复习计划

时间:2024-05-04 12:30:03 计划 我要投稿

复习计划

  日子如同白驹过隙,不经意间,我们的工作又将迎来新的进步,请一起努力,写一份计划吧。那么你真正懂得怎么制定计划吗?下面是小编帮大家整理的复习计划3篇,希望能够帮助到大家。

复习计划

复习计划 篇1

  数学复习具有基础性和长期性的特点,数学知识的学习是一个长期积累的过程,要遵循由浅入深的原则,先将知识基础打牢,构建起知识体系,然后再去追求技巧以及方法,一座高楼大厦必定是建立在坚实的地基之上的,因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。

  同时,有一个科学的学习计划,才能迅速的更有效率的掌握数学知识。因此,我们按照这个原则制定了详尽的数学学习计划,使得同学们能够迅速的巩固基础知识,循序渐进,加快数学学习的步伐。为今后数学水平的提高打下一个坚实的基础。在研究生考试过程中先人一步,胜人一筹。

  一、 数学二 试卷结构

  此试卷结构参考往年考研大纲

  种类

  内容比例

  题型比例

  数学二

  高等数学约78%

  线性代数约22%

  填空题与选择题约37%

  解答题(包括证明题)约63%

  二、 数学复习全年规划

  第一阶段 夯实基础,全面复习

  主要目标:基本教材阶段。吃透考研大纲的要求,做到准确定位,事无巨细地对大纲涉及到的知识点进行地毯式的复习,夯实基础,训练数学思维,掌握一些基本题型的解题思路和技巧,为下一个阶段的题型突破做好准备。

  第二阶段 熟悉题型,前后贯通

  主要目标:复习全书阶段。大量习题训练,熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。

  第三阶段 查缺补漏,模拟训练

  主要目标:套题、模拟训练题阶段。练习答题规范,保持卷面整洁,增加信心,练习掌握考试时间的分配,增强临场应变的能力,要对自己前两个阶段复习中出现含糊不清,掌握不牢的地方重点加强。

  第四阶段 强化记忆,保持状态

  主要目标:查漏补缺,回归教材。强化记忆,调整心态,保持状态,积极应考。

  三、教材的选择

  《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。

  《线性代数》清华版:讲解详实,细致深入,适合时间充裕的同学(推荐)。

  《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的同学。

  《概率论与数理统计》浙大版:课后习题中基本的题型都有覆盖。

  四、学习方法解读

  (1)强调学习而不是复习

  对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。

  (2)复习顺序的选择问题

  我们建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成夹生饭会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。同学们也可根据自己的特殊情况调整复习顺序。

  (3)注意基本概念、基本方法和基本定理的复习掌握

  结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。分析表明,考生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。因此,首轮复习必须在掌握和理解数学基本概念、基本定理、重要的数学原理、重要的数学结论等数学基本要素上下足工夫,如果这个基础打不牢,其他一切都是空中楼阁。

  (4)加强练习,重视总结、归纳解题思路、方法和技巧

  数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。

  (5)不要依赖答案

  学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。

  (6)强调积极主动地亲自参与,并整理出笔记

  注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。

  五、复习进度表

  每天至少应该花2.5-3.5个小时左右来复习数学,这样才能保证在基础阶段把整个数学的基础知识复习完。其中用1.5-2个小时左右的时间理解掌握概念、定义等,用1-1.5小时左右来做习题巩固。对于数学基础较薄弱的同学建议每天再加一个小时的复习时间用来做习题并总结。

  具体每章复习所用的时间我们在每章题目旁边给出了一个复习时间限定期限,如果超出这个时间,或者少于这个时间最好要和你的主管顾问讲明原因,由主管顾问根据你学习的情况来调整复习的时间与内容。

  注意:本计划对应习题涵盖在以下教材中:

  《高等数学》第五版 同济大学应用数学系主编 高等教育出版社

  《线性代数》第二版 居余马编著 清华大学出版社

  复习计划使用说明:

  (1) 学习计划里有日期、学习时间,日期是对本章知识内容的限定时间,学习时间是针对复习知识点在大纲中的要求而建议应该使用的学习时间,同学们在学习的时候一定要两者同时兼顾,平时如果学习时间不够,可利用周末的时间做调整。

