- 相关推荐
积的变化规律教案
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。那么什么样的教案才是好的呢?以下是小编为大家收集的积的变化规律教案,仅供参考,希望能够帮助到大家。
积的变化规律教案1
一、教学目标
(一)知识与技能
进一步认识单价、速度的含义,会用“所花的钱/数量”表示单价,“所走的路程/时间单位”表示速度。
(二)过程与方法
经历从实际问题中抽象出单价、数量和总价,速度、时间和路程之间的关系,并能应用这种关系解决问题。获得解决问题的策略,提升解决问题的能力。
(三)情感态度和价值观
初步解生活中常见的数量及数量关系,树立生活中处处有数学的思想。
二、教学重难点
教学重点:引导学生在解决问题过程中理解“单价、速度”的概念,理解并应用三量之间的数量关系。
教学难点:用术语表达、理解“单价、速度”的概念,掌握用符合单位表示“单价、速度”的方法。
三、教学准备
课件
四、教学过程
(一)具体情境导入
1.出示教材52页例4、53页例5
师:在前面的学习中,我们经常会见到一些数量关系。
学生独立解答
2.引入课题:
看来大家对我们学习的知识已经基本掌握了,今天我们就来总结这两种常见的数量关系。(板书课题)
【设计意图】学生已经会解决实际中关于单价、数量、总价,速度、时间、路程的问题,通过解决例4、5,唤起学生对此类问题的回顾,激发起学生探究知识的欲望。
(二)探究新知
1.认识单价、数量、总价,概括“单价×数量=总价”
(1)
师:这两个问题有什么共同点?
生1:都是已知每件商品的价钱。
生2:还知道买了多少件商品,算共花的钱数。
(2)出示发票:
师:你能从这张发票中看出光明小学的购物情况吗?
(学生分别从数量栏、单价栏、金额栏、货物名称栏了解购物结果。)
①认识理解“单价”。
师:看来发票里包含了许多的数学知识。你知道发票中的“单价”是什么意思吗?(板书:单价)
师:是的,每件商品的价格就是它的单价,你还知道哪些物品的单价?(学生介绍学习用品类、服饰类、食品类的物品单价)
师:发票中的20xx元表示什么意思?(板书:总价)
②说一说,算一算。
师:出示问题:
橙汁每瓶4元,一箱12瓶共多少元?
每箱橙汁40元,200元可以买这样的几箱?
200元可以买5箱橙汁,每箱橙汁多少元?
已知( )和( ),求( )。数量关系式为( ),算式( )。
学生独立练习
生汇报、交流。
生:讨论并发现验证:单价×数量=总价,总价÷单价=数量,总价÷数量=单价。补充完整板书。
【设计意图】从学生已有的知识和经验出发,通过学生自己质疑、释疑认识单价、数量、总价,并初步感知单价、数量、总价之间的关系。积累有关单价、数量、总价丰富感知。
2.认识速度、时间、路程,概括“速度×时间=路程
(1)
师:这两个问题有什么共同点?
生1:都是已知每小时或每分钟行的路。
生2:还知道行了几小时或几分钟,算共行了多少千米
(2)联系实际,认识速度
师:生活中这样的例子很多,下面我们一起来感受一下物体的速度。(课件出示)
蜗牛爬行的速度大约是8米/时。
人步行的速度大约为4千米/时。
声音传播的速度大约为340米/秒。
光传播的速度大约为30万千米/秒。
师:我们把这样,每小时或每分行的路程叫做速度。
人步行的速度是4千米/时,(板书:4千米/时)观察表示速度的单位,是由哪些我们学过的单位组成的?
生:速度的单位是由路程单位和时间单位组成的。
师:对,速度的单位是由路程单位和时间单位组成的,中间用斜线隔开。读作4千米每时。
你知道4千米/时表示什么吗?
生:24千米/时表示人1小时大约走4千米。
师:你能像这样写出并读出蜗牛、声音传播、光传播的速度吗?
【设计意图】出示生活中常见的速度,拓展学生对日常生活中速度的认识,通过实例和交流,给予学生充分的自主探索的空间,真正明确了路程、时间、速度这三者的关系。培养了学生收集、处理信息的能力和获取知识的能力。并且加深了学生运用所学知识解决生活中的问题的意识。
(3)经历公式形成的过程。
师:那么怎样求速度?
生:路程÷时间=速度
师:请写出下面各物体的速度
①一列火车2时行驶180千米,这列火车的速度是_________
②自行车3分钟行驶600米,这辆自行车的速度是_________
③一名运动员8秒跑了80米,这名运动员的速度是________
生:这列火车的速度是90千米/时,这辆自行车的速度是200米/分,这名运动员的速度是10米/秒。
(4)理解单位时间,理解速度的意义。
师:观察这三组速度,他们都是多长时间行驶的.路程?
生:他们都是一时、一分、一秒行驶的路程。
师:对,我们把这样的一时、一分、一秒都称为单位时间。你现在能来试着说一说什么是速度吗?
生:在单位时间里行驶的路程就叫速度。
【设计意图】路程、时间与速度这三个相关联的量,学生原来只能模糊地感知,不能清晰地表达,所以,我通过提问:速度单位与我们学过的单位有什么不同?剖析出速度的单位是由长度单位和时间单位共同组成的,帮助学生进一步理解速度的含义,通过观察和比较几个速度单位的相同和不同之处,既形象地帮助学生建立概念,又理解了速度的概念,知道速度是单位时间内所行驶的长度,这样就架构起行程问题中三个数量之间联系的桥梁。
(5)经历公式形成的过程。
师:解决下面的问题。
甲乙两地有240千米,一辆汽车的行驶速度为60千米/时,从甲地到乙地行驶了4小时。
①60×4表示什么?
②240÷4表示什么?
③240÷60表示什么?
已知( )和( ),求( )。数量关系式为( )。
生2:这两道题都是知道了速度和时间,求路程。
师:怎样求路程?
生:速度×时间=路程
师:猜测一下怎样求时间?为什么这样猜?
生:路程÷速度=时间,我认为根据速度×时间=路程,知道了积和一个因数,求另一个因数用除法计算。
师:同学们猜测得到底对不对,想来验证一下吗?计算第(2)、(3)题,说说你有什么发现?
生:我发现了这两道题都是已知路程和速度,求时间,用路程÷速度=时间,证明我们的猜测是正确的。
【设计意图】在学生充分理解路程、时间与速度这三个量的基础上,提出问题:这些量之间的关系是什么?根据学生的回答,让他们经历猜测和验证的过程。在这个教学重点环节里,我留给学生充分的时间探究,通过小组讨论总结、归纳数量关系,围绕“总结---归纳”二个环节进行学法指导,帮助学生深刻领会路程、时间与速度之间的密切联系。
(三)实际运用
1.他会超速吗?带有这个标志的路共长140千米,张叔叔驾车想花2小时开完这一段路。
师:你怎么理解限速60千米/时?你想对张叔叔说些什么?
2.客车的平均速度是80千米/时,它行7小时能否到上海?你能想出几种方法来解决?
生1:比路程。
生2:比速度。
生3:比时间。
3.小丽去文具店买文具,不小心把购物发票弄脏了,你能帮她算出笔记本每本多少元吗?
学生独立解答。
【设计意图】通过解决实际问题的练习,鼓励学生联系已有知识,寻求不同的解决方法,发展学生的数学思维能力。
(四)回顾梳理
本堂课我们学习了什么知识?你有什么收获?
【设计意图】通过师生共同梳理,让学生对两种常见的数量关系有系统的认识。
积的变化规律教案2
教材分析:
《积的变化规律》是小学四年级上册第四单元的内容,它是学生在掌握乘法运算的基本技能的基础上利用乘法运算,培养学生的推理能力,特别是合情的推理能力,是本单元教学的重要任务。教材以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,归纳出积的变化规律。通过这个过程的探索,让学生理解两数相乘时,积的变化随其中一个因数的变化而变化。
例题的设计分为三个层次:研究问题——归纳规律——验证规律,通过学习,学生不但发现了积的变化规律,而且学会研究问题的一般方法。《积的变化规律》是引导学生学会从一般现象中寻找规律,为学生今后学习相关内容提供必要的思维模式。
学情分析:新课程标准提出要让学生“经历、体验、探索”。因此在教学《积的变化规律》这节课中,我注重开发利用身边的生活资源,创造性地使用教材,将教材中的两组算式调整为一组乘法算式,但是,这一组算式是以能够体现我们课本所要传达的信息与知识,引导学生通过这一组算式去发现问题从而去经历发现规律——总结规律——验证规律——运用规律这四个层次的学习。在这四个层次的学习中,学生将会通过观察、探索、交流、归纳等方式经历积的变化规律的探索过程,初步获得探索规律的一般方法和经验,体验发现规律是一件很愉快的事情,从而增强学习数学的自信心。教学目标:
1.学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教学重点:引导学生自己发现规律,概括规律,进而运用规律。
教学难点:自主思考探究,归纳出积的变化规律
教学方法:先学后教(先让学生自主学习探究,再归纳总结)
教学过程:
一、创设情景,导入新课
师:今天,我们教室来了许多听课的老师,我们应该怎样表示欢迎啊?
