- 相关推荐
圆的面积教案
作为一名教学工作者,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。那么优秀的教案是什么样的呢?以下是小编帮大家整理的圆的面积教案,欢迎大家分享。
圆的面积教案1
教学目标:
1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。
2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。
3、培养学生的逻辑思维能力。
教学重点:培养综合运用知识的能力。
教学难点:培养综合运用知识的能力。
教学过程:
一、复习。
1、口算:
3242528292202
267
2、思考:
(1)圆的周长和面积分别怎样计算?二者有何区别?
(2)求圆的面积需要知道什么条件?
(3)知道圆的周长能够求它的面积吗?
二、新课。
1、教学练习十六第3题
小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?
已知:c=125.6厘米s=r2
r:125.6(23.14)3.14202
=125.66.28=3.14400
=20(厘米)=1256(平方厘米)
答:这棵树干的'横截面积1256平方厘米。
3、教学环形面积。
(1)例2光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?
已知:R=6厘米r=2厘米求:s=?
3.14623.1422
=3.1436=3.144
=113.04(平方厘米)=12.56(平方厘米)
113.04-12.56=100.48(平方厘米)
第二种解法:3.14(62-22)=100.48(平方厘米)
(2)小结:环形的面积计算公式:
S=R2-r2或S=(R2-r2)
(3)完成做一做:一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?
三、巩固练习。
1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?
选择正确算式
A、(18.843.142)23.14
B、(18.843.14)23.14
C、18.8423.14
2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?
3、课堂小结。
(1)这节课的学习内容是什么?
(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?
已知半径求面积S=r2
已知直径求面积S=()2
已知周长求面积S=()2
(3)环形面积:S=(R2-r2)
四、作业
课本P70第4、6、7题。
教学追记:
本堂课,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。
圆的面积教案2
教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。
教学目标:
1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。
2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。
3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。
教学设计思想:
复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。
教学过程:
一、创设情境,揭示课题。
二、回顾整理,讨论交流。
1、怎样求圆的周长?求圆的面积有几种情况?
2、圆的周长和面积公式是怎样推导出来的?
3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)
4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)
5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?
三、发现生活中的数学问题
教师结合图片演示,让学生提出有关圆的周长和面积的问题。
图片内容:农村的喷灌、碾子、拴在木桩上的小羊。
四、走进美丽的.图形世界
教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。
五、开心词典
以开心词典的形式,让学生做六道选择题。
六、走进生活,解决问题
1、小猴子骑独轮车走钢丝。求车轮要转多少周。
2、用绳子绕树干10周,求横截面的直径。
3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?
4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?
七、思考生活中的数学问题
1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?
2、阅读关于400米标准跑道的小资料。
课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答
圆的面积教案3
一、教材内容分析
新人教版上册《圆的面积》这部分内容是平面几何的最后阶段,它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实验几何阶段转入论证几何阶段作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解和掌握公式的应用,为以后进一步学习打下基础。
二、学习者特征分析
六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的掌握,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但由于圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,结合操作演示,让学生在学习圆面积公式的推导过程中,提高学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程。并且能应用公式解决一些生活实际问题。
三、教学目标(知识,技能,情感态度、价值观)
1、利用学生已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。
2、使学生经过“感知——动脑——观察——合作探究”等系列活动.逐渐培养学生的抽象思维能力。
3、通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生体会图形转化的神奇和美。
四、教学策略选择与设计
1、注重情境创设,有意识地激发学生学习知识的兴趣
数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的`兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。
2、 注重实践操作,有意识地培养学生获取知识的能力
学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,敢于放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既沟通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。
3、 注重学法指导,有意识地引导学生应用转化的方法
本节课中,在求圆面积公式时,不是教师灌输式地教会学生S =πr,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现《圆的面积公式》的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。
4、 注重媒体应用,有意识地突破学生学习知识的难点
利用计算机和动画课件,辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用了多媒体课件演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其他教学手段无法比拟的。
五、教学环境及资源准备
用多媒体课件,圆形卡片辅助教学
六、教学过程
1、什么是圆的面积?
(1)涂出一个圆的面积
(2)用自己的话说什么是圆的面积?
2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?
3、能不能用剪、拼的方法把圆转换成我们学过的图形?
4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?
5、学生汇报后,课件演示。
6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、
7、转化后的长方形的长和宽与原来的圆有什么关系?
小组合作学习,讨论以下两个问题:
1) 转化后长方形的长相当于什么?宽相当于什么?
2) 你能从计算长方形的面积推导出计算圆面积的公式吗?
8、汇报讨论结果。
9、运用新知识,解决问题。
1)r=5cm,求圆的面积
2)课始主体图中的问题
总结
小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。
总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。
圆的面积教案4
【教学内容】
《义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。
【教学目标】
学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
【教、学具准备】
CAI课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把。
【教学过程】
一、尝试转化,推导公式
1.确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
预设: 引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。
同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)
跟圆形有什么关系呢? 预设: 引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的'其它图形,开始吧!