  (2) 计划里明确了每章该看的知识点、该做的习题,后面备有大纲要求,学员要根据大纲要求合理学习知识点。

  (3) 每章复习结束后都必须做单元测试题,单元测试题是准确把握学员是否按照大纲要求掌握了本章内容。学员在做复习完每章内容后,跟主管顾问要本章测试题。测试题做完后一定要把成绩反馈给你的主管顾问,以便主管顾问和教研组老师根据你的复习情况及时调整你的学习方法与内容。

  (4) 同学们在复习的时候一定要和你周围的同学、老师多交流学习心得。只有你总结出来的方法才是最适合你的方法。

  (5) 同学们在复习的过程中肯定要遇到一些疑难问题、做错的题目,一定要在第一时间整理到你的笔记本里,方便的时候可以答疑。

  高等数学

  第一章 函数与极限(10天)

  微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系。极限是微积分的理论基础,研究函数实质上是研究各种类型极限。无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。我们研究的对象是连续函数或除若干点外是连续的函数。

  日期

  学习时间

  复习知识点与对应习题

  大纲要求

  第一周第二周

  2.5-3.5小时

  函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式. 习题1-1:4,5,7,8,9,13,15,18

  1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系

  2. 了解函数的有界性、单调性、周期性和奇偶性

  3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念

  4. 掌握基本初等函数的性质及其图形,了解初等函数的概念

  5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系

  6. 掌握极限的性质及四则运算法则

  7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

  8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限,

  9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型

  10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

  2.5-3.5小时

  数列定义,数列极限的性质(唯一性、有界性、保号性 ) P26(例1,例2)P27(例3)习题1-2:1,3,4,5,6

  2.5-3.5小时

  函数极限的基本性质(不等式 性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的`关系等)P33(例4,例5)P35(例7)习题1-3:1,2,4,6,7,8

  2.5-3.5小时

  无穷小与无穷大的定义,它们之间的关系,以及与极限的关系习题1-4:1,2,4,5,6,7

  2.5-3.5小时

  极限的运算法则(6个定理以及一些推论)P46(例3,例4),P47(例6),习题1-5:1,2,3

  2.5-3.5小时

  两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限

  P51(例1)习题1-6:1,2,4

  2.5-3.5小时

  无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法 P57(例1)P58(例5)习题1-7:1,2,3,4

  2.5-3.5小时

  函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。例1-例5习题1-8:2,3,4,5

  2.5-3.5小时

  连续函数的运算与初等函数的连续性(包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性)

  例4-例8 习题1-9:1,2,3,4,5

  2.5-3小时

  理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理(零点定理对于证明根的存在是非常重要的一种方法).

  例1-例2,习题1-10:1,2,3,4,5

  3.5小时

  总复习题一:1,2,8,9,10,11,12

  2小时

  总结本章 做本章测试题- 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。

  第二章:导数与微分(9天)

  一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。函数微分是函数增量的线性主要部分。

  日期

  学习时间

  复习知识点与对应习题

  大纲要求

  第二章 第三周

  2.5-3.5小时

  导数的定义、几何意义、力学意义,单侧与双侧可导的关系,可导与连续之间的关系(非常重要,经常会出现在选择题中),函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平面曲线的切线方程和法线方程.

  例3-例7 习题2-1:6,7,9,11,14,15,16,17

  1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

  3.了解高阶导数的概念,会求简单函数的高阶导数.

