范文资料网>反思报告>教案大全>《长方体的体积教案

长方体的体积教案

时间:2024-04-03 08:29:50 教案大全 我要投稿
  • 相关推荐

长方体的体积教案

  作为一位兢兢业业的人民教师,时常需要用到教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那要怎么写好教案呢?下面是小编为大家整理的长方体的体积教案,仅供参考,欢迎大家阅读。

长方体的体积教案

长方体的体积教案1

  教学目标:

  1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。

  2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。

  3、运用体积计算公式解决一些简单的实际问题。

  4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。

  教学准备:

  教具准备:

  教学课件、一个长方体拼制模型(长4厘米、宽3厘米、高2厘米)。

  学具准备:

  每组24个边长1立方厘米的小木块。

  教学过程:

  一、复习引入

  1、我们已学习了体积和体积单位,谁能说说1立方厘米是怎么规定的?

  课件出示1立方厘米的正方体组成的长方体,分别让学生说说它们的体积是多少。

  2、出示

  3厘米

  2厘米

  4厘米

  (1)、学生想办法求它的体积。

  预设:学生可能会直接猜测出一个数量,也可能会说出切割成1cm3体积单位再数一数的方法。也有可能学生直接说出量出长宽高然后相乘。学生出现第二种情况,教师可以呈现切好的图形,让大家数出小正方体的个数,并说出数的方法。学生如果出现第三种情况,教师可以追问:“这样求究竟对不对,我们一起来研究一下。”

  (2)、下面就让我们运用1立方厘米的体积单位来研究长方体、正方体的体积计算方法。(出示课题)

  二、长方体体积计算公式推导与理解

  (1)、探究长方体的体积

  1、布置活动任务。

  教师出示24个1立方厘米的体积单位。

  师:我们每个组都准备24个1立方厘米的小正方体木块,请你任意摆放成一个长4厘米、宽3厘米、高2厘米的长方体。

  小组活动,活动的要求是;

  ①看一看可以摆出的长方体有几层?每层几行?一行多少个?

  ②说一说,怎样计算长方体所含有的小木块数?

  ③把小组内摆长方体的相关数据填入表内。

  每行个数行数层数1立方厘米正方体的数量长方体的体积

  2、学生活动。

  3、反馈方法,依次呈现表格。

  师:同学们摆好了吗?说说你是怎么摆的?

  预设:学生会根据摆的图形把层数、每层行数、每行个数、小木块的数量、长方体的体积说出来,这时教师要引导学生说出数小木块的方法。

  师:老师也搭了一个,这个长方体的体积是多少呢?怎么想的?

  课件出示:长4厘米、宽3厘米、高2厘米长方体

  思考:进一步清晰数方块的方法。

  教师将学生汇报的各种摆法的数据逐一填入表中。

  师:是的,正像刚才同学们说的一样,只要把每行摆的块数乘摆的行数,就是每一层摆的块数,再乘层数,就是小木块的总块数,有几块,体积就是几立方厘米。

  4、数方块求体积。

  课件出示:

  数一数,下列长方体的体积是多少?

  5、归纳体积计算方法。

  师:观察一下,刚才这些摆成的长方体所含有的小木块的数量与长、宽、高究竟有怎样的关系呢?

  思考:通过探讨,让学生发现,其实每行摆的块数相当于长方体的长,摆的行数相当于长方体的宽,叠的层数相当于长方体的高,所以长方体的体积就是长×宽×高。

  师小结:(点击课件出示下列图示)每行个数就是长方体的长,排的行数就是长方体的宽,叠的层数就是长方体的高。所以,长方体的体积就是长×宽×高。

  6、得出长方体、正方体体积字母公式。

  师:通过刚才的讨论,我们发现,长方体的体积=长×宽×高。如果一个长方体的长、宽、高分别是a、b、h,那么它的体积是多少呢?(根据回答板书)

  师:是的.,如果用字母v表示体积,那么v=abh就是求长方体体积的字母公式。

  (2)、利用知识迁移探究正方体的体积。

  师:那么正方体的体积又是怎样计算的呢?

  思考:引导学生说出,正方体其实是特殊的长方体,只不过长、宽、高都相等,长方体的体积=长×宽×高,所以正方体的体积计算方法是棱长×棱长×棱长。

  师:(边板书边说):如果用字母v表示正方体的体积,用a表示它的棱长,那么正方体的体积公式是怎样的呢?

  师根据学生回答出示:V= a·a·a

  师:a·a·a也可以写做a3,V= a3读作“a的立方”,表示3个a相乘。

  (3)、沟通长方体、正方体的体积公式

  1、利用公式计算体积。

  计算下面图形的的体积。

  课件出示长方体立体图(长8cm,宽3cm,高4cm)

  正方体图(棱长5dm)

  2、沟通长方体、正方体体积公式:体积=底面积×高。

  师:我们已经会用公式求长方体、正方体的体积,如果告诉你长方体、正方体的底面积和高,你能计算它们的体积吗?