预设: 学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。
一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。
圆的面积教案5
一、教学目标:
1、首先带动课堂气氛
2、教会学生什么是面积。
3、学习圆柱体侧面积和表面积的含义。
4、能够求圆柱的侧面积和表面积的方法。
二、教学重点:
动手操作展开圆柱的侧面积
三、教学难点:
圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
四、教具准备:
圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
五、教学过程:
(一)、创设情境,引起兴趣。
出示:牛奶盒,纸箱,可比克。
提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)
(2)制作这些包装盒,至少需要多大面积的材料?(指名说)
师:谁能说说上一节课你学过圆柱体的哪些知识?
生:........
师:请同学们拿出你自制的圆柱体模型,动手摸一摸
生:动手摸圆柱体
师:谁能说一说你摸到的是哪些部分?
生:.......
师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积
(二)、探索交流,解决问题。
圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?
研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)
1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。
2.操作活动:
(1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?
(2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流
3.小组交流能用已有的知识计算它的面积吗?
4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)
重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)
这个长方形与圆柱体上的'那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)
板书:
长方形的面积=长×宽
↓↓↓
圆柱的侧面积=底面周长×高
所以,圆柱的侧面积=底面周长×高
S侧=C×h
如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h
师:如果圆柱展开是平行四边形,是否也适用呢?
学生动手操作,动笔验证,得出了同样适用的结论。
(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)
(四)、练习
求圆柱的侧面积(只列式不计算)
1。底面周长是1.6米,高是0.7米
2。底面直径是2分米,高是45分米
3。底面半径是3.2厘米,高是5分米
(五)研究圆柱表面积
1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)
2、动画:圆柱体表面展开过程
3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)
(六),巩固应用,内化提高
1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)
2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?
六、教学结束:
布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。
圆的面积教案6
教材分析
教材首先通过圆形草坪的实际情景提出圆面积的概念,使学生在旧知识的基础上理解“圆的面积就是它所占平面的大小”。其次教材直接提出问题:能不能把圆转化成已学过的图形来计算面积?由于让学生完全自主的探索如何把圆转化成长方形是有很大难度,但是教材给出了提示,让学生利用学具进行操作,在此基础上让学生发现院的面积与拼成的长方形面积的关系,圆的周长,半径和长方形的长,宽的`关系并推导出圆的面积计算公式,最后教材安排了例题,应用面积计算公式解决实际问题,已知直径,先求出半径,再求出面积。
学情分析:
1. 充分利用已学过的数学知识和教学思想方法进行教学。如,教学圆的面积的含义时,可以先让学生回忆已学过的图形面积的含义,并进行分析对比,使学生认识到它们的共同点都是指图形所占平面的大小。
2. 要充分利用直观教具,让学生在动手操作中自主探索,例如,教学圆面积计算公式的推导过程时,可以先让学生把教材后面所附的圆形做成学具,在教师指导下,可以通过小组合作的方式,自行决定等分成多少份,自由的分一分,剪一剪,拼一拼。最后把拼成的加以比较,使学生看到。分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。
教学目标
1.了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3.在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点和难点
教学重点: 圆的面积公式的推导及应用公式计算
教学难点:探究圆的面积公式的推导过程
圆的面积教案7
教学内容:
圆的面积。
教学目标:
1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。
3. 渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
学情分析:
本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。
学法指导:
教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。
教具准备:
多媒体课件,圆片。
学具准备:
把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。
教学设计:
一、复习旧知,导入新课
1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?(2πr)周长的一半怎样表示?(πr)
2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)
3.件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积)谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。
提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)
这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)
二、动手操作,探索新知
1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示。)
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式。)
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?那么同学们想一想,圆可能转化为什么平面图形来计算呢?
