7)(—9.18)+6.18;
(8)(—0.78)+0、
3、用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0|a|>|b|,那么a+b ______0
(六)板书设计
1.3.1有理数加法
一、加法法则二、例1例2例3
有理数的加法教案4
今天我说课的题目是“有理数的加法(一)"。本节课选自华东师范大学出版社出版的〈义务教育课程标准实验教科书〉七年级(上),。这一节课是本册书第二章第六节第一课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、 有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、 就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)
教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程当中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计帘具体体现。而且在做练习的过程当中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学孚段
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
四、教学过程的设计
1, 引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2, 探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程当中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3, 巩固练习:再习题的.配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程当中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
4, 归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、 就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。
教学大纲是我们确定教学目标,重点和难点的依据。教学大纲规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是有理数加法法则的理解。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
有理数的加法教案5
1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
重点、难点分析
重点:是依据有理数的加法法则熟练进行有理数的加法运算。
难点:是有理数的加法法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。
知识结构
教法建议
1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律a+b=b+a中字母a、b的.任意性。
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5.可以给出一些类似两数之和必大于任何一个加数的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。
有理数的加法教案6
教学目标:
知识与技能:
1.进一步熟练掌握有理数加法的法则。
2.掌握有理数加法的运算律,并能运用加法运算律简化运算。
过程与方法:
启发引导式教学,能够由特殊到一般、由一般到特殊,体会研究数学的一些基本方法。
情感、态度与价值观:
1.培养学生的分类与归纳能力。
2.强化学生的数形结合思想。
3.提高学生的自学以及理解能力,激发学生学习数学的兴趣。
教学重点:
加法运算律的灵活运用,解决实际问题。
教学难点:
能运用加法运算律简化运算,加法在实际中的应用。
教学方法:
采取启发式教学法及情感教学,引导学生主动思考,主动探索。用大量的实例让学生得出规律。
教学准备:
1.复习有理数的加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的'数的符号,并用较大的绝对值减去较小的绝对值。
(3)一个数同0相加,仍得这个数。
2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8
教学过程:
(一)情境引入,提出问题:
鼓励学生通过自己的探索,交流、归纳,自主得出有理数加法的运算律。
1.叙述有理数的加法法则.
2.小学学过的加法的运算律是不是也可以扩充到有理数范围?
3.计算下列各组数的值,并观察寻找规律。
(1) (-7)+(-5) (-5)+(-7)
(2) [8+(-5)]+(-4) 8+[(-5)+(-4)]
(3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]
结论:在有理数运算中,加法交换律、结合律仍然成立。
(二)活动探究,猜想结论:
交换律——两个有理数相加,交换加数的位置,和不变.
用代数式表示:a+b=b+a
运算律式子中的字母a、b表示任意的一个有理数,可以是正数,也可以是负数或者零.
在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示:(a+b)+c=a+(b+c)
这里a、b、c表示任意三个有理数.
(三)验证结论:
例1计算16+(-25)+24+(-32)
(引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便)
解:16+(-25)+24+(-32)
=[16+24]+[(-25)+(-32)] (加法结合律)
=40+(-57) (同号相加法则)
=-17 (异号相加法则)
例2计算:31+(-28)+28+69
(引导学生发现,在本例中,把互为相反数的两个数相加得0,计算比较简便)
解:31+(-28)+28+69
=31+69+[(-28)+28]
=100+0
=100
《2.4.1有理数的加法法则》同步练习
3.若两个有理数的和为负数,那么这两个有理数( )
A.一定都是负数B.一正一负,且负数的绝对值大
C.一个为零,另一个为负数D.至少有一个是负数
4.两个有理数的和( )
A.一定大于其中的一个加数
B.一定小于其中的一个加数
C.和的大小由两个加数的符号而定
D.和的大小由两个加数的符号与绝对值而定
5.如果a,b是有理数,那么下列各式中成立的是( )
A.如果a<0,b<0,那么a+b>0
B.如果a>0,b<0,那么a+b>0
C.如果a>0,b<0,那么a+b<0
D.如果a>0,b<0,且|a|>|b|,那么a+b>0
《2.4.2有理数的加法运算律》测试
7.张大伯共有7块麦田,今年的收成与去年相比(增产为正,减产为负)情况如下(单位:kg):+320,-170,-320,+130,+150,+40,-150.则今年小麦的总产量与去年相比( )
A.增产20 kg B.减产20 kg C.增长120 kg D.持平
8.一口井水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.2米;第五次往上爬了0.55米,没有下滑;第六次往上爬了0.48米,此时蜗牛有没有爬出井口?请通过列式计算加以说明
有理数的加法教案7
教学目标
知识与技能:
掌握有理数加法法则,并能运用法则进行有理数加法的运算。
过程与方法:
1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;
2.动手、发现、分类、比较等方法的学习,培养归纳能力。
情感态度与价值观:
1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;
2.体会数学来源于生活,服务于生活,培养热爱数学的`情感,体会数学的应用价值;
3.培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。
教学重点
有理数加法法则及运用
教学难点
异号两数相加法则
教具准备
powerpoint课件
课时安排
1课时
教学过程环节教师活动学生活动设计意图创设情境引入新课XX年6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的球迷送上了一场完美的足球盛宴。
小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。积分相同时,净胜球多者为胜。
以B组为例,进入十六强的是阿根廷和韩国。
国家赛胜平负得分阿根廷韩国希腊尼日利亚再以A组为例,A组积分榜,国家赛胜平负得分进球失球净胜球乌拉圭+40墨西哥+3-2南非+3-5法国+1-4师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。你能列出计算各队净胜球数的算式吗?