生:鼓掌。
师:我们一分钟最多能鼓掌多少次呢?
通过学生猜测和实际尝试,得出学生一分钟鼓掌的次数,接着设问:2分钟、4分钟、8分钟、10分钟呢?引导学生列出算式并进行计算。
『设计理念』这样的设计是想让学生解决生活中的实际问题,激发学生的学习兴趣,培养学生的数感及提出数学问题的能力。
二、设疑自探:
1、出示自探提示:(课件出示)【找学生读自探提示】
利用导学提纲自学课本51页内容,思考下面问题:
(1)从上往下观察第一组题:第?题与第?题比较,第?题与第?题比较,第一个因数有什么特点?第二个因数乘了几?积怎么变化?你发现了什么规律?把你的发现写出来。
(2)从上往下观察第二组题:第?题与第?题比较,第?题与第?题比较,第二个因数有什么特点?第一个因数除了几?积怎么变化?你发现了什么规律?把你的发现写出来。
(3)你能用一句话将两组题中已经发现的规律概括起来吗?
2、在学生自探时师板书课本例题:
例3观察下面两组题,说一说你发现了什么?
第一组:
6×2=12
6×20=120
6×200=1200
第二组:
20×4=80
10×4=40
5×4=20
3、根据自探提示,学生独立解决,教师巡视。
三、解疑合探
1、学生汇报自探提示第一题,总结变化规律。然后出示根据8×50=400,直接写出16×50=?
32×50=?的得数,进一步归纳总结发现的规律,然后分小组讨论,自己当小老师出题验证发现的规律,最后和大家分享自己的研究成果,得出结论。
(课件出示第一组口算题目,演示对比这一组因数与积的变化情况,得出结论:两个数相乘,一个因数不变,另一个因数乘几,积也要乘几。)
2、学生汇报自探提示第二题,总结变化规律。然后出示根据8×50=400,直接写出8×25=?
2×50=?的得数,进一步归纳总结发现的规律,然后分小组讨论,自己当小老师出题验证发现的规律,最后和大家分享自己的研究成果,得出结论。
(课件出示第二组口算题目,演示对比这一组因数与积的变化情况,得出结论:两个数相乘,一个因数不变,另一个因数除以几(0除外),积也要除以几。)
3、通过观察、思考用一句话概括已经发现的规律。学生总结不完整时,讨论这个问题得出结论:(课件出示)两个数相乘,一个因数不变,另一个因数乘(或除以)几(0除外),积也要乘(或除以)几。这就是积的变化规律。(指导学生抓住关键词来记忆)
四、运用拓展
1、先找出规律再填空:
12×8=96 40×21=840
12×16=192 40×7=210
12×32=384 20×21=420
12×64=768
2、判断:
(1)两数相乘,一个因数不变,另一个因数乘5,积应该乘5。()
(2)两数相乘,一个因数除以10,另一个因数不变,积也除以10。()
(3)一个因数扩大4倍,积也一定扩大4倍。()
3、一块宽为8米的长方形绿地面积为560平方米,要求宽要增加到24米,长不变。扩大后的绿地面积是多少?
24÷8=3 560×3=1680(平方米)
答:扩大后的绿地面积是1680平方米。
五、质疑再探:
探究:
1、两个因数相乘,两个因数同时乘几,积怎样变化?
2、两个因数相乘,两个因数同时除以几,积怎样变化?
3、两个因数相乘,当一个因数扩大另一个因数缩小时积怎么变化?)学生提出问题,找学生来回答,老师补充总结。
六、板书设计:
第一组:第二组:
6×2=1220×4=80
6×20=120 10×4=40
6×200=12005×4=20
积的变化规律:两个数相乘,一个因数不变,另一个因数乘几(或除以)几(0除外),积也乘(或除以)几。
《积的变化规律》教学反思
《积的变化规律》是人教版教材数学四年级上册第四单元的内容。它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中我先创设情境,让学生列出相应的乘法算式,通过对算式的观察,让学生讨论自己的发现,然后引出新知,再让学生根据自探提示自主的去探索规律、验证规律,并使用规律.,本课主要是学生自主地去学习,我鼓励学生积极发言,大胆猜想,小心求证,积极主动地探索新知,让学生体会成功的喜悦,激发了学习兴趣,增强了自信心。这节课上下来还是存在许多问题:
1、由于本课例题比较简单,大部分学生通过口算就能直接算出答案,无需通过积的变化规律进行计算,这就给部分思维发散性较差的学生形成了一个假象,以至无法真正懂得该规律的'应用。这在后面拓展应用知识时表现的尤为明显,部分学生还是用以前的老方法进行计算,而不是找到规律直接写得数。在以后的教学中,要特别关注思维慢一些的学生,加强对他们的引导,使他们能更积极更有目标的去思考,增强学生的自信心,使学生能积极主动地去获取知识。
2、要用好评价语言,鼓励学生参与到课堂学习中。这节课的主要特点是让学生在一个愉悦的学习环境中进行思考、探索、讨论、发言,但是大部分学生还是不敢举手大胆的交流。这部分学生主要是害怕自己说错了,让别的同学取笑。针对学生不敢发言,在以后的课堂教学中要注意多给学生鼓励,多给学生信心,以使学生畅所欲言。
3、对于积的变化规律的运用,学生对于基本的练习能够运用自如,但是灵活度较高的练习就有些困难。因此,在选择练习时应关注练习的广度,让学生见多识广、灵活运用。
4、学生参与探索活动,经历发现规律的过程是新课标教材编排的意图,面对新的数学问题,教师鼓励学生在主动观察、猜测、讨论、交流和验证等数学活动中,感受到数学问题的探究性和挑战性,通过看、想、说、动手做、练的过程,顺利的完成本课的教学任务,并能充分体现了数学学习的“亲历性”,努力使学生在获得对数学理解的同时,在思维能力、情感态度等多方面也得到一定的进步和发展。特别是在初步感知规律后,引导学生猜想:是不是所有的乘法算式都具有这样相同的特点呢,再自己想办法加以验证。
积的变化规律教案3
教学内容:
青岛版小学数学四年级上册42、43页 第1课时
教学目标:
1、学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2、尝试用简洁的语言表达积的变化规律,培养学生初步的概括和表达能力。
3、初步获得探索规律一般方法和经验,发展学生的推理能力。
4、在学习过程中培养学生的探究能力、合作交流能力和归纳总结能力,初步培养学生严谨的治学态度。
教学重难点:
教学重点:引导学生自已发现规律、概括规律,进而运用规律。 教学难点:运用积的变化规律解决问题。
教学准备:课件统计表格
教学过程:
一、创设情境,提出问题
【课件出示:信息窗4情境图 清理海水浴场】
青岛是座美丽的城市,在炎炎夏日,青岛的海水浴场每天吸引着数以万计的游客,为了让游客在清洁舒适的沙滩上游玩,筛沙车每天都在忙碌着。
“ 筛沙车每分钟清洁沙滩80平方米”根据图上的这个信息,你能提出什么数学问题?
学生可能提出:5分钟、10分钟、15分钟、30分钟、60分钟·······筛
沙车能清洁多少平方米沙滩?
你们提的问题都非常好!这么多的问题我可以用一个关系式解决,你知道运用哪一个关系式吗?(学生回答)
对,就是“工作效率×工作时间=工作总量”,“每分钟清洁沙滩的面积×筛沙车的工作时间=筛沙车的工作总量”现在我提一个问题“筛沙车的工作总量是怎样变化的呢?”你们能帮我解决吗?
二、自主学习、小组探究
1、填表格(学生每人一张)
学生独立完成表格
2、小组活动
学生在小组内交流自己的发现。
小组活动时,教师巡视、指导。
如果遇到小组观察统计表有困难时,教师引导学生写出计算的算式再观察发现。
80×5=400
80×10=800
80×30=2400
80×60=4800
三、汇报交流、评价质疑
1、全班交流----积随因数扩大而扩大的规律
说一说筛沙车工作总量随着时间的变化是怎样变化的?