  出示长方体立体图(在图中标注:底面积为15平方厘米,高4厘米)

  思考:让学生感到用已经掌握用公式计算体积时,直接出示已知底面积

  和高求长方体的体积。通过设置悬念,尝试解决、交流讨论,沟通长、正方体两者的公式。

  师:同学们听明白了吗?其实,长方体的体积等于底面积×高(课件出示公式)

  师:如果这是一个正方体呢?

  课件出示正方体图(在图中标注:底面积为16平方厘米,高4厘米)

  师:大家一定明白了长方体、正方体的体积有一个共同的计算方法就是体积=底面积×高。如果用s表示底面积,h表示高,字母公式就是v=sh。

  出示:体积=底面积×高

  V= s h

  三、巩固练习

  1、基本练习

  (1)一个长方体的长是4厘米,宽是3厘米,高是2厘米,它的体积是24立方厘米。 ( )

  (2)一个正方体的棱长是2分米,它的体积是多少立方分米?

  列式为23=2×3=6(立方分米) ( )

  (3)棱长6厘米的正方体,表面积和体积一样大。 ( )

  2、实际应用

  师:(出示课件)想给一块体积为20xx立方厘米的长方体水晶装饰品,配一个包装盒,图中的包装盒能装吗?为什么?

  思考:通过讨论,让学生感悟到,实际生活中的长方体,不是直接标注体积,而是标注“长×宽×高”,其实是有意义的。

  四、回顾小结

  师:回顾一下,今天的学习大家有什么收获?

长方体的体积教案2

  教学目标

  1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。

  2、能根据有关体积、容积的计算方法,解答实际问题。

  教学重点、难点

  重难点:

  能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。

  教学过程

  一、体积、容积单位之间的化聚、转换练习。

  458立方厘米=()立方分米

  20.6立方分米=()立方米

  7060毫升=()升=()立方分米

  130毫升=()立方厘米=()立方分米

  800升=()立方分米=()立方米

  0.02立方米=()立方分米=()升

  二、解决实际问题的应用练习。

  1、一个长方体的汽油桶,底面积是18平方分米,高是5分米。如果1升汽油重0.74千克,这个油桶可以装汽油多少千克?

  2、一节货车车厢,从里面量长13米,宽2.7米,装的.煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)

  3、在一只底面是边长60厘米的正方形,高是80厘米的长方体纸箱内,装棱长是2分米的立方体纸盒。这只纸箱最多可装这样的纸盒多少个?

  4、一个长方体蓄水池,长9.6米,宽4.2米,深2.5米。这个蓄水池占地多少平方米?它最多可蓄水多少立方米?

  5、一个长方体水箱,从里面量长80厘米,宽40厘米,高60厘米,箱内水面离箱口10厘米。箱内共有水多少升?如果把这些水倒入另一个底面边长40厘米的长方体水箱内,这时水高多少厘米?

  (1)学生独立完成

  (2)说说解题思路

  第一题:18×5=90(立方分米)90(立方分米)=90升

  90×0.74=66.6(千克)

  第二题:13×2.7×1.2=42.12(立方米)

  42.12×1.3≈55(吨)

  第三题:60×60×80=288000(立方厘米)

  2分米=20厘米

  20×20×20=8000(立方厘米)288000÷8000=36(个)

  第四题:9.6×4.2=40.32(平方米)

  9.6×4.2×2.5=100.8(立方米)

  第五题:80×40×(60-10)=160000(立方厘米)

  160000(立方厘米)=160升

  160000÷(40×40)=100(厘米)

  (3)重点分析第5题

  水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的长方体水箱,求得水的高度。

  三、思考题

  用一张长50厘米,宽40厘米的长方形铁皮,做一个深10厘米的无盖长方体铁皮盒。要使这个长芳褪铁皮盒的容积最大,可以怎样做?

  1、学生独立研究

  2、小组讨论

  3、教师评议

长方体的体积教案3

  教学目的:

  1.使学生经历长方体、正方体体积计算公式的推导过程,在具体情境中发现规律,理解和掌握长方体、正方体的体积计算公式.并能正确运用公式进行计算.

  2.通过推导公式的实践活动,发展学生的空间想象,培养学生归纳、类比、进行逻辑推理的能力.

  3.使学生初步会运用长方体、正方体体积计算的知识,解决有关的简单实际问题.

  教具、学具准备

  1.教师准备:多媒体课件.(复习题示图,推导长方体体积公式的示意图)

  2.学生准备:①每人准备1立方厘米的小方块若干.②每个学习组准备一个长8厘米、宽5厘米、高3厘米的长方体模型,一个棱长8厘米的正方体模型.

  教学过程:

  一、复习引入

  1.下面图中各是什么计量单位?它们之间有联系吗?

  问:除了立方厘米,还有那些体积单位?

  2.问:什么是物体的体积?

  (物体所占空间的`大小叫做它的体积)

  3.下面的图形都是用棱长1厘米的小正方体拼成的,它们的体积各是多少?你是怎样数出来的?