学生看图表,思考问题。
学生列出计算净胜球数的算式。利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣,体会学习有理数运算的必要性。环节教师活动学生活动设计意图探索新知
师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算。
有理数的加法教案8
一.教学目标
1.知识与技能
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;
(3)应用有理数加法法则进行准确运算;
2.数学思考
通过观察,比较,归纳等得出有理数加法法则。
3.解决问题
能运用有理数加法法则解决实际问题。
4.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
5.重点
会用有理数加法法则进行运算.
6.难点
异号两数相加的法则.
二.教材分析
“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的'法则,为今后学习“有理数的减法”做铺垫。
三.学校与学生情况分析
双溪中学是靖安县的一所完全中学,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。
四.教学过程
(一)比较下列各对有理数的大小关系。
(1)7和4;
(2)—7和4;
(3)—3.5和—4;
(4)—1/2和—2/3。
师:用多媒体展示图片,组织复习引入新课。
(二)探索规律,得出法则:
课件演示:(设置六个探究活动,以原点为起点,小明在数轴上西右走动来表示情况,规定向东为正,向西为负)让学生体会两个数相加的规律。
(1)同向情况:
1.情景
探究
1:小明先向东运动5米,再向右运动3米,那么两次运动后的总结果是什么。
探究
2:小明先向西运动5米,再向西运动3米,那么两次运动后的总结果是什么。
2.探究问题:有理数两个负数相加的和该怎么确定符号。怎么确定绝对值。(学生主动思考,展开讨论)
3.猜一猜,说一说(分组概括两个负数的加法法则):
有理数的加法教案9
教学目标:
1.知识与技能:使学生理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。通过有理数加法的教学,表达化归的意识、数形结合和分类的思想方法,培养学生观察、比拟和概括的思维能力。
2.过程与方法:使学生理解有理数加法的法则,能熟练地进行有理数加法运算。
3.情感态度与价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神。
教学重点:有理数加法法则。
教学难点:异号两数相加的法则。
教学过程:
一、复习引入:
师:在里,同学们已经学过数的加、减、乘、除四则运算。这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。自从引进负数后,数的范围就扩大到整个有理数。那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。
〔教师板书课题:有理数的加法〕
请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。
师:呈现思考1,引导学生说出两数相加的九种情况并归纳三种类型。
生:加数都是正数或都是负数。〔教师板书:同号两数相加〕
加数一正一负〔教师板书:异号两数相加〕
师:还有其他情况吗?
生:正数与零,负数与零,或者两个都是零
师:同学们答复得很好。现在让我们一起来看一个具体问题:一位同学沿着一条东西向的跑道,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向,相距多少米? 我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。
二、讲授新课:
1.发现、总结:
① 先向东走了5米,再向东走3米,结果怎样?
生:向东走了8米
师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示?
生:表示为〔+5〕+〔+3〕=+8
师:我们可以画出示意图1。 〔教师用投影仪显示图1〕
②先向西走了5米,再向西走了3米,结果如何?
生:向西走了8米。可以表示为:〔-5〕+〔-3〕=-8
师:我们可以画出示意图2。〔教师用投影仪显示图2〕
师: 从两个有理数相加的过程中你发现了什么?引导学生从符号和绝对值观察总结出同号两数相加的法则。〔教师板书法则〕
师:让学生动手自己完成③、④、⑤、⑥种情况的示意图〔小组完成〕
③ 向东走了5米,再向西走了3米,结果呢?