学生通过填写的表格从左往右观察或列出的算式从上到下观察
每分钟清洁沙滩的`面积不变,工作时间扩大到原来的多少倍,清洁沙滩的总面积就扩大到原来的多少倍。
那如果用因数、因数、积分别表示这三种量,你能用一句话概括你们发现的规律吗?
教师引导学生概括积随因数扩大而扩大的规律:一个因数不变,另一个因数扩大到原来的几倍,积就扩大到原来的几倍。
2、学生探究----积随一个因数缩小而缩小的规律
①、刚才,我们从左往右观察,发现了积随因数扩大而扩大的规律的那从右往左观察表格,用刚才比较研究的方法,比一比,一个因数不变,另一个因数还是乘几吗?积和因数是怎么变化的?你又有什么新的发现? ②、学生独立思考,然后同桌交流。
③、班内交流:
④、概括发现的规律(一个因数不变,另一个因数缩小到原来的几倍,积也缩小到原来的几倍。)
四、抽象概括、总结提升
刚才大家发现的规律是不是有普遍性呢?研究数学问题一般不能轻易下结论,要多举出一些例子,看看会不会出现相同的情况。如果有一个反例子出现,就不能把这种发现当作规律,这就是研究数学问题应该有的严谨态度。下面我们一起来验证规律。
(1) 用积的变化规律填空(课件出示)
2×18=36 20×4=80
4×18=( ) 10×4=( )
8×18=( ) 5×4=( )
(2)学生自己举例说明积的变化规律。
提示:每位同学各写两组算式,一组3个算式,其中一组展现积随一个因数扩大而扩大的变化情况,另一组则展现积随一个因数缩小而缩小的变化情况。
(3)同桌互相检查所举的例子和交流因数和积的变化是否与我们发现的规律相符。
(4)整体概括规律。
既然许许多多的乘法算式中都有这样的积的变化特点,通过验证,发现我们的猜想是正确的。它就是今天我们探究的积的变化规律。(教师板书课题)谁能把这个规律说一说。
小组交流“积的变化规律”
数学讲究语言简洁严谨,谁能用一句话将上面发现的两条规律概括为一条呢?(学生交流)
【课件出示:一个因数不变,另一个因数扩大(或缩小)到原来的多少倍积就扩大(或缩小)到原来的多少倍。】
五、巩固应用、拓展提高
同学们,今天我们共同探究发现了“积的变化规律”,现在让我们运用规律做几道题好吗?
1、基本练习
课本43页第1题
学生独立完成后反馈,交流一下是怎样算的?
2、提高练习
课本43页第2题
学生独立完成后反馈,并说说是怎样想的?
你能根据这组算式的特点接下去再写两道算式吗?
3、开放练习
课本43页第3题
运用“积的变化规律”解决生活中的问题。
积的变化规律教案4
教学目标:
知识与能力:让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
过程与方法:使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
情感态度价值观:通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。同时培养学生从正反两个方面观察事物的`辨证思想。
教学重点:
发现并运用积的变化规律。
积的变化规律的探究策略。
教学过程:
一、创设情景,提出问题
1、呈现研究素材:
6×20 40×5
160×5 6×10
6×40 80×5
2、口算出得数。
3、观察这组算式,你能分一分吗?为什么这么分?
再次呈现:6×10=60 160×5=800
6×20=120 80×5=400
6×40=240 40×5=200
4、仔细观察、比较这组算式,你能发现什么?
学生自由说
师:当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。
二、自主探究,发现规律
1、师:为方便研究,我们先研究第一组算式,并把第一组这三个算式分别为(1)式,(2)式和(3)式。如果把(1)式作标准,(2)式和(3)式分别与(1)比,因数和积各是怎样变化的?
2、学生小组讨论,教师巡视。
3、学生交流讨论结果。
4、教师相机总结:一个因数不变,另一个因数乘几,积也乘几。
5、师生共同探究第二组算式,并总结出规律:一个因数不变,另一个因数除以几,积也除以几。
6、师:是不是其它的乘法算式也有相同的积的变化特点呢?师写算式60×8=480,你能根据这个规律写几个算式吗?看其它乘法算式也有这个规律?
学生举例说明。
7、师:既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。
学生说,教师引导学生说简单些。总结出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
8、师:这个规律我们已经在不知不觉中使用,你知道什么地方我们使用过?
三、运用规律,解决问题
1、根据8×50=400,直接写出下面各题的积。
16×50= 32×50= 8×25=
指名学生回答
2、神奇缺8数来挑战
12345679×9=111111111
12345679×18=
12345679×27=
12345679×36=
3、一辆汽车在公路上以60千米/时的速度行使,4小时可以行( )千米。一列火车在铁路上行驶的速度是汽车的2倍,这列火车用同样的时间可行( )千米。
先学生独立思考,然后交流解法,鼓励学生用两种方法解答。
四、全课总结,拓展延伸
师:在这节数学课上,你们还有什么收获吗?
学生回答
五、巩固练习:
1、找出规律再填空。
16×17=272
16×34=272 ×( )
16×34=272 ×( )
(16 ÷ ) ×17=272÷4
2、判断题
(1)两数相乘,一个因数不变,另一个因数乘4,积应该乘5。 ( )
(2)两数相乘,一个因数不变,另一个因数除以10,积应该除以10。 ( )
(3)长方形的面积=长×宽,如果长不变,宽变为原来的3倍,则面积也变为原来的3倍( )
(4)路程=速度×时间,如果时间不变,速度变为原来的几倍,路程也会变相同的倍数( )
3、算一算,想一想,你能发现什么规律?
18×24=432
(18×2)×(24÷2)=
(18÷2)×(24×2)=
积的变化规律教案5
教学目标:
●使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
●尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
●初步获得探索规律的一般方法和经验,发展学生的推理能力。
教学用具:投影仪、计算器、写有试题的作业纸
教学过程:
一、研究两数相乘,其中一个因数变化,它们的积如何变化的规律
1、两数相乘,其中一个因数扩大若干倍时,积怎么变化。完成下列两组计算,想一想发现了什么?
62=( ) 8125=( )
620=( ) 24125=( )
6200=( ) 72125=( )
(1)组织小组交流,让每一个学生先把在上面算式中独立发现的规律说给同伴听。学生也许是就题说题,如,左边一组算式,发现的规律是:20是2的10倍,120也是12的10倍;右边一组算式,发现的规律是:24是8的3倍,3000也是1000的3倍。
(2)组织全班交流。在小组交流基础上,引导学生根据上面算式中积随因数变化的情况,将发现的`上述规律用一句话概括出来:两数相乘,当其中一个因数扩大若干倍时,积也扩大相同的倍数。
2、两数相乘,其中一个因数缩小若干倍时,积又怎么变化。
(1)请学生完成下列两组计算,想一想发现了什么。
804=( ) 25160=( )
404=( ) 2540=( )
204=( ) 2510=( )
(2)引导学生讨论上面算式中积随因数变化的情况,与第(1)组算式的讨论过程相同,最后引导学生概括:两数相乘,当其中一个因数缩小若干倍时,积也缩小相同的倍数。
3、整体概括规律
问:谁能用一句话将发现的两条规律概括为一条?
引导学生将发现的两条规律概括为一条,并用简洁的话语表示出来:两数相乘,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
4、验证规律
(1)先用积的变化规律填空,再用笔算或计算器验算。P59、3
(2)举例说明积变化规律。各写两组算式,一组3个,展现积分别随一个因数扩大、缩小的变化情况。
5、应用规律。完成例4下面的做一做和练习九第1、2、4题
二、研究两数相乘,两个因数都发生变化,它们的积变化的规律。
(1)独立思考,发现规律:
①请学生完成下列计算,并在组内述说自己发现的规律
1824= 10545=
(182)(242)= (1053)(453)=
(182)(242)= (1055)(455)=
②组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括。
(2)应用规律解决问题:
①在○中填上运算符号,在□中填上数
2475=1800 36104=3744
(24○6)(756)=1800 (364)(104○4)=3744
(24○3)(75○□)=1800 (36○□)(104○□)=3744
②一个长方形的面积是256平方厘米,如果长缩小4倍,宽扩大4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?
积的变化规律教案6
教学目标:
1.通过观察、讨论等数学活动,经历探索、归纳积的变化规律的过程。
2.知道扩大几倍、缩小几倍的意义,理解积的变化规律,会运用积的变化规律进行简便计算。
3.在探索、归纳积的变化规律的过程中,感受数学思考过程的条理性。
课前准备:口算卡片、小黑板。多媒体课件
教学过程:
一、创设情景
师:同学们,咱们来做几道口算题,看谁算的又对又快!