  问:需要一个一个的数吗?有没有简单方便的数法?

  (只要数出每层长有几个,宽有几个,算出一层几个,再数有几层。)

  4.完成练一练1、2。

  二、学习新课

  1.探究长方体体积计算方法,推导公式.

  (1)小组合作,用棱长1厘米的小正方体拼成长方体,把每次拼的情况记录在下面的表里.

  用小正方体个数

  长方体的体积

  (立方厘米)

  长方体的棱长(厘米)

  长

  宽

  高

  (2)汇报,师板书填表。

  (3)讨论:通过拼摆,你发现了什么?

  长方体所含体积单位的数量与它的长、宽、高有什么关系?

  (4)尝试:根据刚才的发现,试一试算出发给各组的长方体的体积.想一想,要先做什么?

  各组试算后,汇报计算方法:

  先量长方体的长、宽、高.(长8厘米、宽5厘米、高3厘米)

  8×5×3=120(立方厘米)

  (5)归纳:通过上面的实验,你得出什么结论?你能归纳出长方体的体积计算公式吗?

  教师根据学生发言归纳并板书:

  长方体所含体积单位的个数等于长、宽、高的乘积.

  长方体的体积=长×宽×高

  V=abh

  2.教学例1

  (1)出示

  (2)生试做

  (3)集体订正

  3.练习

  21页第4题

  4.教学例2

  出示,生试做

  总结公式

  5.练习

  22页,第6题

  三、巩固练习

  补充练习

  1.求下列各长方体的体积

  (1)长10厘米,宽8厘米,高3厘米

  (2)长2.5米,宽1.2米,高0.4米

  2.求下列各正方体的体积

  (1)棱长8厘米

  (2)棱长0.5分米

  3.一块长方体石料长3分米,宽2分米,高5分米。已知每立方米石料重2.7千克,这块石料重多少千克?

  4.一个长方体形状的食品盒,长30厘米,宽20厘米,高18厘米。做这个食品盒至少需要硬纸板多少平方厘米?这个食品盒的体积是多少立方厘米?

  四、总结

  今天学习了什么?

  五、课堂作业

  21页第5题,22页第7题。

  板书设计:

  长方体、正方体的体积计算

  长方体正方体

  长宽高长、宽、高相等

  8厘米5厘米3厘米(棱长)

  8×5×3=120

  长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长

  V=abh V=a3

长方体的体积教案4

  教学目标:

  1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

  2、培养学生空间和空间想象能力。

  教学重点:

  长、正方体体积公式的推导。

  教学难点:

  运用公式计算。

  教学用具:

  1立方厘米学具。

  教学过程:

  一、复习

  1、什么叫物体的体积?

  2、常用的体积单位有哪些?

  3、什么是l立方厘米、l立方分米、l立方米?

  二、导入新课

  1、导入

  我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。

  要知道老师手中的这个长方体和正方体的体积?你有什么办法? (用将它切成1立方厘米(1立方分米)的.小正方体后数一数的方法。)

  说明:用拼或切的方法看它有多少个体积单位。但是在实际生活中,有许多物体是切不开或不能切的,如:冰箱、电视机等,怎样计算它的体积呢?他们的体积会和什么有关系呢?这节课我们就来研究长方体和正方体的体积。(板书课题)

  2、新课

  (1)请同学们任意取出几个1立方厘米的正方体在小组里合作摆出一个长方体,边摆边想:你们是怎么摆的?你们摆出的长方体体积是多少?

  (2)板书学生的:(设想举例)

  体积每排个数排数 排数 层数

  4 4 1 l

  8 4 2 1

  24 4 3 2

  (3)观察:每排个数、排数、层数与体积有什么关系?

  板书:体积=每排个数×排数×排数×层数

  每排个数、排数、层数相当于长方体的什么?

  因为每一个小正方体的棱长是l厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。

  (4)如何计算长方体的体积?

  板书:长方体体积=长×宽×高

  字母公式:V=a b h

  三、练习

  1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?

  2、导出正方体体积公式

  根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

  正方体体积=棱长×棱长×棱长 V=a a a=a3读作a的立方

  3、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?

  4、看表计算

  正方体 棱长 体积

  0.9m

  2.4dm

  1.6CM

  长 宽 高 体 积

  12m 5m 4m

  1.5dm 0.8dm 0.5dm

  8 cm 4.5 m 3cm

  请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?

  长方体体积=长×宽×高 提问:长方体的长、宽、高不同,体积相同这是为什么?

  四、小结

  这节课学会了什么?

  怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。

长方体的体积教案5

  目标

  在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。

  教学及训练

  重点

  理解底面积。

  仪器

  教具

  投影仪

  教学内容和过程

  教学札记

  一、创设情境

  1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)

  2、填空。

  (1)长、正方体的体积大小是由确定的。

  (2)长方体的体积=。

  (3)正方体的体积=。

  二、探索研究

  1.观察。

  (1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)

  结论:长方体的体积=底面积×高

  正方体的体积=底面积×棱长

  2.思考。

  (1)这条棱长实际上是特殊的什么?