2. 推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。
生边答师边演示课件。
生答:因为拼成的长方形的.面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr × r S=πr2 师小结公式
S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
3. 利用公式计算。
(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)
(2)出示例3,学生尝试练习,反馈评价。
提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第95页做一做的第1题。
(4)看书质疑。
三、运用新知,解决问题
1. 求下面各圆的面积,只列式不计算。(CAI课件出示)
2. 测量一个圆形实物的直径,计算它的周长及面积。
3. 课件演示
用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)
四、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业
1. 第97页的第3题和第4题。
2. 找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物、直径(厘米)、半径(厘米)、面积(平方厘米)
板书设计:
圆的面积
长方形的面积= 长× 宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
圆的面积教案8
【教学内容】 冀教版小学数学六年级上册第87-89页
【教材分析】 探索圆的面积公式,教材共设计了两个教学活动。一,估计飞镖版的面积。圆的面积的推导,需要将圆转化为学过的图形,而转化的关键要把圆等分为若干个小扇形,再剪拼。活动二 ,小组合作探索圆的面积公式。先后呈现了将圆平分为4、8、16、32份。启发学生推理并得出:如果等分的份数越多,上下两条边越来越平越来越平,到最终就完全平了,拼出的图形就是一个长方形了。进而推导出圆的面积公式。使学生学会数学方法,渗透极限思想。
【教学建议】
圆的面积是学生以前认识了一些平面图形的特征及它们的周长和面积 的计算的基础上进行学习的。教材在编写时注意培养学生的实际操作能力, 通过观察、剪拼等活动,获得有关图形特征的深刻印象。通过联系和比较, 弄清图形间的联系,有效发展学生的想象力,有利于培养学生归纳、转化等 方面的能力,有助于学生树立几何动态观点。
【学法建议】 本节课让学生亲自动手操作发现新知,感受学习的乐趣。采取演示法,激活学生思维,使其形象、逼真的体验到公示的由来。
【教学目标】
知识技能
1理解圆面积计算公式的推导。让学生利用已有的知识,运用转化的思想方法,推导出圆面积的计算公式。
2初步运用圆面积计算公式进行圆面积的计算。
过程和方法
经历估算和小组合作操作﹑讨论等探索圆的面积的过程,培养学生逻辑推理能力。
情感﹑态度﹑价值观
通过圆面的剪拼,培养学生操作﹑观察﹑分析﹑的能力,渗透极限思想。
【教学重点】
圆面的剪拼,圆面积计算公式的推导
【教学难点】
极限思想的渗透,与公式的推导。
【教具学具】
投影仪,课件,等分好的圆形纸片。
【教学设计】
一、 创设情境,导入新课
(课件出示:绳长2米,小羊的活动面积有多大?)
师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?
学生观察并讨论,然后指名回答。
师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢? 生:小羊活动的范围就是这个圆形的面积。
师:这个圆的半径是多少?(2米)
师:小羊活动的面积到底有多大呢?这节课我们就一起来学习圆的面积。(板书:圆的面积)
师:你们能举起手中的圆形纸片比划它的面积吗?
生动手比划。(课件演示圆的周长,面积)
二、猜测感知。
(多媒体出示)
师:同学们看这是什么?
生:飞镖
师:仔细看图你能发现什么?
生:飞镖被平均分成20份,每份都像一个小三角形。
师:如果我们估算一下飞镖的面积,怎么办?
学生讨论,交流、汇报结果。
生1:把飞镖的表面看做是由20个小三角形组成的,每个小三角形的.底约是周长的二十分之一,高可近似的看做圆的半径。先求出一个小三角形的面积,在求出20个小三角形的面积。
生2:我们把飞镖剪开,拼成近似的长方形。长方形的长约为圆周长的一半,宽可近似的看成圆的半径,然后用长方形的面积公式计算。
师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论计算圆面积的方法。
三、 探索规律,解决问题。
1、 由旧知引入新知
师:大家还记得我们以前学习的平行四边形、三角形、梯形面积是用怎样的方法推导出来的吗?(课件演示平行四边形转化成长方形的过程并板书。)
师:那么圆的面积也可以转化成我们学过的某一图形的面积来计算 今天我们先探究能不能把圆的面积转化成长方形或平行四边形的面积来计算。
2、 探索圆面积公式
师:拿出我们准备好的圆形剪一剪,拼一拼,看看能拼成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
(A)四分法:认识拼后有两条边直的,但是上下却凹凸不平弯弯曲曲,不过有点平行四边形的轮廓。
(B)八分法:比较与四分法时的变化。让学生认识到与刚才拼成的差不多,但上下平多了,像平行四边形了。
(C)十六分法 :课件演示,上下更平,更像长方形。
(D)三十二等分:比刚才十六等分怎样?(更平更直,简直就是长方形。)
(E)比较四副图,拼出的图形发生了怎样的变化?
(F)讨论:电脑帮助我们把圆分成32等分,还能分吗?究竟能分多少份呢?
(分的份数是无限的。如果等分的份数越多,上下两条边越来越平越来越平,到最终就完全平了,拼出的图形就是一个长方形了。)
师:下面请大家观察课件的演示和板书,能否说说平行四边形或者长方形的面积与圆面积之间的关系?并说出你的理由。(生说,教师板书)
生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形
的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。
生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么圆形面积=圆周长的1/2×半径即可。(课件演示)
师:用字母怎么表示圆面积公式呢?
生:S=∏×R×R
生:还可以写作S=∏×R2(R2表示R×R,读作:R的平方)
师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径或周长能求圆的面积吗?
3、 应用圆面积公式
师:现在请大家用圆面积公式计算小羊的活动面积有多大。
四、 巩固练习。
1 、完成课本第89页"练一练"第1、2、3题
2.求下面各圆的面积。
r=2(单位:分米) d=6(单位:分米)
3思考题:
已知正方形的面积是16平方米,求圆的面积。
五、总结
这节课你学会了什么?