教师用卡片出示口算题,学生抢答。
56+34= 68+25= 73-42=
100-57= 3×4= 6×7=
42÷6= 81÷9=
二、扩大、缩小
1、教学扩大
师:再看下面几道口算题。不但要口算出结果,还要说一说是怎样算的。
课件出示课本第一组乘法算式:
37×10=
生:37×10=370,37乘1等于37,然后在末尾添上一个0,就是370。
教师显示结果:37×10=370
师:很好!下面看这道题:
出示37×100=
生:37×100=3700,37乘1等于37,然后在末尾添上两个0,就是3700。
师:同学们的想法都挺好的。在数学上,37×10还可以说成把37扩大10倍,37×100可以说把37扩大100倍。
教师显示:扩大几倍
师:37×10=370可以说37扩大10倍等于370,37×100=3700可以说37扩大100倍等于3700。同桌像老师这样互相说一说。
学生互相说一说。
师:谁能举出一个乘法算式,并用扩大几倍描述一下?
2、教学缩小
师:下面,我们再来口算两道除法题,说说你是怎样算的?
幻灯片出示:400 ÷10=
生1:400 ÷10=40。因为400里面有40个十。
生2:400 ÷10=40。因为40乘10等于400。
教师显示答案:400 ÷10=40。
师:在数学上,两个数相除也有另一种说法——缩小。400 ÷10可以说把400缩小10倍。
教师显示:缩小几倍
师:400 ÷10=40,可以说400缩小10倍等于40。
师:再看这道题,计算结果是多少。
出示:400 ÷100=
生:400 ÷100=4。因为400里有4个100。
教师显示:400 ÷100=4
师:谁能用“缩小几倍”这个词描述一下400 ÷100=4?
生:400 ÷100可以说把400缩小100倍等于4。
师:谁能举出一个除法算式,并试着用“缩小几倍”描述一下?
三、探索规律:
师:同学们已经会用扩大几倍描述两个数相乘,用缩小几倍来描述除法。下面,我们就用扩大和缩小来描述乘法计算中的一些规律。请看下面这组题。
出示幻灯片:4×2=8
40×2=80
400×2=800
师:同学们,看这几个算式,请你用刚学的名词描述一下。
生1:4扩大2倍等于8。
生2:40扩大2倍等于80。
生3:400扩大2倍等于800。
师:说的很好!大家再来看这几个算式的因数,你发现了什么共同点?
生1:每个算式中有一个2。
师:就是说,三个算式中,因数2没变。观察算式中另一个因数和积,你发现了什么?
生2:第一个和第二个算式比,因数4扩大了10倍,积也扩大10倍。
师:就是说,因数2不变,因数4扩大10倍,积8也扩大10倍。
生3:第三个算式和第一个算式比较,因数4扩大100倍,积也扩大100倍。
师:观察的很认真,就是说,因数2不变,因数4扩大多少倍,积也就扩大多少倍。
生4:第三个算式和第二个算式比较,因数40扩大10倍,积也扩大10倍。
师:很好!因数2不变,另一个因数4扩大多少倍,积也扩大相同的倍数。同学们,分别找出了这几个乘法算式中因数和积的变化规律。谁能用一句话来概括一下这个规律呢?
生:因数2不变,另一个因数扩大多少倍,积也扩大相同的倍数。
教师总结归纳出规律,幻灯片显示:
在乘法里,一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。
师:通过刚才的三个算式,我们发现了,在乘法里,一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。再来看这组算式。
出示:25×40=1000
25×20=500
25×10=250
师:观察这组算式的因数,你发现了什么共同点?
生1:三个算式中第一个因数都是25。
生2:有一个因数不变,都是25。
师:对!这组算式中,也有一个因数不变。再看另一个因数,你发现了什么?
生1:另一个因数一个比一个小。
生2:另一个因数越来越小。
师:对!另一个因数一个比一个小。再认真看一看,它们之间有什么关系呢?
生:40除以2等于20,还可以说40缩小2倍等于20。
师:也就是说,第二个算式和第一个算式比,一个因数不变,另一个因数40缩小了2倍,对吗?
取得全班共识。
师:那请同学们比较一下,第二个算式和第一个算式的积,你发现了什么?
生1:500比1000也缩小了2倍。
生2:第二个算式的积也缩小了2倍。
师:谁能用一句完整的话,说一说第二个算式和第一个算式的变化。
生1:第二个算式和第一个算式比较,一个因数25不变,另一个因数40缩小2倍,积也缩小2倍。
生2:第二个算式和第一个算式比,一个因数不变,另一个因数缩小2倍,积也缩小2倍。
教师肯定学生的不同说法。
师:把其他算式进行比较,并说一说因数和积的变化规律。
学生可能会说:
生1:第三个算式和第二个算式比较,一个因数25不变,另一个因数20缩小2倍,积也缩小2倍。
生2:第三个算式和第一个算式比较,一个因数25不变,另一个因数40缩小4倍,积也缩小4倍。
……
师:通过这组算式同学们发现了“在乘法算式里,一个因数不变,另一个因数缩小,积也缩小”的变化规律。谁能总结一下这个缩小的变化规律?
生:在乘法里,一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
师:(指着上面两组算式)刚才通过这两组算式我们发现了因数扩大、积也扩大,因数缩小、积也缩小的规律,这两条规律可以概括在一起。
教师边说边整理规律.
幻灯片显示:在乘法里,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
请同学自己读一读。
师:刚才我们发现的规律是乘法计算中一条特别重要的.性质叫做积的变化规律。
板书课题:积的变化规律
四、尝试练习
师:应用积的变化规律,可以使许多乘法计算变得简便。下面我们看,(出示幻灯片)仔细读题目的要求,并自己完成。
学生自己做,教师巡视,个别指导。
师:谁说说你是怎样想的?怎样做的?
生1:第(1)组算式中,因数15不变,第二个算式中的另一个因数24比6扩大4倍,所以积也应扩大4倍。90×4=360
生2:第(1)组算式中,第三个算式的另一个因数30比6扩大5倍,积也要扩大5倍。90×5=450
生3:第(1)组算式中,第四个算式的另一个因数60比6扩大了10倍,积也要扩大10倍。90×10=900
生4:第(2)组算式中,第二个算式和第一个算式比较,因数4不变,因数23比230缩小10倍,积也缩小10倍,920÷10=92
生5:第三个算式和第一个算式比较,因数40比4扩大10倍,积也扩大10倍,920×10=9200
生6:第四个算式和第三个算式比较,因数40不变,因数23比230缩小10倍,积也缩小10倍,9200÷10=920。
生7:第四个算式和第一个算式比较,因数230缩小10倍,因数40又扩大10倍,积不变,是920。
五、课堂练习
师:这道题同学们做得很好,现在我们来完成表格:(出示幻灯片)
教师巡视,个别指导。
交流计算的过程和结果,(出示课件)重点说一说是怎样想的。
师:我们再来当一次小法官,判断各题是否正确并说明理由。
先让学生独立思考,再全班交流。
学生根据积的变化规律判断,说对意思即可。
师:下面还有一道生活中的题,(出示课件)我们来看一看。
学生读题后,指名回答。重点说一说第(2)题是怎样想的。
生1:210÷30=7(分),小明每分钟走210米,他走路的速度不变,要走420米,比210米扩大了2倍,需要的时间也要扩大2倍。
7×2=14(分)
生2:速度不变,路程扩大2倍,时间也要扩大2倍。
六、拓展练习
师:刚才大多数的同学都非常棒,在挑战一下自己吧
课件:一种货物每包重40千克,一辆卡车最多可以运120包。如果把货物改为每包重20千克,一辆卡车最多可以运多少包?改为每包重10千克呢?(列出表格计算)
师:谁来说一说这道题。
指名读题。
师:在这道题中,什么没变?什么变化了?
生:货物总千克数没变,每包的质量变化了。
师:货物的总质量是多少?你是怎么知道的?
生:货物的总质量是4800千
克,根据每包重40千克,一辆卡车最多可拉120包计算出来的。
师:那么,如果改为每包20千克或每包10千克,这批货物有多少包呢?请同学们列出表格,并计算出结果。同学可以商量。
学生独立计算。教师巡视,对有困难的进行指导。
师:谁愿意把你列的表格和计算的结果告诉大家?
生1:生2:
每包重包数总质量总质量每包重包数
40 120 4800 4800 40 120
20 240 4800 4800 20 240
10 480 480 4800 10 480
师:观察表(2)中的数据,说一说在货物总重量不变的情况下,每包的质量和包数是怎样变化的?