生:向东走了2米。可以表示为:〔+5〕+〔-3〕=+2
④先向西走了5米,再向东走了3米,结果呢?
生:向西走了2米。可以表示为:〔-5〕+〔+3〕=-2
⑤先向东走5米,再向西走5米,结果呢?
生:回到原地位置。可以表示为:〔+5〕+〔-5〕=0
⑥先向西走5米,再向东走5米,结果呢?
生:仍回到原地位置。可以表示为:〔-5〕+〔+5〕=0
师: 从两个有理数相加的过程中你发现了什么?请同学们发表自己的观点,与本组同学交流。
学生自由发表意见。
师:很好!同学们已经感受到两个有理数相加的情况与加法要复杂一些,是否还有没有考虑到的情况呢?
师:全班同学共同说出有理数的加法法则。
教〔板书〕:有理数加法法则:
①同号两数相加,取加数的符号,并把绝对值相加;
②异号两数相加,如果绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加为0. ③一个数同0相加,仍是这个数。
三.例题:例1:计算:
①―3+(―9); ②(―)+3.9;
③(+2)+ (―11); ④(―9)+(+9)。
解:①―3+(―9)=―(3+9)=―12;
②(―)+=―(―)= ―0.8;
③(+2)+ (―11)= ―(11―2)= ―9
④(―9)+(+9)=0
四、课堂练习: 教科书P18:1,2,3, 4 五、课堂小结:
应用有理数加法法则进行计算时,要注意先定符号,在算绝对值。
六、课外作业:
七、板书设计:
有理数的加法
有理数加法法则:
1、同号两数相加,取加数的符号,并把绝对值相加。
2、异号两数相加,如果绝对值不等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加为0。
3、一个数同0相加,仍得这个数。
八、教学反思:学生学习知识是一个动态的过程。学生认知的效果,完全取决于学生是否以积极的'心态参与认知活动。因此本节课在教学设计上有如下闪光点:1.通过回忆已具备的局部知识与技能,让学生产生一个暂时成功感和满足感,到达一个暂时的心理平衡。
2.以提问的形式展现新矛盾、新问题,挑起学生引起心理的不平衡。旨在诱发学生好强、好胜的天性,将学生的注意力导向下一个环节。
3.再次以提问的形式,渗透分类的思想,将学生的思维导向分类探索的境地。旨在让学生的思维能圆润地过度到探索新知情境之中。
4.分类展示生活情境,放手让全体学生感受并探索,从而构建加法法则。
有理数的加法教案10
一、教学内容分析
本节课是有理数加法的法则推导和计算,在此基础上,学生已经学过了正数和负数的认识及实际表示的意义和有理数的大小比较。本节课将在此基础上授导学生学习有理数的加法法则,解决同号、异号两数相加的计算。
二、学习者分析
七年级的学生,其思维已经明显地具备了逻辑思维性,并且学生已经在我的要求下,学会了预习、初步养成了预习的习惯,逐渐养成了合作交流的习惯。只要我们教师通过具体的问题的指引、学生小组间的合作和交流,是可以完成本节课的教学目标的。
三、教学目标
1、使学生掌握有理数加法法则,并能运用法则进行计算;
2、让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3、让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
四、信息技术应用分析
由于本节课的知识点是探究有理数加法法则,要求学生掌握并会运用,所以为了节省时间和极大的提高学生的学习兴趣,选用了多媒体进行教学,把所有的内容用电子的白板展示出来。
五、教学过程
1、复习提问,引入新知
通过对小学加法及数轴知识的应用的复习,让学生既巩固了原来所学的.知识,又可以引出新课。
2、出示问题情境、解决新知
在解决新知的过程中,由于学生利用已有的知识及题目提示,运用学生互相合作交流,并且由各个小组进行展示答案。
3、探索发现,归纳新知
利用学生展示的答案,学生分组进行归纳总结,得出有理数运算法则。
学生通过合作交流,养成在日常生活中和别人交流合作的好习惯。,通过展示成果培养了学生的自信心。
4、展示例题、应用新知
此环节巩固了所学知识,并且通过本环节让学生体会小组合作的乐趣,体会利用法则解决实际问题的方法。
5、达标训练,巩固新知
本环节进一步巩固了所学的知识,在互动回答是采用哪个小组举手多、举得早,让哪个小组来回答;让学生养成一种竞争意识,合作交流意识。
6、规律总结,升华新知
本环节着重总结有关有理数加法法则,让学生进行小结,逐步养成学生在解决问题时随时总结规律的习惯,并对本节课的知识进行梳理、加深和巩固。
7、作业和运用,拓展新知
通过作业学生进一步巩固所学知识,强化对知识的理解和应用,通过挑战自我来拓展学生知识面,发展学生的认识。
有理数的加法教案11
教学目标:
1.知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,2.过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用
3.情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算
教学重点:
能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,教学难点:
准确、熟练地进行加减混合运算
教学过程
一、课前预习
1、有理数的`加法法则是什么? 2、有理数的减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题(1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12二、自主探索
根据有理数减法法则,有理数的加减混合运算可以统一为加法运算
例1、计算(1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ )解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法= 26+(-42)---------------------------------------运用运算律=-16 (2) (3)(4) (5)算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算:解:(-6)-(-13)+(-5)-(+3)+(+6)
=(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号=-6+13-5-3+6----------------------------------------省略加号=-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5说明:省略加号的形式-6+13-5-3+6表示-6,+13,-5,-3,+6这五个数的和。
例2.计算:
(1) -3-5+4 (2)-26+43-24+13-46解:(1) (2)
例4、若a=-2,b=3,c=-4,求值
(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c
解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [数据代入时,注意括号的运用] (2) (3)(4)
例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查,约定向东为正,某天从A地到B地结束时行走记录为(单位:km) +15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5问:(1)B地在A地何方,相距多少千米? (2)这小组这一天共走了多少千米