学生自由发言。
小结:今天我们一起研究了圆的面积,成功的推导出来了圆的面积计算公式,并学会了应用。希望同学们在学习中更好的运用转化的方法去学习更多的数学知识。
圆的面积教案9
教材说明
教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。学生在学习求直线图形面积时,已经用过这种方法。因此,教材中采取直接提出问题,来引导学生推导圆面积的计算公式,又一次让学生了解用这种数学思想和方法来解决新的较复杂的问题。教材采用实验的方法,把圆分割成若干等份,再拼成一个近似的长方形。使学生看到把圆分别分割成16、32等份,分割的份数越多,拼得的图形就越接近于长方形。然后由长方形的面积计算公式推导出圆面积的计算公式S=r2。这里涉及了数学中常用的逐步逼近的方法,就是采取某种方法,使一个近似的图形(或式子)逐步逼近精确的图形(或式子)。
这部分内容教材中安排了三道例题。例3是已知半径求圆的面积。例4是已知圆的周长求圆的面积,要先求出半径,再求圆的面积。例5是求环形的面积,教材通过插图帮助学生理解求环形的面积是从大圆面积中减去小圆面积。然后再引导学生列综合算式解答,找到简便的算法为3.14(152-102)。做一做中的题目跟例题有差异,但思想方法仍是从一个大的图形的面积中减去一个小的图形的面积。由于环形问题比较复杂,教材中只通过一个例题向学生简单介绍一下,不作更多的要求。在日常生活和工农业生产中经常要用到求圆的面积,练习中安排了已知半径、直径或圆的周长求圆面积的题目;还安排了一些求组合图形的面积和实习作业,以培养学生综合运用知识的能力
。 教学建议
1.这部分内容可以用2课时进行教学,教学圆的面积公式的推导、例3、例4、例5,完成练习二十四。
2.教学圆的面积的含义时,可以先让学生回忆已学过的图形的面积的含义,并进行分析对比,使学生认识到它们的共同点。
3.教学圆面积的计算公式之前,先要引导学生回忆平行四边形、三角形和梯形面积计算公式的推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。使学生领会到将一个图形转化为已学过的图形,从而推导出这个图形的面积计算公式,是一种基本的数学思想和方法,同时,不同图形的面积计算公式推导的过程和方法会有不同之处。
4.教学圆面积计算公式的`推导过程时,可以让学生预先准备好一些圆形做学具。
在教师指导下,让学生按照教材上的图,将圆16等分、剪开后,拼成一个近似的长方形。(教师还可以用教具将圆分成24等份,拼成一个近似的长方形。)然后,把每一份再2等分,剪开后,拼成一个近似的长方形。教师可以直接用把圆分成32等分的教具拼成一个长方形。最后,把拼成的图形加以比较,使学生看到,分的份数越多,每一份就会越细,拼成的图形就会越近似于长方形。由于在拼接的过程中,图形的面积没有发生变化,也就是圆的面积等于这个拼成的近似长方形的面积。接着,教师在拼成近似长方形的旁边画一个长方形,并指出如果份数分得越细,拼成的近似长方形就越接近长方形。教师引导学生分析、比较长方形的长与宽跟原来的圆的半径与周长之间的关系,使学生能自己看出:这个近似长方形的长相当于圆的周长的一半,即C/2=2r/2=r,长方形的宽就是圆的半径r。因此,长方形的面积=长宽=r,圆的面积等于长方形的面积,所以圆的面积=r=r2。
5.教学例3时,列成式子3.1442后,要向学生指出,必须先算平方,后算乘法。
6.教学例4时,要启发学生想:计算圆的面积需要什么条件?题目中给了什么条件?怎样将题目中的已知条件转化成求圆面积所需要的条件?因为题目中给出的条件是圆的周长,要按照公式C=2r,先求出半径r,列式为:18.843.142;再利用公式S=r2,让学生自己求出圆的面积。运算中要注意单位名称,r用长度单位,S用面积单位,防止混淆。
7.学生在学过圆的面积以后,往往容易把计算圆的面积与周长混淆。教学中除加强圆周长和圆面积这两个不同概念的教学以外,可以在适当的时候,结合做一做引导学生进行辨别,分清以下几点:
①圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度;
②求圆面积的公式是S=r2,求圆周长的公式是C=d或C=2r;
③计算圆面积用面积单位,计算圆周长用长度单位。
8.教学例5时,教师要根据题意准备实物或教具(一个圆中间可以取出一个同圆心的小圆),通过演示,使学生明确,求环形面积就是从大圆面积中减去小圆面积。因此,分步计算都是先分别求出大圆面积和小圆面积,再求出环形的面积。当要求列综合算式时,就可以得到简便算法为3.14(152-102)。例5后面做一做中的习题,跟例5基本类似。通过这道题的计算,要使学生进一步巩固计算这类环形面积的方法,一般是从大圆的面积中减去小圆的面积。
9.关于练习二十四中一些习题的教学建议。
第2题中,有已知直径求圆面积的题目。解答时,先求出半径r,再计算圆面积。
第6题,是求一个数的平方的口算练习。掌握常用的平方计算,对提高计算圆面积的速度有帮助。教师还可以补充一些10以内数的平方练习。要着重指导学生练习整十数的平方,如402是4040=1600,而不是402。
第7、8题,是已知圆的周长求圆的面积,先要由圆的周长求出圆的半径,再求圆的面积。
