- 相关推荐
人教版六年级下册数学教案范文集合
作为一位优秀的人民教师,就不得不需要编写教案,借助教案可以更好地组织教学活动。优秀的教案都具备一些什么特点呢?以下是小编收集整理的人教版六年级下册数学教案范文集合,欢迎大家借鉴与参考,希望对大家有所帮助。
人教版六年级下册数学教案范文集合1
教学目标:
1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。
2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。
3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。
重点、难点:
1.教学重点:理解、掌握杠杆平衡的规律。
2.教学难点:让学生综合应用所学的知识和方法解决实际问题。
教学准备:
竹竿,棋子,塑料袋(多媒体课件)
教学过程
一、准备材料,导入活动:
1.检查课前布置的制作工具(简单杠杆)的作业。
学生对照制作要求,自查和同组互相检查。
小黑板或媒体出示制作要求:
(1)准备的竹竿长1m,尽量做到粗细均匀。
(2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。
(3)从中点处每隔8cm做一个刻度记号,尽量等距离。
拿出准备好的棋子和塑料袋。检查大小是否一样。
2.揭示课题:有趣的平衡(板书)
二、动手实践,探索规律
1.活动一:探索特殊条件下竹竿保持平衡的`规律:
(1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?
①学生思考,回答问题。“两边所放的棋子要同样多。”
②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。
(2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?
①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”
②演示。如:
左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。
(3)小结:
你有什么体会?
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
2.活动二:探索在一般条件下竹竿保持平衡的规律(A)
(1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?
①也放4个棋子行不行?会产生什么结果?
②应该放几个?
“放3个。”
(2)如果左边的塑料袋在刻度6上放1个棋子。
①右边的塑料袋在刻度3上放几个呢?
学生交流,各自说出自己的见解。
②右边的塑料袋在刻度2上呢?
学生不难得出结果,放3个。
③右边的塑料袋在刻度1上呢?
学生不难得出结果,放6个。
(3)小结:
师:你有什么体会?
左右两边棋子个数与刻度数的积要相等。
3.活动三:探索在一般条件下竹竿保持平衡的规律(B):
(1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?
(2)实验活动:
①学生动手进行实验活动。
②将实验结果记录下来。
③教师提供表格,引导学生展开活动。
右刻度
所放棋子数
乘积
(3)汇报结果。
学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
(4)从表中你发现刻度数和所放棋子数成什么比例?
学生观察表中两个量的变化情况,不难发现这两种量成反比例
三、应用规律,体会揣摩
1.基本练习:
母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的平衡?
提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是x分米。可以得到方程
60x=12×15
解方程得x=3
答:她坐的地方距支点3分米才能保持平衡。
2.综合练习:
桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?
提示:
(1)根据臂长和质量成反比例
(2)先确定每个托盘中所放砝码的总质量,在确定臂长。
四、回顾整理,反思提升
1.谈收获。
师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?
2.评价。
师:你对自己这节课的表现满意吗?
可采取学生自评,互评,老师评价的方式进行。
板书设计:
有趣的平衡
要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。
左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。
作业设计
基础:
1.用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?
综合:
2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?
提示:
(1)可以像例题中一样,用列表的方法做。
(2)根据臂长与质量成反比,列方程求解。
人教版六年级下册数学教案范文集合2
教学内容:
抽取游戏
教学目标:
1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:
抽取问题。
教学难点:
理解抽取问题的基本原理。
教学过程:
一、教学例
盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?
1.猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2.实验活动。
(1)一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的.球。
(2)一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3.发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做
第1题。
(1)独立思考,判断正误。
(2)同学交流,说明理由。
第2题。
(1)说一说至少取几个,你怎么知道呢?
(2)如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习
完成课文练习十二第1、3题。
人教版六年级下册数学教案范文集合3
课前准备
教师准备PPT课件
教学过程
⊙提问导入
1.提问激趣。
根据“甲是乙的”,你能想到什么?
预设
生1:乙是甲的。
生2:甲比乙少,乙比甲多。
生3:甲是甲、乙之差的5倍。
生4:甲是甲、乙之和的。
生5:乙比甲多20%。
……
2.导入新课。
这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]
⊙回顾与整理
1.分数(百分数)的一般应用题。
(1)分数(百分数)乘法应用题的特征及解题关键各是什么?
①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。
(2)分数(百分数)除法应用题的特征及解题关键各是什么?
①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。
②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。
(3)分数(百分数)应用题的.常见题型有哪些?如何解答?
①求甲是乙的几分之几(百分之几):甲÷乙。
②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。
③已知甲比乙多(少)几分之几,求甲:乙×。
④已知甲比乙多(少)几分之几,求乙:甲÷。
⑤求百分率。
发芽率=×100%
小麦的出粉率=×100%
产品的合格率=×100%
出勤率=×100%
⑥求利息:利息=本金×利率×时间
2.分数应用题的特例——工程问题。
(1)什么是工程问题?
明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
(2)解决工程问题的关键是什么?
明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。
(3)工程问题的数量关系式有哪些?
预设
生1:工作总量=工作效率×工作时间
生2:工作效率=工作总量÷工作时间
生3:工作时间=工作总量÷工作效率
生4:合作时间=工作总量÷工作效率和
人教版六年级下册数学教案范文集合4
1.观察比较
引导学生观察例4的三个立体,提问
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2.实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的`底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
3.推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式
圆柱的体积=底面积高
⑶引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积=底面积高
圆柱的体积=底面积高
用字母表示计算公式V=sh
三、分层练习,发散思维,教学试一试
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1.做练一练第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.做练一练第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
【六年级下册数学教案】相关文章:
六年级下册数学教案11-07
六年级下册数学教案11-11
苏教版六年级下册数学教案02-06
人教版六年级下册数学教案11-28
人教版六年级下册数学教案02-19
六年级下册数学教案(15篇)02-20
关于人教版六年级下册数学教案03-05
苏教版六年级下册《空间与图形》数学教案01-17
苏教版六年级下册《圆柱的体积》数学教案01-17
六年级下册数学教案15篇02-13