生1:货物总质量不变,每包质量由40千克改为20千克,缩小了2倍,而包数由120包变为240包,扩大了2倍。
生2:每包质量由40千克改为10千克,缩小了4倍,包数却由120变成了480,扩大了4倍。
师:从上面的例子中,我们发现一个因数扩大若干倍,另一个因数缩小相同的倍数,它们的积不变。
师:做后看数学冲浪的题,你发现了什么?
生:第一个因数没变,都是12345678。
生:第一个算式的积是9个1。
师:利用积不变的规律自己试着写出“数学冲浪”中算式的积。并用计算器验证一下。
学生完成后,交流学生写出的结果,并说一说是怎样想的。
积的变化规律教案7
教学内容:四年级上册教材58页例4,做一做,练习九第1—4题。
教学目标:
1. 知识技能:尝试用简洁的语言表达积的变化规律,培养学生初步的概括表达能力;
2. 过程方法:“让学生在感知问题——研究问题——归纳规律——验证规律——运用规律”的过程中感知数学学习方法,积极参与交流学习;
3. 情感态度:培养学生团结协作、敢于交流表达的学习精神,体会与人交流和学习成功的体验,培养学生集体荣誉感。
教学重难点:
1. 用简洁的语言概括“一个因数不变,另一个因数改变引起积的变化规律”;
2. 有序交流、表达自己的想法。
教学过程:
一、 探究“一个因数不变,另一个因数扩大几倍,积就扩大几倍”
1. 初步感受问题
20xx年8月,舟曲、汶川等地发生了严重的泥石流灾害,当地人民的生命和财产遭受了巨大的损失。为了帮助灾区人民渡过难关,4.1班的同学积极奉献自己的爱心,踊跃捐款,平均每人捐款约3元,照这样计算:
2名同学捐款多少元?(3╳2=6)
20名同学捐款多少元?(3╳20=60)
200名同学捐款多少元?(3╳200=600)
(1) 学生说出算式、口算;
(2) 教师板书算式;
(3) 进行德育。
2. 研究问题
观察算式,独立思考:以上算式有什么联系和规律?
3. 归纳规律
(1) 小组交流:在小组内发表自己的看法,大家商讨:怎样用清楚简洁的语言记录表达所发现的规律。
(2) 引导全班交流,归纳总结积的变化规律。
4. 验证规律
(1) 另外写一组算式,验证规律的正确性;
(2) 根据发现的.规律,在上面的算式下面再写两个算式。
二、 探究“一个因数不变,另一个因数缩小几倍,积就缩小几倍”
1. 按从下往上的顺序观察刚才的算式组,感知问题;
2. 研究问题:思考,有什么规律;
3. 归纳规律:
(1) 在小组内用自己的话说说发现的规律;
(2) 全班交流。
4. 验证规律:
(1) 小组内举例验证;
(2) 按发现的规律把下面的算式再写两个:
80╳4=320
40╳4=160
20╳4=80
三、 运用规律、解决问题
1. 做一做:学生独立完成;说出思考过程
2. 练习九第1题:独立完成;说明,补充
3. 练习九第2题:齐读题;独立思考;小组交流;讲解
4. 练习九第3题:独立完成;;小组交流;讲解
四、 补充练习
练习九第5题。供
五、 课堂总结
六、 作业:练习九第4题
七、 课后反思:
积的变化规律教案8
教学目标:
1.探索、发现“一个因数不变,另一个因数乘几,得到的积就等于原来的积乘几”的变化规律;能运用积的变化规律灵
活地进行计算。
2.经历观察、比较、猜想、验证和归纳等一系列的数学活动,体验探索和发现数学规律的经验,发展思维能力。
3.通过参与学习活动,培养学生合作交流的能力,并在探索活动中感受数学结论的严谨性与正确性。
教学重点:
探索、发现积的变化规律。
教学难点:
经历自主探究发现规律、验证规律并应用规律的过程。
教学准备:
课件
教学过程:
一、谈话引入
1.创设问题。
小明在计算“42×5”时,将因数5写成了50并进行了计算。
问题一:小明能算出这个算式的正确答案吗?
问题二:那他算出的积和正确的答案之间会有什么关系呢?
让学生自由发言,充分表达自己的观点。
2.导入新课。
在乘法里面,两个因数相乘就得到了积,那因数的变化是否也会引起积的`变化呢?它们之间会有怎样的变化规律呢?今
天这节课我们就一起来探索积的变化规律。(板书课题)
二、交流共享
1.课件出示教材第33页例题4的表格。
(1)让学生独立计算,填写表格。
(2)指名汇报,课件出示学生完成的表格。
2.观察比较,发现规律。
(1)独立观察。
请同学们自己观察表格中的因数和积的变化情况,想一想:一个因数不变,另一个因数乘几,得到的积怎样变化?你有
什么发现?
(2)小组交流。
学生将自己的发现在四人小组内进行交流。教师巡视全班,了解各小组的交流情况。
(3)全班汇报交流。
指名汇报交流,教师可以让参与汇报的学生到讲台前运用实物投影进行汇报。
汇报预测:
①第一个因数不变,第二个因数乘2,得到的积等于原来的积乘2。
②第一个因数不变,第二个因数乘10,得到的积等于原来的积乘10。
③第二个因数不变,第一个因数乘4,得到的积等于原来的积乘4。
④第二个因数不变,第一个因数乘5,得到的积等于原来的积乘5。
(4)概括规律。
提问:谁能将刚才四位同学的发言进行概括,说一说积的变化有什么规律?
学生交流后得出积的变化规律:一个因数不变,另一个因数乘几,得到的积就等于原来的积乘几。
3.验证规律。
引导:刚才大家发现的规律是不是具有普遍性呢?研究数学问题一般不要急于得出结论。请同学们再找一些例子算一算
、比一比,看看积的变化是不是有同样的规律,在小组内交流。
(1)学生在四人小组内验证规律。
(2)交流验证的情况。
4.解决课堂导入时的问题。
提问:小明在计算“42×5”时,将因数5写成了50,他算出的积和正确的答案之间会有什么关系呢?
指名汇报交流,教师进行必要的纠正。
引导学生发现:小明在计算时,一个因数不变,另一个因数乘10,所以他算出的积也就等于原来的积乘10。
三、反馈完善
1.完成教材第33页“练一练”第1题。
先让学生说说一个因数是怎样变化的,再直接填出积。
集体交流时,让学生分别说说自己的想法。
2.完成教材第33页“练一练”第2题。
让学生先观察每组中各个算式之间因数的联系,再根据每组第1题的积直接写出下面两题的积。
3.完成教材第36页“练习六”第10、11题。
学生独立完成后集体订正。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
积的变化规律教案9
教学内容:教科书第58页例4及“做一做”,练习九第1~4题。
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教、学具准备:多媒体课件
教学过程:
一、研究“两数相乘,其中一个因数变化,它们的积如何变化的规律”。
1.研究问题。
(1)两数相乘,其中一个因数扩大若干倍时,积怎么变化。
请学生完成下列两组计算,想一想发现了什么,并把发现写出来。
6×2=()8×125=()
6×20=()24×125=()
6×200=()72×125=()
(2)两数相乘,其中一个因数缩小若干倍时,积又怎么变化。
请学生完成下列两组计算,想一想又发现了什么?把发现也写出来。
80×4=()25×160=()
40×4=()25×40=()
20×4=()25×10=()
2.概括规律
(1)分层概括发现的规律。
①组织小组交流,让每一个学生先把在第⑴组算式中独立发现的规律说给自己的同伴听。学生也许是就题说题,如,左边一组算式,发现的规律是:20是2的10倍,120也是12的10倍;右边一组算式,发现的规律是:24是8的3倍,3000也是1000的3倍。
②组织全班交流。在小组交流基础上,引导学生根据第(1)组算式中积随因数变化的情况,将发现的上述规律用一句话概括出来:“两数相乘,当其中一个因数扩大若干倍时,积也扩大相同的倍数。”
③再引导学生讨论第(2)组算式中积随因数变化的情况,与第(1)组算式的讨论过程相同,最后引导学生概括:“两数相乘,当其中一个因数缩小若干倍时,积也缩小相同的倍数。”
(2)整体概括规律。
问:“谁能用一句话将发现的两条规律概括为一条?”