三、学习小结
这节课你学会了哪几种运算?
四、随堂练习
A类
1、计算:(1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3) (3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48
(5)21-12+33+12-67 (6)-3.2+5.8-8.6+12
2计算
(1) 1+2-3-4+5+6-7-8++97+98-99-100
(2) 66-12+11.3-7.4+8.1-2.5
(6)-2.7-[3-(-0.6+1.3)]
B类
3.计算(1) + + ++ (2) + + ++
有理数的加法教案12
教学目标
1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;
2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。
3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
教学建议
(一)重点、难点分析
本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。
(二)知识结构
(三)教法建议
1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。
3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。
4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。
教学设计示例:
有理数的减法
一、素质教育目标
(一)知识教学点
1、掌握有理数的减法法则。
2、进行有理数的减法运算。
(二)能力训练点
1、通过把减法运算转化为加法运算,向学生渗透转化思想。
2、通过有理数减法法则的.推导,发展学生的逻辑思维能力。
3、通过有理数的减法运算,培养学生的运算能力。
(三)德育渗透点
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
(四)美育渗透点
在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。
二、学法引导
1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。
2、学生学法:探索新知→归纳结论→练习巩固。
三、重点、难点、疑点及解决办法
1、重点:有理数减法法则和运算。
2、难点:有理数减法法则的推导。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片。
六、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。
七、教学步骤
(一)创设情境,引入新课
1、计算(口答)(1);(2)-3+(-7);
(3)-10+(+3);(4)+10+(-3)。
2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?
教师引导学生观察:
生:10℃比-5℃高15℃。
师:能不能列出算式计算呢?
生:10-(-5)。
师:如何计算呢?
教师总结:这就是我们今天要学的内容。(引入新课,板书课题)
【教法说明】
1、题目既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。
(二)探索新知,讲授新课
师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?
生:(+10)-(+3)=+7。
师:计算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7。
师:让学生观察两式结果,由此得到:
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。
师:是如何转化的呢?
生:减去一个正数(+3),等于加上它的相反数(-3)。
【教法说明】
教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。
2、再看一题,计算(-10)-(-3)。
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。
生:(-10)+(+3)=-7。
教师引导、学生观察上述两题结果,由此得到:
教师进一步引导学生观察(2)式;你能得到什么结论呢?
生:减去一个负数(-3)等于加上它的相反数(+3)。
教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。
有理数的加法教案13
教学目标:
1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,
2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用
3. 情感、态度与价值观:渗透用转化的`思想看问题以及解决问题,鼓励学生依据法则简化运算
教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,
教学难点:准确、熟练地进行加减混合运算
教学过程
一、课前预习
1、有理数的加法法则是什么? 2、有理数的减法法则是什么? 3、有理数的加法有什么运算律?具体内容是什么? 4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12
二、自主探索
根据有理数减法法则,有理数的加减混合运算可以统一为加法运算
例1、计算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法 = 26+(-42)---------------------------------------运用运算律 =-16 (2) (3)(4) (5)
算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算: 解:(-6)-(-13)+(-5)-(+3)+(+6)
=(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号 =-6+13-5-3+6----------------------------------------省略加号 =-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。
例2.计算:
(1) -3-5+4 (2)-26+43-24+13-46
解:(1) (2)
例4、若a=-2,b=3,c=-4,求值
(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c
解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 数据代入时,注意括号的运用]
(2) (3)(4)
例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从A地到B地结束时行走记录为(单位:km)
+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?