  (2)正方体的体积公式又可以写成什么?

  结论:长方体(或正方体)的体积=底面积×高,用字母表示:V=sh

  三、巩固练习

  1.做第20页的'“练一练”。学生独立做后,学生讲评。

  2.补充:一段长方体方铜,长1.2米,横截面是一个边长1厘米的正方形。这段方铜的体积是多少立方厘米?

  首先帮助学生理解:什么是横截面?再让学生做后学生讲评。

  3.做练习三的第9、10题,学生独立解答,老师个别辅导,集体订正。

  四、课堂

  学生今天学习的内容

  五、课后练习

  做练习三的第11、12、13题。

  长方体和正方体统一的体积公式

  长方体的体积=底面积×高

  正方体的体积=底面积×棱长

  长(正)方体的体积=底面积×高,

  用字母表示:V=sh

长方体的体积教案6

  教学目标

  (一)理解并掌握长方体和正方体体积的计算方法。

  (二)能运用长、正方体的体积计算解决一些简单的实际问题。

  (三)培养学生归纳推理,抽象概括的能力。

  教学重点和难点

  长方体和正方体体积的计算方法,以及其体积公式的推导。

  教学用具

  教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

  学具:1厘米3的立方体20块。

  教学过程设计

  (一)复习准备

  1.提问:什么是体积?

  2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。

  教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由 4个 1厘米3的正方体拼成,所以它的体积是 4厘米3。)

  教师:如果再拼上一个1厘米3的正方体呢?

  教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

  (二)学习新课

  1.长方体的体积。

  (1)教师:请同学取出12个1厘米3的小正方体。问:它们的体积一共是多少?

  教师:请同学们四人为一组,用这12个小正方体来拼摆长方体,并分别记下摆出的长方体的长、宽、高。

  同学分小组活动,教师巡视。然后分别请摆成不同形状的长方体的同学回答,教师板书:

  教师:这些长方体有什么共同点?不同点?

  问:为什么这些长方体的长、宽、高不同,即形状不相同而体积相同呢?

  (因为它们都含有同样多的体积单位——12个1厘米3。)

  教师:请观察自己摆出的长方体,长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  学生讨论后,师生共同归纳:

  表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1厘米3的正方体。

  同样的道理,表示宽的'数还表示摆了几排,表示高的数还表示有几层。

  (2)请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积。

  学生说出摆法和体积后。请看电脑动画图像:

  一排摆出4个1厘米3的正方体→一共摆了三排→摆两层。

  教师板书:

  同上要求摆出长3厘米,宽3厘米,高2厘米的长方体。

  学生操作,看电脑动画图像。教师板书:

  3(厘米) 3(厘米) 2(厘米) 18(厘米3)

  教师:想一想,如果要摆一个长5厘米,宽4厘米,高3厘米的长方体,该如何摆?体积是多少?

  学生口答后,老师用电脑图演示。然后板书:

  5(厘米) 4(厘米) 3(厘米) 60(厘米3)

  教师:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长方体的体积有没有关系?是什么关系?

  学生讨论后回答:长方体的体积正好等于它的长、宽、高的乘积。

  教师板书:长方体的体积=长×宽×高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书:V=abh。

  出示投影图:

  (3)例1(投影片)一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?学生口答,教师板书:7×4×3=84(厘米3)。

  答:它的体积是84厘米3。

  练习:(投影出题,学生口答。)

  一块水泥板,长5分米,宽3分米,厚2分米,这块水泥板的体积是多少分米3?(5×3×2=30(分米3)。)

  2.正方体体积。(1)请学生看电脑动画录像:

  长4厘米,宽3厘米,高3厘米的长方体,长缩短一厘米(图上从右边去掉一排)。教师:此时的长,宽,高各是多少?变成了什么图形?

  问:这个正方体的体积可以求出来吗?

  学生口答,老师板书: 3×3×3=27(厘米3)。

  投影出一个正方体图。(可以用翻页变换它的棱长。)

  问:①棱长为2分米,求它的体积?②棱长为4厘米,求它的体积?

  学生口答,老师板书: 2×2×2=8(分米3),4×4×4=64(厘米3)。教师:我们已经会计算具体的正方体的体积了,能说出正方体体积计算的方法吗?学生口答,老师板书:正方体体积=棱长×棱长×棱长。

  用V表体积,a表示棱长,公式可写成:V=a·a·a或者V=a3。

  (2)例2(投影)光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  学生口答,老师板书:53=5×5×5=125(分米3)。

  答:体积是125分米3。

  做一做:课本34页1,2题,请4位同学用投影片写,其余同学写本上。集体订正。(3)说一说长方体和正方体的体积计算方法和字母公式。

  教师:请讨论长方体和正方体的体积计算方法相同还是不相同。

  学生讨论后归纳:因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中b,h都变为a。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

  (三)巩固反馈

  1.口答填空。课本P35练习七:2,3。

  2.口答填表:

  3.判断正误并说明理由。

  ①0.23= 0.2×0.2×0.2; ( )

  ②5x2=10x; ( )

  ③一个正方体棱长4分米,它的体积是:43=12(分米3); ( )

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米3。( )

  (四)课堂总结及课后作业

  1.长方体的体积计算方法及公式。

  正方体的体积计算方法及公式。

  2.作业:课本P35练习七:4,6。

长方体的体积教案7

  教学目的:

  通过观察和比较,使学生正确理解体积的意义,认识常用的体积单位立方米、立方分米、立方厘米,培养学生的空间观念。

  教具、学具准备:

  1、教师准备:

  ①盛有红色水的大玻璃杯一个,用绳子捆着的石头一块,沙土一堆;

  ②长方体、立方体积木各一块;

  ③体积是1立方分米、1立方厘米的正方体木块各12块;

  ④用木条制成的1立方米的棱架一个;

  ⑤投影仪。

  2、学生准备:12个1立方厘米的小正方体(如白色的奎逊耐木块)。

  教学过程:

  一、导入新课

  教师:我们已经认识了长方体和正方体,掌握了长方体和正方体表面积的计算方法。下面我们来学习长方体、正方体的体积和体积单位。(板书:体积和体积单位)

  二、新课

  1、教学体积概念。

  教师:我们已经知道什么叫周长,什么叫面积,那么什么叫体积呢?让我们先来做一个实验,大家要注意观察看谁观察得仔细,能发现新知识。

  教师拿出盛有半杯红色水的玻璃杯和用绳子捆着的石头一块,用手提绳子将石头浸人玻璃杯的水中。

  教师:注意观察放入石头后水面有什么变化。

  教师将石头提起,再放入水中一次。然后让学生说一说观察的结果。

  学生:放入石头,水面上升。

  教师:把石头放入水里后,水面为什么会上升呢?

  请几名学生回答后,教师指出:石头占有一定的空间,放入水里后,使得石头和水所占的空间变大了,所以水面就上升了。

  教师:我们再做一个实验,大家还要仔细观察,动脑筋思考。

  教师把玻璃杯里的水倒掉,装入满满一杯沙子。然后把沙子倒出,放入一块长方体积木,请一位同学来再将沙子装入玻璃杯,然后让学生说出实验的结果。

  学生:沙子多出来了。

  教师:大家想一想,为什么沙子会多出来呢?

  让几名学生说一说自己的想法。在学生发言的基础上教师概括。

  教师:因为这块积木占有一定的空间,积木放到杯子里就占据了杯子的一部分空间,所以沙土就装不下了。

  让学生理解了上述的话以后,教师再进一步讲解。

  教师:所有的物体都占有一定的空间,比如教室占据了一个较大的空间,课桌、讲台又占据了教室里的一部分空间;课本、文具盒占据了书包里的一部分空间;等等。

  教师用投影仪出示教科书第11页中间的图:一个墨水盒,一个电冰箱和一只水果盒。

  教师:观察这幅图,哪一个物体所占的空间大一些?哪一个物体所占的空间小一些?

  指名让学生回答后,教师指出:物体所占空间的大小叫做物体的体积。那么,这幅图里的三个物体,哪个物体的体积最大?哪个物体的体积最小?

  让学生回答后,教师进一步要求:你能说出身边的哪些物体的体积比较大,哪些物体的体积比较小吗?让几名学生说一说。

  然后教师总结:物体所占的空间越大,它的体积就越大。这两堆木块的每一块都是同样大的,因此哪一堆的木块多,哪一堆占的空间就大,体积也就大。因此我们说,物体所占空间的大小叫做物体的体积。

  2、教学体积的单位。

  教师:我们知道了什么叫做物体的体积,那么怎样计量体积呢?用什么计量单位呢?我们学习过计量长度要用长度单位,计量面积要用面积单位。谁能说一说常用的长度单位和面积单位各有哪些?

  指名让学生回答,教师把长度单位和面积单位分别板书在黑板的左侧,并分别标上“长度单位”、“面积单位”。

  教师:同样,计量体积时要用体积单位。常用的体积单位有:立方厘米、立方分米、立方米。

  教师一边叙述,一边把体积单位板书在黑板的右侧,与长度单位、面积单位对应处,并标上“体积单位”。

  教师:我们来看看这些体积单位的'大小是怎样的。

  教师让学生每人拿出一个1立方厘米的小正方体,用直尺量出它的棱长是多少。教师也举起一个1立方厘米的正方体。

  教师:大家手里拿着的都是棱长1厘米的正方体,它的体积是1立方厘米。我们的手指头尖的体积大约是1立方厘米。

  教师要求学生用自己手指比试一下1立方厘米的实际大小。

  接着,教师出示棱长是1分米的正方体教具。

  教师:这是棱长是1分米的正方体,谁知道它的体积是多少?(1立方分米。)棱长是1分米的正方体,它的体积是1立方分米。粉笔盒的体积接近1立方分米。(用1立方分米教具与粉笔盒比较。)