引导学生将发现的两条规律概括为一条,并用简明的话语表示出来:两数相乘,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
3.验证规律。
(1)先用积的'变化规律填空,再用笔算或计算器验算。
26×48=124817×12=204
26×24=()17×24=()
26×12=()17×36=()
(2)自己举例说明积的变化规律。每位学生各写两组算式,一组3个,展现积分别随一个因数扩大、缩小的变化情况。
4.应用规律。
完成例4下面的“做一做”和练习九第1~4题。
二、研究“两数相乘,两个因数都发生变化,它们的积变化的规律。”(这部分内容作为弹性要求,应视学生情况决定是否选用。)
(1)独立思考,发现规律。
①请学生完成下列计算,并在组内述说自己发现的规律。
18×24=105×45=
(18÷2)×(24×2)=(105×3)×(45÷3)=
(18×2)×(24÷2)=(105÷5)×(45×5)=
②组织全班交流,让学生用自己的话概括发现的规律,然后指导学生用数学语言进行概括:两数相乘,一个因数扩大(或缩小)若干倍,另一个因数缩小(或扩大)相同的倍数,它们的乘积不变。
(2)应用规律解决问题。
①在○中填上运算符号,在□中填上数。
24×75=180036×104=3744
(24○6)×(75×6)=1800(36×4)×(104○4)=3744
(24○3)×(75○□)=1800(36○□)×(104○□)=3744
②一个长方形的面积是256平方厘米,如果长缩小4倍,宽扩大4倍,这个长方形就变成了正方形,这个正方形的面积是多少?它的边长是多少?
积的变化规律教案10
教学目标:
1、在具体情景中,探索出积的变化规律。
2、通过让学生观察、分析、比较,培养学生的观察能力、分析能力和概括能力,培养学生的探究意识。
3、培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。
重难点:积的变化规律
教学准备:多媒体等
教学设计:
一、创设情境,激情导入
谈话:同学们,2008年奥运会帆船、帆板项目的主赛场设在青岛浮山湾。大家已经知道为了给运动员创设洁净的比赛环境,清淤船对海湾进行了淤泥处理,同样,为了让观众在松软的沙滩上观看比赛,筛沙车已经在沙滩上忙碌起来了。
二、自主尝试,独立探究
出示教科书情境:清理海水浴场
1、谈话:你能从图片中捕捉到那些文字信息?
2、谈话:根据文字信息你能提出什么数学问题?
(因为图片上只告诉了我们筛沙车的工作效率,因此部分学生可能觉得提问题无法下手,因此这里要尽量发挥优等生的带头作用。)
3、很多同学想知道筛沙车在某一段时间内的工作总量。老师也想提一个问题可以吗?筛沙车清洁沙滩的总面积与筛沙车的工作时间有什么关系?
谁想现在发表自己的看法?
4、你们的观点是否正确?筛沙车清洁沙滩的总面积与筛沙车的工作时间是否还存在着更有研究价值的规律呢?同学们想不想自己来深入地研究这个问题?
三、分组合作,讨论解疑
出示统计表:
工作效率清洁沙滩面积(平方米/分)80 80 80 80 ……
工作时间(分)15 30 60 120 ……
工作总量清洁沙滩总面积(平方米)
1、下面我们同桌合作,看那些同学又快又好得把统计表填完整。
2、谁想把你的计算过程和结果告诉大家?
在学生的中教师随机板书,并在课件上依次显示答案。
80×15=1200
80×30=2400
80×60=4800
80×120=9600
3、仔细观察我们的统计结果,看看从统计表和算式中你发现了什么?在小组内交流一下。
(随机深入小组引导正确的观察方法:从左往右看,工作时间和工作总量是怎样变化的?从右往左呢?能具体说说扩大和缩小多少吗?能结合乘法算式,运用乘法算式各部分的名称因数、因数、积来描述这种变化规律吗?)
4、学生汇报交流。
四、展示点评,提升
规律并板书:一个因数不变,另一个因数扩大(或缩小)到原数的多少倍,积也扩大(或缩小)到原数的'多少倍。
你能举出这样的例子吗?
五、清理过关,挑战自我
1、规律运用(自主练习第1题。)
谈话:同学们自己探究出了积的变化规律,现在我们先口算出每一组的第一个算式,看看根据这一规律能不能不用计算,迅速找到其他算式的答案。
学生独立完成,全班交流。并具体说说积的变化规律。
2、直接写得数(第2题。)
指生回答,并说明理由。
(要求每一道都用积的变化规律加以说明。670×350=这一题初步感知,第二课时将重点研究)
3、学以致用
课件再次出示本课信息窗情境图。
谈话:同学们,我们一起研究了这辆筛沙车的工作总量和工作时间的关系。运用这节课所学的知识,想一想5辆筛沙车每分钟清洁沙滩多少平方米?15辆呢?30辆呢?
积的变化规律教案11
教学目标
知识与技能
1.掌握积的变化规律。
2.能运用积的变化规律解决简单的实际问题。
过程与方法
1.经历积的变化规律的发现过程,初步获得探究和发现数学规律的基本方法和经验。
2.尝试用简洁的语言表达积的变化规律,初步渗透归纳的思想方法,培养学生探究、合作和交流的能力。
情感、态度与价值观
1.通过参与学习活动,获得成功的体验,增强学习的自信心。
2.培养探索能力、合作交流能力和归纳总结能力,获得成功的乐趣。
重点难点
重点:掌握积的变化规律。
难点:能灵活地运用积的`变化规律解决实际问题。
课前准备
教师准备PPT课件课堂活动卡
学生准备练习本
教学过程
板块一创设情境,引入新课
1.情境引入。
课件出示:
学校组织同学们为希望小学的小朋友捐款,四(1)班同学纷纷捐出自己的零用钱,为希望小学的小朋友购买一些学习用品。请你帮忙算一算,一盒水彩笔6元,买2盒需要多少钱?买20盒、200盒呢?
生:6×2=12(元)
6×20=120(元)
6×200=1200(元)
提问:观察、比较这三个算式,它们有什么特点?
预设
生1:其中一个因数相同,都是6。
生2:另一个因数分别是2、20、200,2扩大到原来的10倍变成20;2扩大到原来的100倍变成200。
生3:积也扩大了。
2.揭示课题。
师:三个算式之间的变化有一定的规律,这节课我们就一起来探究积的变化规律。(板书课题)
操作指导
出示例题时,不要以纯算式的方式呈现,而要结合身边的生活情境给算式赋予一定的生活意义,让学生感受到数学知识就在身边,激发学生的学习兴趣。
板块二合作交流,探究规律
活动1探究一个因数不变,另一个因数不断变大,积的变化规律
1.课件出示第一组算式:
6×2=12
6×20=120
6×200=1200
2.学生独立观察并思考:你发现了什么?
3.组内交流所观察到的变化。
4.集体汇报:
预设
生1:第1小题和第2小题相比较,因数6不变,2×10=20,12×10=120,第二个因数乘10,积也乘10。
生2:第2小题和第3小题相比较,因数6不变,20×10=200,120×10=1200,第二个因数乘10,积也乘10。
生3:第1小题和第3小题相比较,因数6不变,2×100=200,12×100=1200,第二个因数乘100,积也乘100。
5.师生共同总结规律。
小结:两个数相乘,一个因数不变,另一个因数乘几,积也乘几。
活动2探究一个因数不变,另一个因数不断变小,积的变化规律
1.完成“课堂活动卡”。(见本书160页)
2.总结规律:通过计算、观察、比较,发现这组算式都是一个因数不变,积随着另一个因数的变化而变化,即两个数相乘,一个因数不变,另一个因数除以几(0除外),积也除以几。
活动3举例验证,理解规律
1.刚刚我们发现了一个很重要的规律,这个规律适用于所有的乘法吗?以17×12=204为例,保持因数17不变,把因数12分别乘10、乘100,看积是不是也乘10、乘100;以26×48=1248为例,保持因数26不变,把因数48连续除以2,看一看积是否也连续除以2。
2.学生通过计算验证。
3.学生自由举例验证。
4.小结:当我们从一些实例中初步发现一个规律时,一定要举例验证,当这个规律在各种情况下都成立时,我们所发现的规律就是具有普遍性的数学规律,我们就能应用这样的规律解决相应的实际问题。
操作指导
在探究过程中要让学生经历观察算式、发现规律、验证规律的过程,使学生在探索中获得科学的探究方法,培养探究能力。
板块三应用规律,及时巩固
1.巩固基础。
根据8×50=400,直接写出下面各题的积。
16×50=24×50=32×50=64×50=
(学生独立完成,集体订正,说说积的变化过程)
2.练习提升。
下面这块长方形绿地的宽要增加到24米,长不变,扩大后的绿地面积是多少平方米?