第9题,是实习作业,先让学生讨论测量的方法。测量时一般用绳子在齐胸脯处围树干一周,就是树干横截面的周长,取得数据后再计算横截面的面积。
第14*题,借助图形使学生直观认识到,在一个正方形里,当直径等于正方形的边长时,画的圆最大。具体到这道题,就是当要剪下的圆的直径等于正方形铁皮的边长时,才能剪下一个最大的圆。因此,我们可以算出最大的圆的面积是: S圆=r2=25=78.5(平方厘米)而正方形的面积是:S正方形=1010=100(平方厘米)所以,剩下的铁皮的面积是:100-78.5=21.5(平方厘米)从而可以得出:剩下的铁皮的面积大约占原来正方形面积的1/5。
第15*题,是求组合图形面积的练习。
教学时,要引导学生首先分析图形的组合情况,判断所求的图形是由哪个图形加上(或者减去)哪个图形得到的,然后进行计算。如图所示,该图可以看作由1个正方形和4个1/4圆组成的,所以该图形的面积是1个正方形的面积与1个整圆面积的和(这个圆的半径等于正方形的边长)。第16*题,要先求圆的半径和正方形的边长,再求出面积进行比较。这里包含一个数学性质,即在边长相同的条件下,所围成的图形中圆的面积最大。
圆的面积教案10
一、以旧引新(6分钟)
1.复习正方形的面积公式和圆的面积公式。
2.回答下面各圆的面积。
1.说出S正=a2、S圆=πr2
2.左圆面积=π×22=4π
右圆面积=π×(2÷2)2=π
1.边长是5cm的正方形面积是多少?
5×5=25(cm2)
2.如果r=4cm,则圆的面积是多少?
3.14×42
=3.14×16
=50.24(cm2)
二、动手操作,感知特点。(15分钟)
1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,
思考:
(1)外方内圆的图形是怎样组成的?它有什么特点?
老师明确:外方内圆的图形称为圆外切正方形。
(2)外圆内方的图形是怎样组成的?它有什么特点?
老师明确:外圆内方的图形称为圆内接正方形。
2.引导学生画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。
3.引导学生在圆内画一个最大的正方形。
4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。
1.
(1)外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。
(2)外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。
2.小组合作讨论交流,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的交点是这个圆的圆心。
3.小组合作讨论交流,说出作图的方法并明确:正方形的对角线等于圆的直径。
4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。
3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。
三、探究思考,解决问题。(10分钟)
1.计算圆外切正方形与圆之间部分的面积。
(1)课件出示半径为1m的圆外接正方形。组织学生讨论计算方法。
(2)组织学生算出正方形和圆之间部分的'面积。
2.计算出圆内接正方形与圆之间部分的面积。
课件出示半径为1m的圆的方形组合图形,组织学生讨论计算方法。
1.
(1)观察图形的特点,讨论计算方法并尝试汇报交流。
(2)分别算出这个圆和正方形的面积:
S圆=3.14×12=3.14m2
S正=2×2=4m2
S阴=S正-S圆
=4-3.14
=0.86m2
2.观察图形,发现圆的半径与正方形的关系,讨论计算方法并尝试汇报交流。
4.王师傅做一个零件,零件的形状是圆内接正方形,已知圆的直径为12cm,你能计算出正方形的面积吗?
四、拓展应用。(5分钟)
1.如下图,已知圆的半径是3cm,求这个圆和正方形之间的面积。
2.下图中正方形铜球的直径是22.5mm,中间正方形的边长是6mm,求这个铜球的面积是多少?
1.读题,审题,明确题意后,尝试独立完成。
2.独立完成,然后全班汇报。
5.计算阴影部分的面积。
×102π-102≈57(cm2)
五、全课总结。(5分钟)
1.谈谈这节课你有哪些体会。
2.布置作业。
学生谈本节课学习的收获。
教学过程中老师的疑问
圆的面积教案11
【教学内容】
北师大版小学数学第十一册第一单元P16——18“圆的面积”
【教学目标】
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
【教学重点】
能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
【教具准备】
投影仪,CAI课件,等分好的圆形纸片。
【学具准备】
等分好的圆形纸片。
【教学设计】
教学过程教学过程说明
一、创设情境。提出问题
(投影出示P16中草坪喷水插图)
师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?