  4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

  2.5-3.5小时

  复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,(幂、指数函数求导法,反函数求导法),分段函数求导法

  例-例17 习题2-2:2,3,4,7,8,9,1012)

  2.5-3.5小时

  高阶导数和N阶导数的求法(归纳法,分解法,用莱布尼兹法则)

  例1-例7 习题2-3:2,3,4,7,8,9

  2.5-3.5小时

  由参数方程确定的函数的求导法,变限积分的求导法,隐函数的求导法

  例1-例10 习题2-4:2,4,7,8,9,11

  2.5-3.5小时

  函数微分的定义,微分运算法则,一元函数微分学的简单应用

  例1-例6 习题2-5:1,2,3,4,5,6,

  2.5-3.5小时

  总复习题二:1,2,3,5,6,9,11,13

  2小时

  第二章测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑。

  第三章:微分中值定理与导数的应用(10天)

  连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。微分学的另一个重要应用是求函数的最大值和最小值。

  日期

  学习时间

  复习知识点与对应习题

  大纲要求

  第三周-第四周

  2.5-3.5小时

  微分中值定理及其应用(费马定理及其几何意义,罗尔定理及其几何意义,拉格郎日定理及其几何意义、柯西定理及其几何意义)例1,习题3-1:1-15

  1.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.

  2.掌握用洛必达法则求未定式极限的方法.

  3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.

  4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

  5.了解曲率和曲率半径的概念,会计算曲率和曲率半径.

  2.5-3.5小时

  洛比达法则及其应用 例1-例10,习题3-2:1-4

  2.5-3.5小时

  泰勒中值定理,麦克劳林展开式 例1-例3 习题3-3:1-7,10

  2.5-3.5小时

  求函数的单调性、凹凸性区间、极值点、拐点、渐进线(选择题及大题常考)例1-例12 习题3-4:4,5,8,9,11,12,14

  2.5-3.5小时

  函数的极值,(一个必要条件,两个充分条件),最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题 例1-例6 习题3-5:1,4,5,6,7,10,11,14

  2.5-3.5小时

  简单了解利用导数作函数图形(一般出选择题及判断图形题),对其中的渐进线和间断点要熟练掌握,一元函数的最值问题(三种情形)。例1-例3 习题3-6:1-5

  2.5-3.5小时

  曲率、曲率的计算公式,与曲率相关的问题 例1-例3,习题3-7:1-8

  2.5-3.5小时

  总结本章知识点,总复习题三:1-12,19

  2小时

  第三章测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。

  第四章:不定积分(9天)

  积分学是微积分的主要部分之一。函数积分学包括不定积分和定积分两部分。在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。

  日期

  学习时间

  复习知识点与对应习题

  大纲要求

  第五周-第六周

  2.5-3.5小时

  原函数与不定积分的概念与基本性质(它们各自的定义,之间的关系,求不定积分与求微分或导数的关系),基本的积分公式,原函数的存在性,原函数的几何意义和力学意义例1-例16 习题4-1:1

  1.理解原函数概念,理解不定积分的概念.

  2.掌握不定积分的基本公式,掌握不定积分换元积分法与分部积分法.

  3.会求有理函数、三角函数有理式及简单无理函数的积分.

  2.5-3.5小时

  不定积分的换元积分法,第二类换元法 例1-例27

  2.5-3.5小时

  不定积分的计算 习题4-2:2(1-20)

  2.5-3.5小时

  不定积分的计算 习题4-2:2(21-40)

  2.5-3.5小时

  不定积分的分部积分法 例1-例10 习题4-3:1-20

  2.5-3.5小时

  有理函数积分法,可化为有理函数的积分,例1-例8 习题4-4:5-20

  2.5-3.5小时

  不定积分计算,总复习题四:1-20

  2.5-3.5小时

  不定积分计算 总复习题四:21-40

  2小时

  总结本章,做第四章单元测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。

  第五章: 定积分(9天)

  日期

  学习时间

  复习知识点与对应习题

  大纲要求

  第六周-第七周

  2.5-3.5小时

  定积分的概念与性质(可积存在定理)(定积分的7个性质)

  习题5-1:2,3,5,6,7,8

  1.理解原函数概念,理解定积分的概念.

  2.掌握定积分的基本公式,掌握定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.

  3.会求有理函数、三角函数有理式及简单无理函数的积分.

  4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

  5.了解广义反常积分的概念,会计算广义反常积分.