  教师让学生用手势比试1立方分米的实际大小。(用两手空抱拳,取1分米高度,其体积大约是1立方分米。)

  教师拿出1立方米的棱架教具。

  教师:这是棱长1米的正方体,它的体积是多少?(1立方米。)对!棱长是1米的正方体,它的体积是1立方米。

  教师把棱架放到教室的一角,让学生看一看1立方米的体积有多大。

  教师:1立方米的空间大约可以容纳8名小学生。

  教师请8名学生钻进架子里,半蹲着,充满棱架。让全班同学体会1立方米的实际大小。

  教师小结:常用的体积单位有立方厘米、立方分米和立方米。立方米是较大的体积单位,立方厘米是较小的体积单位。

  教师:我们知道了常用的体积单位。计量一个物体的体积,就要看这个物体含有多少个体积单位。

  教师用投影仪出示右图:

  教师:右图中的长方体是由4个1立方厘米的小正方体拼成的,它的体积是多少?

  指名让学生回答。

  教师用投影仪出示教科书第31页“做一做”第2题的图。

  教师:这两个图形都是用棱长1厘米的小正方体拼成的。谁能说出它们的体积各是多少?

  让学生分别说出每个图形的体积是多少。

  三、巩固练习

  1.做练一练的第5题。

  让学生拿出24个棱长是1厘米的小正方体,摆长方体。摆完以后,请几名摆的长方体形状不同的同学说一说,自己所摆出的长方体的长、宽、高各是多少。然后教师提问。

  教师:他们摆的长方体的长、宽、高一样吗?他们摆的长方体的体积是相同的吗?

  (启发学生发现大家所摆出的长方体的形状不同,长、宽、高也就不同,但是体积都是相同的。)

  教师再提问:这是为什么?(因为这些不同形状的长方体所含有的体积单位是一样的。)

  四、小结(略)

  五、作业

长方体的体积教案8

  教学目标

  1、结合具体情况和实践活动,操索并掌握长方体,正方体体积计算方法,能正确计算长方体,正方体的体积;

  2、在观察、操作、操索的过程中,提高动手操作能力,进一步发展空间观念。

  教学重点

  掌握长方体,正方体体积的计算方法。

  教学难点

  正确计算长方体,正方体的体积。

  教具准备

  长方体,正方体模型。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、导入:

  1、出示长方体

  提问:长方形的面积和长和宽有关,长方体的体积可能与什么有关?

  二、做一做

  1、用相同的小正方体摆出4个不同的长方体,记录它们的长、宽、高并完成下表()

  引发学生进行思考,

  学生通过观察、分析,发现长方体体积与长、宽高的关系。

  2、学生进行思考。

  ○1学生体会“长、宽相高的时候,越高体积会怎样?”

  ○2体会“长、高相等时候,越宽,体积会怎样?”

  ○3体会“宽、高相等的时候,越长,体积会有什么变化?”

  通过实物,引出深题,激发学生操索的兴趣。提出问题引发学生的思考。

  让学生通过几次活动,比较,感知长方体二体积与它的长、宽、高有关系,为进一步自己操索长方体体积的计算,打下良好的基础

  教师指导与教学过程

  学生学习活动过程

  设计意图

  2、说一说:

  学生反馈自己的.数据,教师带学生逐一对数据进行分析

  三、说一说

  1、引导学生分板数据

  2、得出长方体体积公式

  长方体的体积=长×宽×高

  V=a×b×h

  四、算一算

  1、测量自己的铅笔盒,找出长、宽、高

  2、计算铅盒的体积

  引导学生观察数据,观察长方体的体积,与它的长、宽、高有什么关系?

  3、集体进行反馈,说一说

  自己的计算方法。

  通过让学生对记下的有关数据,通过观察,分析,发现长方体体积与长、宽、高的关系,归纳得出长方体体积的计算方法。

  板书设计:

  长方体体积

  长方体体积=长×宽×高

  V=a·b·h

  底面积×高

  正方体体积=棱长×棱长×棱长

  V=s·h

长方体的体积教案9

  教学目标

  1、通过具体的实验活动,了解体积和容积的实际含义,初步理解体积和容积的概念。

  2、在操作交流中,感受物体体积的大小,发展空间观念。

  教学重点

  了解体积和容积的实际含义,理解体积和容积的概念。

  教学难点

  了解体积和容积的实际含义,理解体积和容积的概念。

  教具准备

  土豆(大小各一个)量杯

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、创设情境

  1、师:(手中拿着两个铅笔盒),这两个铅笔盒哪个比较大,哪个比较小?

  2、谁能说说生活中哪些物体比较大?

  哪些物体比较小呢?