(读题理解后,学生独立完成,集体订正)
板块四课堂总结,布置作业
1.总结收获。
师:通过这节课的学习,你有哪些收获?
(学生谈谈自己的收获,教师针对重点予以强调)
2.布置作业。
完成教材51页“做一做”1、2题。
板书设计
积的变化规律
例3 (1)6×2=12
6×20=120
6×200=1200
(2)20×4=80
10×4=40
5×4=20
两个数相乘,一个因数不变,另一个因数乘几或除以几(0除外),积也乘(或除以)几。
教学反思
本节课是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的,在以前计算的过程中就已经初步感悟过,但是没有总结成规律。在教学中,要让学生充分经历规律的发现过程,把发现的过程细化、广泛化,让每个学生都参与。在起初的观察里,思维灵活的学生尝试说出“两个数相乘,一个因数不变,另一个因数乘几,积也乘几”,接着引导学生理解“也”的含义,强化“一个因数不变,另一个因数和积的变化是相同的”。在教学中,使学生在引导下,通过对算式的观察,在小组里讨论自己的发现,自主地去探索规律、验证规律,并使用规律。本节课在愉快的环境中进行学习,鼓励学生积极发言,积极主动地探索新知,不断提高学生的分析推理能力,让学生体会成功的喜悦,激发学习的兴趣,增强自信心。在教学中,充分发挥教师的主导作用,抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积的变化规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。
积的变化规律教案12
教学内容
苏教版九年义务教育课程标准实验教科书四年级第八册P83~84页
教学目标
1、让学生利用计算器探索乘法中一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数的规律。掌握这一规律,初步应用这个规律解决简单的实际问题。
2、让学生经历“猜想、验证、归纳”这一探索数学规律的基本过程和方法,从而发展学生思维,培养科学的探究精神。
3、在探究的过程中获得成功的体验,增强学好数学的兴趣和自信心。
教学重点
一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数的规律。
教学难点
学生主动发现积的变化规律。
设计理念
学习数学不仅要学到知识,还要从经历知识的发现过程中获得研究新知识的数学思想方法,从而增强学生在生活中主动获取知识的能力。
教学步骤
教师活动
学生活动
一、导入新课
师:我们已经学过了用计算器计算。知道用计算器计算既快捷又准确。这节课我们借助计算器探索一条很重要的.数学规律,那就是“积的变化规律”。(板书课题)这条规律对于我们以后的学习十分有用,在探索过程中我们还能学到一些研究数学问题的方法,我想你们一定会对这节课的学习产生兴趣。
二、教学新课
1、探索积的变化规律
(1)、猜想
(2)、实验验证
出示:36×30=1080
师:在这个算式中,如果其中的一个因数不变,另一个因数乘一个数,得到的积会有什么变化?
指名口答,说说是怎么想的?
师:这应该看作是一种猜想,人类的许多重大发现都是从猜想开始的,可是这个猜想正确吗?怎样验证这个猜想是否正确呢?
师:你们打算举怎样的例子验证呢?
一个因数
另一个因数
积
积的变化
36
30
1080
--
36
30×___
1080×__
36
30×___
1080×__
36×___
30
1080×__
36×___
30
1080×__
师:老师把同学们说的意思画成这样的表格,我们可以用这样的一个表格来举例验证。
学生猜想、学生交流。
生交流
(3)、归纳概括
(4)、再次猜想、验证
(5)、得出结论
师: 先看一看表格,明白表格的意思吗?
再用计算器算一算、填一填,填的时候想一想:每一行里哪个因数没变,另一个因数怎样变化的,积又是怎样变化的?
师:把你填的和你的发现在小组里交流一下。
师:谁愿意说说你的发现是什么?符合前面的猜想吗?
师小结:在36×30=1080中,一个因数不变,另一个因数乘一个数,积也会乘这个数。
师:刚才大家发现的规律是不是具有普遍性呢?其它算式中也存在这样的结论吗?你打算怎么办呢?(当学生说出再举例验证后师提示学生可以画像例题中的表格,举两个例子,这样全班举的例子就多了。)
师:谁来说说你举的是怎样的例子?结论是什么?
师:有没有发现与例题中发现的规律不同的情况?说明在任何一个乘法算式中都存在这样的规律。
师总结规律:根据以上的探索,我们可以总结出积的变化规律了,你认为是什么?师板书完整的积的变化规律。
学生填表格
独立思考
学生交流
学生自己画表格举例探究,说说各自发现的规律。
学生交流汇报
三、巩固练习
1、用规律解释
2、用规律计算
3、拓展
(1)、口算24×30时可以怎么想?你能用刚才的规律解释吗?
(2)、笔算150×12可以怎样简便计算呢?
(3)、完成“想想做做”第1题
让学生先填表格第三行的空格。提问:这里的60你是怎样得到的?如果学生说是先计算4×3=12,再算5×12=60,可提问:还有别的办法得到吗?再完成其余的表格。
(2)、完成“想想做做”第2题
让学生各自在书上做题。提问:第一组题做题时你是怎样想的?(指名回答)
(3)、完成“想想做做”第3题。
提问:从第二次开始每次购买的数量与第一次相比发生了什么变化?总价呢?
两个数的积是20,如果一个因数扩大2倍,另一个因数扩大5倍,积将会怎么变化?
师:这应该是一种猜想,你打算怎用怎样的方法得出真正的结论呢?课后同学们用今天所学的方法去探索出完整的规律。
150×4×3
独立完成,集体评讲
默读题目,各自填表
小组交流,全班交流
生回答
四、全课总结
师:这节课你们用计算器探索出了一条什么规律?是用什么方法探索的?你对哪些过程最感兴趣?你还想知道什么?
学生交流
五、作业设计
完成“想想做做”第4题。
六、教后反思
积的变化规律教案13
教学内容:积的变化规律。
教学目标:通过教学,让学生在具体情景中,探索积的变化规律。
教学重点:让学生经历积的变化规律的探索过程。
教学难点:
理解在乘法里一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数的变化规律。
教学准备:小黑板
教学过程:
一、认识扩大、缩小
出示书中练习
37×10=400÷10=
37×100=400÷100=
师:观察37×10=370。我们还可以说“把37扩大10倍后是370。”那37×100我们还可以怎么说?(把37扩大100倍后是3700。)
师:说得不错,你还能举出类似的例子吗?(35×10=350,把35扩大10倍是350。38×100=3800,把38扩大100倍后是3800。)
师:你能不能举出不同的例子?(25×2=50,把25扩大2倍是50。25×4=100,把25扩大4倍是100。)
师:再看400÷10=40,试着说一下。(400÷10=40,把400缩小10倍是40。)
师:那400÷100呢?(400÷100=4,把400缩小100倍后是4。)
师:你还能举出类似的例子吗?(500÷10=50,把500缩小10倍是50,500÷100=5,把500缩小100倍后是5。)
师:能举出不同的例子吗?(120÷2=60,把120缩小2倍是60。120÷3=40,把120缩小3倍是40。)
二、探究新知:
1、出示情景图:
让学生观察情景图,说说图意,从中获得了那些信息?
师:你能提出什么数学问题?
生可能提出:筛沙车2分钟能清洁多少平方米沙滩?
筛沙车15分钟能清洁多少平方米沙滩?……
2、师:老师也想提一个问题好吗?
问题是:筛沙车的工作量是怎样变化的呢?
3、我们一起看一下筛沙车工作情况统计表。(出示下标)
师:请同学们将统计表补充完整。(生每人一张表)
工作效率
(平方米/分)
80
80
80
80
工作时间(分)
15
30
60
90
工作总量(平方米)
1
2400
4800
9600
(学生独立填写表格)
4、师:全班交流:(色泽学生的.回答,时填上结果,2400、4800、9600)
师:在刚才填表的过程中,你发现了什么?
生可能会发现:(1)我发现清洁沙滩的面积随着时间的变化而变化。
(2)我发现每分钟清洁沙滩的面积不变,工作时间越长清洁沙滩的总面积就越大。
(3)、我还发现,第二组与第一组相比,80不变,30是15的2倍,2400也就是1的2倍。
师:它的发现非常独特。表中其它各组的数据与第一组相比是否也存
在这样的关系呢?请同学们在小组中进行讨论。
全班交流:(也可能有的组能用简单的语言出规律:每分钟清洁沙滩的面积不变,工作时间扩大到原来的多少倍,清洁沙滩的总面积就扩大到原来的多少倍。)
师:如果用因数、因数、积分别表示这三个量,你能用一句话概括这个规律吗?先说给同位听听。
师:谁想来试试?