  2.5-3.5小时

  微积分的基本公式 积分上限函数及其导数 牛顿-莱布尼兹公式 例1-例8 习题5-2:1-5

  2.5-3.5小时

  习题5-2:6-12

  2.5-3.5小时

  定积分的换元法与分部积分法 例1-例10 习题5-3:1

  2.5-3.5小时

  习题5-3:2-11

  2.5-3.5小时

  反常积分 无界函数反常积分与无穷限反常积分 例1-例5 习题:5-4:1-3

  2.5-3.5小时

  反常积分的审敛法 例1-例8 习题5-5:1-3

  2.5-3.5小时

  总复习题五:1-11 12,13

  2小时

  总结本章,做第五章单元测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。

  第六章:定积分的应用(7天)

  日期

  学习时间

  复习知识点与对应习题

  大纲要求

  第七周-第八周

  2.5-3.5小时

  定积分元素法 一元函数积分学的几何应用(求平面曲线的弧长与曲率,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积,求旋转面的面积)例1-例14

  1. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等)及函数的平均值等.

  2.5-3.5小时

  定积分应用的一些计算 习题6-2:1-15

  2.5-3.5小时

  定积分的几何应用相关计算 习题6-2:16-30

  2.5-3.5小时

  定积分的物理应用(用定积分求引力,用定积分求液体静压力,用定积分求功)。综合题目的求解。例1-例5 习题6-3:1-5

  2.5-3.5小时

  定积分的物理应用 定积分综合题目求解 习题6-3:6-12

  2.5-3.5小时

  总复习题六:1-9

  2小时

  总结本章,做第六章单元测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性对本章的内容进行复习或者到总部答疑。

复习计划 篇2

  复习目标:

  1、全面复习本册书要求会认的450个生字,要求会写的350个生字,并能用常用字组词或者说话。

  2、复习巩固用“部首查字法”查字典。

  3、结合《语文园地》中出现的思维训练,针对性地对学生进行知识梳理和扩散练习,达到举一反三的目的。

  4、总结延伸阅读和习作的练习方法,培养学生阅读和习作的能力。

  复习时间:1月3日――1月24日

  复习形式:

  以单元复习为主,归类复习为辅,渗透学生的思维训练。不让学生硬性抄写和机械记忆,培养学生复习的兴趣。让学生比较轻松的度过复习阶段。

  复习内容:

  1、夯实语文基础知识,加强看拼音写词语和生字组词的训练。

  2、以课文为本,对每篇课文内容进行梳理概括,了解阅读的基本方法。

  3、对学生进行字词句的训练,并能根据句子表达的内容填出相应的词语。

  4、抓住《语文园地》的练习特点,以归类的形式激发学生复习语文的兴趣,让学生主动阅读课外书籍,培养良好的阅读习惯。

  复习类型:

  1、看拼音写词语或者简单的句子。

  2、区别形近字、音近字、多音字,并能用其组词。

  3、结合课后练习和日积月累的内容,变换形式进行填空练习。

  4、古诗的吟诵和填空练习。

  5、重点课文的理解和阅读练习。

  6、看图,写几句话。

  7、查字典练习。

  复习措施:

  1、紧扣课后练习和综合复习,对学生进行针对性强的查漏补缺的复习工作。

  2、对学生易错易忘的字词进行比较,增强学生的记忆力。

  3、根据学生掌握知识的.情况,布置自主性作业,满足不同学生的复习需要。复习内容要有阶段性,体现循序渐进的认知规律。

  4、阅读训练的内容多样,帮助学生建构最基本的阅读概念,培养学生的阅读能力。

  5、以看图写话为核心,鼓励尝试大胆想象,旨在培养学生各异的思维方式。

  复习资料的准备:

  1、字词部分:看拼音写词语、查字典、根据偏旁写字组词、加偏旁组词、形近字组词、填上适当的词、选字填空、写出近义词、按要求写词、补充成语、划去不同类的词语等

  2、句段部分:连词成句、补充句子成分、组词造句、加标点、照样子改写句子等

  3、写话:整理句序、看图写话等

  4、综合练习

  5、模拟试题

复习计划 篇3

  一、学期复习目标

  1.复习550个常用字,复习写250个在本课认识的或以前已经认识且在本课重现的字。认识的字,只要求认识,在课文中认识,搬个地方还认识;知道在新认的字中出现的新偏旁。要求写的字,要了解字义,能口头或书面组词,逐渐在口头或书面运用;最重要的是把字写对、写好,养成正确的写字姿势和良好的写字习惯。