  3、生活中很多物体都是有大小的。

  指名学生上来指出铅笔盒的大小

  生1:讲台比较大,课桌椅比较小

  生2:我的橡皮大,他的橡皮小

  生3:老师比家的小房间大。

  通过创设情境引入新知,激发学生的学习兴趣,通过“说一说”的活动让学生感受物体有大有小,容器放的物体有多有少。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  二、实验

  1、“老师手中有两个学生进行猜测土豆,同学们看哪有的学生认为1号土豆,个大,哪个小?为了方便大家比较,我给土豆编个号码:1号、2号”。

  2、出示

  两个有刻度的量杯,里面盛的同样多的小。

  将1号土豆放入水中,发生了什么变化?

  学生进行猜测土豆,同学们看哪有的'学生认为1号土豆,个大,哪个小?为了方便大家比较,我给土豆编个号码:1号、2号

  学生进行操作用两个有刻度的量杯,里面盛的同样多的水。

  将1号土豆放入水中,合作的同学进行记录

  2号同样进行。

  采用直观实验的方法,引导学生解决两土豆的“大小”问题,引导学生边观察边思考,让学生在讨论中逐步明白体积占空间的大小不一样。

  使学生获得充分的感性认识,随后揭示体积概念。

  板书设计:

长方体的体积教案10

  教学内容

  教科书第51--52页的例1、例2,课堂活动及练习十二的1--3题。

  教学目标

  1.知识与技能:引导学生通过实验发现并探究出长方体和正方体体积的计算公式,理解长方体和正方体体积的计算方法。

  2.过程与方法:会运用公式正确计算长方体和正方体的体积。

  3.情感、态度与价值观:渗透"猜测--实验探究--验证"的学习方法,发挥学生的主体性,为今后学习其他立体图形体积的计算打下基础。

  教具学具

  学生准备12个体积是1cm3的小正方体木块。教师准备多媒体课件,及表格一和表格二。

  教学重点

  1.理解长方体和正方体的体积公式的推导过程。

  2.会计算长方体和正方体的体积。

  教学难点

  长方体、正方体的体积计算的推导过程。

  教学过程

  一、问题引入

  1.师:小朋友,你们喜欢搭积木游戏吗?这是老师用1cm3的正方体拼成的积木,(课件出示)你能说说它们的体积吗?

  师:你是怎样想的?

  教师:我们要计量一个物体的体积,就要看这个物体中含有多少个体积单位。

  2.师(出示一个长方体模型):要知道它的体积是多少,你有什么办法?

  生1:可以将这个长方体切成小的体积单位,看它包含着多少个这样的体积单位,就可以知道它的体积是多少。

  生2:将这个长方体浸没在水中,根据水面上升的刻度读出长方体的体积。

  生3:量出长方体的长、宽、高,用长×宽×高。

  教师:比较一下,哪种方法更适用呢?在生活中,有许多长方体是不能切开来数的。把什么物体都浸没在水中,看水面上升的刻度也比较麻烦。那么,生3的方法是否成立?这就是我们这节课要学习的内容。

  (板书课题:长方体和正方体的体积计算)

  [简评:从学生熟悉的搭积木游戏开始,沟通学生已有知识连接点:要计量一个物体的体积,就要看这个物体中含有多少个体积单位。然后让学生想办法怎样求出一个长方体的体积。激发了学生的求知欲,并自然过渡到新课的学习。]

  二、问题探索

  1.探索长方体的体积计算方法。

  (1)4人小组合作"搭积木"。电脑出示活动要求:用12个体积是1cm3的小正方体木块拼成不同形状的长方体,并填写表一:

  每排个数排数层数1cm3正方体的个数体积(cm3)

  长方体一

  长方体二

  长方体三

  思考:

  ①长方体每排个数、排数、层数分别相当于长方体的什么?

  ②长方体的体积怎样计算?

  (2)学生在合作交流中探讨长方体和正方体体积的计算规律。

  生:每排个数就是长方体长所含厘米数,排数就是宽所含厘米数,层数就是高所含的厘米数。长方体的体积=每排个数×排数×层数,或长方体的体积=长×宽×高,或长方体的体积=底面积×高。

  学生相互,鼓励学生自主探索。

  (3)用实例验证规律。

  师:刚才我们发现长方体的体积=长×宽×高,这个公式对所有的长方体都适用吗?

  学生从自己准备的学具中自由选取若干个1cm3的小正方体,搭成形状不同的两个长方体,验证每个长方体的体积是否等于它的长、宽、高的乘积,请每小组(2人小组)同学一边实验一边填写表二:

  长(cm)宽(cm)高(cm)体积(cm3)

  第一个长方体

  第二个长方体

  让学生说说自己的发现。(板书:长方体的体积=长×宽×高)

  师:看来我们的发现是正确的,请给自己一颗探索星。

  (4)用字母公式表示长方体的体积计算方法。

  让学生观察板书和长方体的立体图,想一想:如果用V表示长方体的体积,a表示长,b表示宽,h表示高,用字母怎样表示长方体体积公式呢?

  (板书:V=a×b×h)

  师:闭上眼睛想一想,求一个长方体的体积必须具备什么条件?

  (5)反馈练习。

  师(课件出示例2):怎样计算电脑包装箱的体积?