学生观察并讨论,然后指名回答。
生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。
生2:对,这个圆形的半径就是喷头喷水的距离,也就是5米;周长也就是喷水所走过的路线;
生3:我补充一点,这个圆形的中心就是喷头所在的地方。
师:同学们说得很好。晴大家说说这个圆形的面积指的是哪部分呢?
生4:被喷到水的草坪大小就是这个圆形的面积。
师:说得很好,今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、探究思考。解决问题
1、估计圆面积大小
师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)
2、用数方格的方法求圆面积大小
①投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
②指明反馈估算结果,并说明估算方法及依据。
生1、我是根据圆里面的正方形来估计的,外面方格图面积为10×10=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50——100平方米之间;
生2:我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;
生3:还可以通过计算来得到圆的面积。圆形外面的正方形可以看作边长为2r的正方形,面积就是2r×2r=4r2而圆形里面的正方形可以看作由4个小三角形拼成的正方形,三角形的直角边长为r,则一个三角形的面积是r×r÷2=1/2r2,;那么四个三角形的面积即是4×1/2r2=2r2,那么圆形面积大约为3r2,师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。
三、探索规律
1、由旧知引入新知
师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?
(学生回答,教师订正。)那么圆形的面积可由什么图形面积得来呢。
2、探索圆面积公式
师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的`图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
生:我拼成的图形接近一个平行四边形,平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。
师:说得很好,大家看看自己拼成的图形与刚才这个同学说的是否一样呢?
生:我拼成的图形更接近于长方形,这个长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。(学生在说的同时教师注意板书)
师:现在请大家来观察一下刚才两个同学拼成的图形,哪个更接近长方形呢?
生:等分为32份的更接近长方形。
师:大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?
生:等分的份数越多,就越接近长方形。
师:下面请大家观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)
生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。
生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。
师:用字母怎么表示圆面积公式呢?
生:S=∏•;R•;R
生:还可以写作S=∏•;R2
师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。
3、应用圆面积公式
师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。
(学生独立解答,知名回答)
四、应用圆面积公式解决实际问题
1、P18,NO•;1
学生独立解答,集体订正的时候要求学生说出每一步
计算过程和依据。
2、P18,NO•;2
让学生理解题意后,鼓励学生在头脑中想象,猜一猜
结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。在估计半径是10米的圆大约有几个教室大的时候,可以让学生先估计再算一算。
五、小结
师:谁能用自己的话说说圆面积的推导过程。
由生活中地一个实际问题
引入新知。
激发学生学习的兴趣,让学生根据已有的知识经验认识喷水头浇灌农田中蕴藏的数学问题,体会计算圆面积的必要性,并引发研究院面极地兴趣,为学习新知打下基础。
让学生通过观察、猜想、估计、思考、理解数方格求圆的大小,使学生进一步体会面积度量的含义,感受“化曲为直”的思想,同时培养了学生的估算意识。
让学生在估算中,体验学习数学的乐趣,培养学生的创新意识。
在探索圆面积计算公式的过程中,再一次体现了“化曲为直”的思想,即把圆进行分割,学生在剪拼过程中,从已有的知识经验慢慢找到解决圆面积计算公式的方法,激发学生的求知欲望。
在这一环节中重视学生的实际操作活动。
回顾了最初的实际问题,鼓励学生直接运用面积计算公式尽兴计算,解决实际问题。
【教学反思】
求圆的面积是从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己地想象,从估计到公式的推导;从数方格到剪拼成学过地平面图形;从已有地平行四边形、长方形面积公式推导出圆面积公式等等这一系列活动引导学生参与并讨论从而形成结论。教学中教师还特别强调学生估算意识的培养和由旧知引入新知的过渡。
首先在让学生估一估圆的面积活动中,通过圆的面积与圆内接正方形和圆外切正方形面积的比较,既估计了圆面积的大小范围,又再一次渗透了正多边形逼近圆的方法。然后教学中让学生把圆进行分割,再拼成一个近似平行四边形或长方形的图形,如果分割的份数越多,拼成的图形越接近了平行四边形或长方形,由此用平行四边形的面积计算公式或长方形面积计算公式来推导出圆的面积计算公式。
圆的面积教案12
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:
正确计算圆的面积。
教学难点:
圆面积公式的推导。
教具准备:
多媒体课件二套,圆片。
一。情景导入
1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)
师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。
(板书:圆的面积)
2.师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)
师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?
生:这堂课我们要学习圆的面积是怎样求出来的。
生:学生圆的面积公式。
师:你们知道圆的面积公式后,你们还想到什么问题?
生:圆的面积公式根据什么推导出来的。
师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。
(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)
二、动手操作,探索新知
1. 猜测(每项用课件出示)
师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?
生:不等。
师:为什么?
生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。
师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来?
生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。
师:圆的面积和正方形比较谁的面积大?
生:圆的面积大
师:可以观察出圆的面积范围在2r2-4r2
(这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)
2. 回忆旧知,
师:圆能不能直接用面积单位支量呢?为什么?