  2.让学生喜欢学习汉字,有主动识字的愿望。独立识字,爱识字认字,能主动识,学着自己认,这是学生识字不竭的动力。

  3.复习用普通话正确、流利、有感情地朗读课文。了解词句的意思。有感受的想法,乐于与人交流。读诗歌能展开想象,感受语言的优美。

  4.复习默读。允许有个从指读到不指读,从出声到不出声,从只顾读到一边读一边想的训练过程。这一册重在默读习惯的培养。读的内容可由段到篇,要求要逐步提出,一步一步地严格训练。要重视通过课内的朗读、默读,逐渐培养阅读的兴趣——关键是读课文读出味道,读出乐趣,读有所得。使学生自然而然地“喜欢阅读,感受阅读的乐趣”,这和喜欢识字同样重要。爱读书,才能得到乐趣;得到乐趣,就更爱读书。“兴趣是最好的老师。”能培养起学生读书兴趣的老师肯定是好老师,这样老师的阅读教学肯定成功。

  5.重视语言的积累,检查背诵情况。课内要求背的、一定要背下来。鼓励学生自觉地更多地积累词、句、段。

  二、单元复习目标

  1、第一单元复习目标

  通过阅读与春天有关的四字词组、诗歌、童话等,结合生活实际,感悟、发现春天的美好。复习认汉字65个,复习会写字29个。

  2、第二单元复习目标

  通过阅读新三字经,阅读课文,再次感受家庭浓浓的亲情,从而激发学生对家、对长辈的热爱,为家和家里的人做自己力所能及的事。复习认汉字74个,复习会写字30个。

  3、第三单元复习目标

  通过阅读与环境有关的对对子、儿歌、童话等,让环保意识渐渐在学生心里萌生。复习认汉字70个,复习会写字30个。

  4、第四单元复习目标

  通过阅读与夏天有关的儿歌、童话、古诗等,结合生活实际,再次体会夏天的美好,感受夏天的情趣。了解动物与自然现象的关系,复习动物尾巴的作用。复习认汉字72个,复习会写字36个。

  5、第五单元复习目标

  复习认汉字66个,复习会写字30个。复习用指定的词语说话,复习用不同的方法识记汉字。复习汉语拼音字母表。复习正确流利地朗读课文和儿歌,了解阅读内容,体会遇到困难,只要开动脑筋,就会找到解决问题的办法,别人做不到的事自己做到了,就是一种创造。

  6、第六单元复习目标

  复习用自己掌握的'识字方法识字71个,复习汉字的规律。复习写30个字,培养良好的写字姿势。复习课文内容,了解昨天,感受今天,展望明天,激发对生活的热爱。

  7、第七单元复习目标

  复习通过本组课文的朗读,引发学生主动地留心身边的好人好事,向他们学习,争做一个具有优秀品质的孩子。复习识字68个,会写字35个。

  8、第八单元复习目标

  复习识字64个,会写字30个。复习通过对本组课文的朗读,了解一些科学常识,引发他们主动地留心身边的科学,对科学产生浓厚的兴趣,产生探索、发现的欲望。

  三、复习进度表

  20周

  周一:上午复习第一单元,做自测题

  (一)并订正

  下午复习第二单元,做自测题

  (二)并订正

  周二:上午复习第三单元,做自测题

  (三)并订正

  下午复习第四单元,做自测题

  (四)并订正

  周三:上午复习第五单元,做自测题

  (五)并订正

  下午复习第六单元,做自测题

  (六)并订正

  周四:上午复习第七单元,做自测题

  (七)并订正

  下午复习第八单元,做自测题

  (八)并订正

  21周

  周一:上午订正自测题

  (九),做自测题

  (十)下午订正自测题

  周二:上午订正期末练习

【复习计划】相关文章:

复习计划04-10

复习计划04-10

复习计划04-10

复习计划04-10

复习计划04-10

复习计划04-10

复习计划04-10

复习计划04-10

复习计划04-10

复习计划04-10