也许学生能说出:一个因数不变,另一个因数扩大到原来的多少倍,积就扩大到原来的多少倍。
二、巩固拓展:
1、第60页第1题先让学生自主计算,再让学生交流自己的算法。
2、第3题让学生联系“一个因数不变,另一个因数扩大到原来的多少倍,积就扩大到原来的多少倍”的积的变化规律进行解答。
积的变化规律教案14
[教学目标]
1、经历探索和发现积的变化规律的过程,会用简单的语言表达积的变化规律,能运用这一规律解决问题。
2、经历观察、比较、猜想、验证和归纳等一系列的数学活动,初步获得探索数学规律的一般方法和经验,发展归纳推理能力和运算能力。
3、在学习过程中培养探索精神和合作交往能力,并在探索活动中获得成功的体验,增强学习数学的兴趣和自信心。
[教学重点]
探索并掌握积的变化规律。
[教学难点]
掌握积的变化规律,并能正确熟练地运用这一规律进行计算。
[教具学具]
多媒体课件
[教学过程]
一、创设情境,提出问题
师谈话:同学们,开始新课之前,我们先来猜个谜语。怎样列式?其实这个问题的思考是有一定数学规律的,那么这其中的奥秘是什么呢?这就是这节我们要研究的——积的变化规律。看到这个课题,你想知道哪些问题?
同学们,请观察这一组算式,你发现了什么?今天,我们就来探究这组算式里面隐藏的秘密。(板书课题)
课件出示第二组算式:24×2= 12×2=6×2=
学生回答,教师板书。
师:请仔细观察这两组算式,你有什么发现?
8×2=16 24×2=48
8×20=160 12×2=24
8×200=16006×2=12
二、合作探索,学习新知
(一)自主探究
课件出示探究提示:
1、从上往下观察第一组算式:第一个因数有什么特点?第二个因数怎样变化?积有什么变化?你发现了什么规律?
2、从上往下观察第二组算式:第一个因数怎样变化?第二个因数有什么特点?积有什么变化?你发现了什么规律?
3、把你的发现和小组内的同学说一说,小组长做好记录。
根据提示,学生合作完成,教师巡视。
(二)交流
1、学生汇报探究提示第1题,总结变化规律,教师适时板书。
预设1:一个因数不变,另一个因数扩大到原来的多少倍,积也扩大到原来的多少倍。
预设2:第一组的第一个因数都是8,第二个因数从2到20到200,分别扩大到原来的10倍和100倍,积也扩大到原来的10倍和100倍。所以一个因数不变,另一个因数扩大几倍,积就扩大几倍。
2、学生汇报探究提示第2题,总结变化规律,教师适时板书。
预设1:一个因数不变,另一个因数除以几(0除外),积也要除以几。
预设2:第二个因数不变,第一个因数从24到12,缩小到原来的2倍,积也从48变到24,缩小到原来的2倍。
(三)提出猜想
师:同学们的发现非常有价值,你们能用一句话概括这些发现吗?
学生总结不完整时,可及时讨论补充。
课件出示结论:
两个数相乘,一个因数不变,:一个因数不变,另一个因数乘(或除以)几,得到的积也随着乘(或除以)几。
(六)质疑完善规律
师:你对这句话还有其他意见吗?还有特殊情况吗?
若生提不出,师可以提出“0”。
0是一个特殊情况,为什么?
0乘任何数都得0,0不能做除数。所以,这个规律还得加上一句话:“0除外”。
修正板书。
再次总结规律并齐读规律:一个因数不变,另一个因数乘(或除以)几(0除外),得到的积也随着乘(或除以)几。
师揭示:这个规律是数学上非常重要的一个规律,叫作积的变化规律。
三、巩固应用,内化新知
师:在大家的共同努力下探索出了积的变化规律,让我们来大显身手,解决以下问题吧。
1、判断:
(1)一个因数不变,另一个因数乘以10,积也乘以10。()
(2)一个因数扩大4倍,积一定扩大4倍。()
2、 5×14= 24×2=8×7=
50×14=24×4=80×70=
500×14= 24×8=800×700=
师:请同学们运用今天学习的规律,快速写出每组算式的得数,并在小组里交流一下,你是怎样算的。
全班交流时分别说一说每一组具体是怎样应用积的变化规律,尤其是第3组,明确两个因数都发生了变化,这是积的变化规律的拓展应用。
3、根据32×50=1600,直接写出下列各式的.商。
32×50=16008×50= 32×5=
师:谁能说一说,不计算,你是怎样写出这些算式的得数的?
预设:第一个算式中,第二个因数50没变,第一个因数除以4,所以积也除以4,得出400。
小结:看来在解决实际问题中,积的变化规律可以使一些问题变得简单。
5、思考乐园。
算一算,想一想,你能发现什么规律?
18×24=432(18×2)×(24÷2)=?(18÷2)×(24×2)=?
发现规律(学生说不出时可以讨论):
一个因数乘(或除以)几,另一个因数除以(或乘)相同的数,积不变。
小结:积的变化规律就像孙悟空一样,会变魔术,我们要拥有一双火眼金睛,结合一些具体的算式,深入地理解和学习这个规律。这个规律应用得非常广泛,它可以使我们的计算变得有趣而简单。
四、回顾反思,总结提升
师:一节课马上就要结束了,谈谈这节课你有哪些收获?
预设:我知道了积的变化规律……
师:在探索积的变化规律时我们经历了怎样的过程?
预设:观察—猜想—验证—得出结论
结束语:其实,数学就是一门研究规律的科学,生活中,处处有数学,处处有规律,我们一定要带着会发现的眼睛去探索数学的奥妙,生活的奥妙!
积的变化规律教案15
教学内容:
探索当一个因数不变时,另一个因数与积的变化规律情况。(课文第58页的例4,“做一做”及相应的练习)
教学目标:
1、 学生通过观察,能够发现并总结积的变化规律。
2、 使学生经历变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
3、 尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
4、 初步获得探索规律的一般方法和经验,发展学生的推理能力。
5、培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
教学重点:
引导学生自己发现并总结积的变化规律。
教学难点:
引导学生自己发现并总结积的变化规律。
教具准备:
课件、计算器。
教学过程:
一、研究“两数相乘,其中一个因数变化,它们的积如何变化的'规律。
1、研究问题,概括规律。
(1)两数相乘,一个因数不变,另一个因数乘几时,积怎么变化。
课件一:为响应学校“节省零花钱,牵手好朋友”的号召,实验小学与希望小学开展了“手拉手,献爱心”的活动,学生们捐出了自己的零花钱,准备为希望小学的小朋友们买一些图书和学习用品。请你们帮忙算一算,一个美术颜料6元,买2盒要花多少钱?20盒呢?200盒呢?
学生完成计算,想一想发现了什么?你能根据每组算式的特点接下去再写两道算式吗?试试看
6×2=
6×20=
6×200=
组织小组交流。
教师出示课件二进行集体交流
教师出示课件三:根据8×50=400,直接写出积。
16×50=
32×50=
学生自做后教师演示
归纳规律:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。
(2)两数相乘,一个因数不变,另一个因数除以几时,积有怎么变化?学生完成下列计算,想一想有发现了什么?
教师出示课件四,学生小组合作计算
80×4=
40×4=
20×4=
引导学生概括:两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。
(3)整体概括规律
问:谁能用一句话将发现的两条规律概括为一条?
引导学生总结规律。
教师出示课件五
两数相乘,一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。
2、验证规律
先用积的变化规律填空,再用笔算或计算器验算。
教师出示课件六:
12×8= 40×21=
12×16= 40×7=
12×32= 20×21=
12×64=
自己举例说明积的变化规律
3、应用规律
完成例4下面的做一做和练习9的1-——4题。
学生完成后,教师出示课件7—10进行集体订正
二、研究“两数相乘,两个因数都发生变化,积变化的规律“。
1、独立思考,发现规律
完成下列计算,说规律。
18×24=432
(18×2)×(24÷2)= (18÷2)×(24×2)=
2、组织全班交流,概括规律:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的乘积不变。
三、巩固新知
教师出示课件11根据12345679×9=111111111,直接写出下面各题的积。
集体订正
四、总结:
这节课有什么收获?
五、作业:
第59页4、5。
【积的变化规律教案】相关文章:
四年级上册《积的变化规律》教案03-03
《积的近似数》教案04-20
积的近似值教案03-23
小数点向右移动引起小数大小变化的规律教案03-22
《找规律》教案09-19
找规律教案03-29
找规律教案02-19
关于《找规律》教案03-04
大班教案《找规律》11-01