生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。
师:该怎么办呢?(教室沉默)
师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)
师:这些图形面积公式的`推导方法对我们研究圆的面积有什么启示呢?
生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)
师:这个办法很好。那么把圆形转化成什么图形呢?
[评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]
3.动手操作
(1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)
师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)
(2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?
生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)
师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示
(3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)
学生汇报讨论结果。生答师继续演示课件。
生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长宽
所以圆的面积=周长的一半半径
S=r
S=r2
师:结合公式S=r2,说说圆的面积是怎样推导出来的?
(4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)
生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。
因为 三角形的面积=底高2
所以 圆的面积=周长的半径的4倍
S=4r2
S=r2
师:我们用三角形也推出了圆的面积公式 S=r2 。同学们还有其它图形来验证吗?
(5)生:我们把圆转化成梯形来验证。(课件演示)
生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。
因为梯形的面积=(上底+下底)高2
所以圆的面积=周长的一半半径的2倍
S=2r2
S=r2 用梯形的面积
3.小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(S=r2)
我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。
唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!
圆的面积必需要具备哪些条件?
[评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]
(三)课后巩固
1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。
(照应了开头,又学练习了面积的计算。)
2、 根据下面条件求出圆的面积
r =5分米 d =3米
3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积?
(用学到的知识来解决生活中的问题,培养学生的应用能力)
(四)师:这堂课大家学到了什么?有什么收获?
(学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)
[评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]
圆的面积教案13
教学内容:
苏教国标版五年级下册103-105页及练一练和练习十九1-3题。
教材分析:
本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。
教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。
学情分析:
1、学生已有知识基础
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
2、对后继学习的作用
圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。
教学目标:
1、知识与技能:
(1)理解圆的面积的含义。
(2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。
(3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。
2、过程与方法:
经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。
3、情感与态度:
感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。
教学重点:正确掌握圆面积的计算公式。
教学难点:圆面积计算公式的推导过程。
教学准备:
1.CAI课件;
2.把圆16等分、32等分和64等分的硬纸板若干个;
教学设计:
一、创设情境,提出问题。
投影出示草坪喷水插图
师:请大家观察这幅插图,说说从图中你能发现数学知识吗?
学生观察、讨论并交流:
生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。
生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;
生3:这个圆形的中心就是喷头所在的地方。
师:请大家说说这个圆形的面积指的是哪部分呢?
生4:被喷到水的草坪大小就是这个圆形的面积。
师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、自主探究,合作交流:
1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?
板书:正方形的边长=圆的半径r
正方形的面积=r2
2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?
3、教学例7
⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。
⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。
⑶小组汇报(实物投影展示学生填写的表格)
⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。
⑸小组汇报交流
⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?
板书:S=r2×3倍多
[设计意图]
让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。
三、动手操作,探索新知
1.回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
2.推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr×r
S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
四、联系实际,解决问题:
1教学例9
(1)课件出示例9;
(2)说出已知条件和问题;
(3)学生自己试做;
(4)讲评,注意公式、单位使用是否正确。
2师:“老师的'家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。
五、全课总结,课后延伸:
1、今天这节课你学到了什么?
2、圆面积的计算方法,我们是怎样探索出来的?
3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。
六、布置作业
1.第107页的第1-3题。
2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)
测量物直径(厘米)半径(厘米)面积(平方厘米)
七、板书设计:
圆的面积
S=r2×3倍多
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
教学反思
本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。
圆的面积教案14
【教学内容】
圆的面积
【教学目标】
知识与技能:通过操作,使学生理解圆的面积公式推导过程,掌握求圆的面积的方法并能正确计算。
过程与方法:激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
情感、态度与价值观:培养学生的空间观念。
【教学重难点】
重点:
1、理解圆的面积公式的推导过程。
2、掌握圆的面积的计算公式,能够正确地计算圆的面积
难点:理解圆的面积公式的推导过程。
【导学过程】
【知识回顾】
1、还记得这些平面图形的面积计算公式吗?
2、平行四边形的面积公式推导过程还记得吗?
我们是通过剪拼的方法把它转化成长方形的。
【新知探究】
(一)、定义:
1、请你摸一摸哪里是圆的面积?
2、师:圆所占平面的大小就是圆的面积。
引导学生操作:
师:(拿出一个圆片)我们怎么剪?圆的大小是由什么决定的?(直径、半径)
生:(圆的大小由直径或半径决定。)沿直径或半径剪。
师剪第一刀,再问:第二刀怎么剪?
师:我们要把圆通过剪成多份并用拼的方法转化成学过的规则图形,为了计算上的方便,我们把圆平均分成多份。
将一个圆分别平均分成2份、4分、8分、16份,分别罗列排好。请学生观察四组图。
师:随着等分份数的不断增加,你有什么发现吗?