(2)这小组这一天共走了多少千米
三、学习小结
这节课你学会了哪几种运算?
四、随堂练习
A类
1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)
(3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48
(5)21-12+33+12-67 (6)-3.2+5.8-8.6+12
2 计算
(1) 1+2-3-4+5+6-7-8++97+98-99-100
(2) 66-12+11.3-7.4+8.1-2.5
(6)-2.7-[3-(-0.6+1.3)]
B类
3. 计算 (1) + + ++ (2) + + ++
有理数的加法教案14
【教学目标】
1、理解有理数加法的实际意义;
2、会作简单的加法计算;
3、感受到原来用减法算的问题现在也可以用加法算。
【对话探索设计】
〖探索1〗
(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?
(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?
(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥,两天一共运进多少吨?
(4)把第(3)题的算式列为300+(-200),有道理吗?
(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?
〖探索2〗
如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?
假设原点为运动起点,用下面的数轴检验你的答案。
在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?
〖小游戏〗
(请一位同学到黑板前)前进5步,又前进-3步,那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?
〖练习〗
1、登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?
2、第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?
〖补充作业〗
1、分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):
(1)温度由下降;
(2)仓库原有化肥200t,又运进-120t;
(3)标准重量是,超过标准重量;
(4)第一天盈利-300元,第二天盈利100元。
2、借助数轴用加法计算:
(1)前进,又前进,那么两次运动后总的结果是什么?
(2)上午8时的气温是,下午5时的.气温比上午8时下降,下午5时的气温是多少?
3、某潜水员先潜入水下,他的位置记为。然后又上升,这时他处在什么位置?
有理数的加法教案15
教学目的:
经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。
教学重点:
有理数的加法法则
教学难点:
异号两数相加的法则
教学教程:
一、复习提问:
1、如果向东走5米记作+5米,那么向
西走3米记作__.
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新课
小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向
提问:这题有几种情况?
小结:有以下四种情况
(1)两次都向东走,
(2)两次都向西走
(3)先向东走,再向西走
(4)先向西走,再向东走
根据小结,我们再分析每一种情况:
(1)向东走5米,再向东走3米,一共向东走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向东走了多少米?
-5-3(-3)+(-5)=-8
(3)先向东走5米,再向西走3米,两次一共向东走了多少米?
+3+5(+5)+(-3)=2
(4)先向西走5米,再向东走3米,两次一共向东走了多少米?
-5+3(-5)+(+3)=-2
下面再看两种特殊情况:
(5)向东走5米,再向西走5米,两次一共向东走了多少米
-5+5(+5)+(-5)=0
(6)向西走5米,再向东走0米,两次一共向东走了多少米?
-5(-5)+0=-5
小结:总结前的六种情况:
同号两数相加:(+5)+(+3)=+8
(-5)+(-3)=-8
异号两数相加:(+5)+(-3)=2
(-5)+(+3)=-2
(+5)+(-5)=0
一数与零相加:(-5)+0=-5
得出结论:有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不等的异号两数相加,取绝对值较大的加数的.符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零
3、一个数与零相加,仍得这个数
例如:
(-4)+(-5)(同号两数相加)
解:=-()(取相同的符号)
=-9(并把绝对值相加)
(-2)+(+6)(绝对值不等的异号两数相加)
解:=+()(取绝对值较大的符号)
=+4(用较大的绝对值减去较小的绝对值)
练习:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
计算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
练习:
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-0·9)+1·5=
(4)2·7+(-3·5)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
练习三:
1、填空:
(1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
(5)(-8)+=-15(6)+(-13)=-6
2、用“<”或“>”号填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b<0,|a|>|b|,那么a+b0;
(4)如果a<0,b>0,|a|>|b|,那么a+b0
小结:
1、掌握有理数的加法法则,正确地进
行加法运算。
2、两个有理数相加,首先判断加法类
型,再确定和的符号,最后确定和的绝对值。
作业:课本第38页2、3
第40页1、2
【有理数的加法教案】相关文章:
《有理数的加法》教案02-25
有理数的加法教案优秀12-11
有理数教案02-14
小学加法教案01-09
大班加法教案01-17
加法教学教案11-06
《5的加法》教案01-30
加法课教案01-22
数学加法教案01-12
《认识加法》教案08-23