A:随着等分份数的不断增加,曲线越来越直。
B:随着等分份数的不断增加,每一小份越来越接近三角形。
(三)拼摆推导面积公式。
1、拼摆
师:把圆转化成什么图形?我们来试一试。
学生操作,演示学生的作品。
师:转化后的图形面积与圆的面积有什么关系?面积不变。
课件出示:把圆等分成不同等份时的图形的趋势。
2、推导面积公式
小组讨论:长方形各部份相当于圆的什么?
请你推导圆的面积公式。
学生汇报:(2~3名学生说,老师说,全班说推导过程)
(4)学生齐读圆面积公式(S=πr2)。并说说圆面积的大小与什么有关?(半径)给直径怎办?(先求出半径,再求面积)
【设计意图】在这个环节教师成为学生的.学习伙伴,在教师的引导和启发中,让每个学生都动口,动手,动脑,培养学生学习的主动性和积极性。创造一个和谐、高效的学习氛围。
【知识梳理】
本节课学习了什么知识?
【随堂练习】
1、根据下面所给的条件,求圆的面积。
(1)、半径2分米
(2)、直径10厘米
2、一个雷达屏幕的直径是40厘米,它的面积是多少平方厘米?
3、判断对错:
(1)圆的半径越大,圆所占的面积也越大。()
(2)圆的半径扩大3倍,它的面积扩大6倍。()
圆的面积教案15
教学内容:教材第68—69页含有圆的组合图形的面积。
教学目标:
1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。
2、通过自主合作,培养学生独立思考、合作探究的意识。
3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。
教学重难点:组合图形的认识及面积计算、图形分析。
教具学具准备:多媒体课件、各种基本图形纸片。
教学设计:
⊙创设情境,认识圆环
1.师:我们来欣赏一组美丽的图片。
课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……
2.同学们,你们从图中发现了什么?(它们都是环形的)
3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。
你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?
(学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)
4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)
设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。
⊙探索交流,解决问题
1.画一画,剪一剪,发现环形特点。
(1)画一画。
让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。
(学生按照要求画圆)
(2)剪一剪。
指导学生先剪下所画的`大圆,再剪下所画的小圆。
问:剩下的部分是什么图形?(环形)
师:我们也称它为圆环。
(3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?
生明确:圆环是从外圆中去掉一个内圆得到的。
(4)借助图示认识圆环的各部分名称。
你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)
①外圆:又名大圆,它的半径用R表示。
②内圆:又名小圆,它的半径用r表示。
③环宽:指外圆半径和内圆半径相差的宽度。
2.探究圆环面积的计算方法。
(1)小组讨论,怎样求圆环的面积?
(2)汇报讨论结果。
(3)小结:环形的面积=外圆面积-内圆面积。
设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。
3.课件出示例2。
光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?
(1)学生读题。
观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?
(2)学生试做,指生板演。
(3)交流算法,学生将列式板书:
解法一
外圆的面积:πR2=3。14×62
=3。14×36
=113。04(cm2)
内圆的面积:πr2=3。14×22
=3。14×4
=12。56(cm2)
圆环的面积:πR2-πr2=113。04-12。56
=100。48(cm2)
解法二
π×(R2-r2)=3。14×(62-22)=100。48(cm2)
答:圆环的面积是100。48cm2。
(4)比较两种算法的不同。
(5)小结:圆环的面积计算公式:S=πR2-πr2或
S=π×(R2-r2)(板书公式)
(6)讨论。
知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)
①知道内、外圆的面积,可以计算圆环的面积。
S环=S外圆-S内圆
②知道内、外圆的半径,可以计算圆环的面积。
S环=πR2-πr2或S环=π×(R2-r2)
③知道内、外圆的直径,可以计算圆环的面积。
④知道内、外圆的周长,也可以计算圆环的面积。
S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2
或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]
⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。
S环=π×[(r+环宽)2-r2]
或S环=π×[R2-(R-环宽)2]
……
设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。
⊙巩固练习,拓展提高
1.完成教材68页1题。
学生独立完成,然后在班内说一说解题思路。
2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?
3.已知阴影部分的面积是75cm2,求圆环的面积。
[引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3。14×75=235。5(cm2)]
设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。
⊙反思体验,总结提高
这节课我们学习了什么?你有哪些收获?还有什么问题?
⊙布置作业,巩固应用
1.完成教材72页8题。
2.找一些关于环形的资料读一读。
板书设计
圆环的面积
圆环面积=外圆面积-内圆面积
S环=πR2-πr2或S环=π×(R2-r2)
【圆的面积教案】相关文章:
“圆的面积”的教案03-11
《圆的面积》教案03-06
圆的面积教案11-04
圆的面积教案优秀10-24
圆的面积教案精选15篇02-27
圆的面积教案15篇02-24
圆的面积教案(15篇)02-24
实用的圆的面积教案4篇06-27
圆的面积教案范文(精选16篇)08-22