  学生审题,独立完成。

  [简评:在探索长方体的'体积的计算中,设置"操作→感知规律;验证→认识规律;练习→应用规律"几个层次,符合学生掌握知识的特点,使本环节的重难点得以突破。课堂气氛民主和谐,学生从同伴那里不断优化自己的思考方法。]

  2.自学正方体的体积计算方法

  (1)正方体的体积又怎样计算呢?猜猜看。

  (2)你的想法正确吗,可以翻开书第52页看一看,也可以同桌交流自己的看法。

  (3)说说正方体的体积计算方法,字母表示的方法(V=a·a·a或a3)。要计算正方体的体积,必须知道什么条件?

  (4)反馈练习:

  口答:这个正方体的体积是多少?

  三、课堂活动

  量一量、算一算。

  (分组测量、并计算)

  四、全课

  说说本课学习中你的收获。

  五、作业

  练习十二第2、3题。

  [简评:整堂课从学生提出假设,小组合作探索、交流得出长方体的体积计算公式,然后用长方体的体积计算公式推导正方体的体积计算方法,既体现了自主学习,又沟通了长方体和正方体体积的关系。解决实际问题的设计,让学生量一量,算一算,培养了学生动手实践和解决生活实际问题的能力。教师大胆地进行开放式教学,让学生经历探索的过程,让学生在合作中讨论交流,呈现了学生思维的多样性和层次性,发展了学生的思维,体现了教师主导与学生主体的教学观念。

长方体的体积教案11

  教学内容:

  教学目标:

  1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

  2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

  教学重点:

  正方体和长方体体积的计算方法。

  教学难点:

  理解长方体的体积计算公式。

  教具:

  长、正方体模型、课件、长、正方体形状的纸盒等

  教学过程:

  创设情境,导入新课

  出示长方体模型,您能告诉大家这个长方体体积是多少?并说一说是怎样想的吗?

  教师演示,学生感知这个长方体模型的体积(每层有4个,共3层,一共是12个),这个长方体的体积就是12立方厘米。

  揭示课题:对一些不可以分割的长方体,我们有没有办法计算的他体积呢?(板书:长方体和正方体的体积)

  操作探究,发现规律

  学生按照要求用正方体搭出四个不同的长方体并编号。

  让学生观察,并作小组交流。

  这些长方体的长宽高各是多少?

  用了几个小正方体?不数,你怎样计算小正方体的个数?

  长方体的体积是多少?和计算小正方体的个数的方法比一比。

  根据所搭的长方体填表:(表格略)

  根据表格,引导分析,发现规律。

  比较每一个长方体的体积,和计算小正方体个数的方法,你能得出什么结论?

  引导学生猜想:长方体的体积和他的长宽高有什么关系?

  再次探索,验证猜想

  出示例题10,让学生摆一摆,再数一数,看看一共用多少个小正方体。

  课件演示,组织交流,摆出的长方体长宽高分别是多少?体积是多少立方厘米?这个结果与你刚才的猜想是否一致?

  如果让你摆一个长5厘米,宽4厘米,高3厘米的长方体,你能说出要用几个1立方厘米的小正方体吗?学生思考后回答。

  引导概括,得出公式

  提问:通过刚才的操作,你发现了长方体的体积与它的长宽高有什么关系吗?如何求长方体的体积?

  交流的出结论:

  长方体的体积=长×宽×高

  如果用V表示长方体的体积,用abh分别表示长宽高,你能用字母表示长方体的'体积公式吗?

  V=abh

  启发引导。

  正方体是特殊的长方体,你能根据长方体的体积公式写出正方体的体积公式吗?

  让学生尝试,再交流得出结论:

  正方体的体积=棱长×棱长×棱长

  学生阅读教材第26页,说说正方体体积的字母公式。

  应用拓展,巩固练习

  做“试一试”

  先指名说出长方体的长宽高分别是多少?正方体的棱长是多少,再独立计算。交流时先说说公式,再说说怎样列式。

  做“练一练”第1题。

  观察题中的图形,说出每个图形的长宽高或棱长,在独立完成。

  做“练一练”第2题。

  先让学生选择几个式子说说其表示的意思,再口算。

  课堂作业:做练习四第2题。

  课后作业:

  完成练习四第1、3题。

长方体的体积教案12

  教学目标:

  1、在摆长方体、数据整理、观察讨论等活动中,经历探索长方体体积公式的过程。

  2、掌握长方体的体积计算公式,知道公式的字母表达式,会计算长方体的体积。

  3、在探索长方体体积公式的活动中,感受数学问题的探索性和数学结论的确定性。

  教学重难点:

  掌握长方体的体积计算公式,知道公式的字母表达式,会计算长方体的体积。

  教学过程:

  一、复习旧知,呈现课题

  1、体积是指什么?常用的体积单位有哪些?什么是1立方厘米,1立方分米,1立方米?

  2、体积是4立方厘米的正方体里含有多少个体积是1立方厘米的小正方体?那么,体积是8立方厘米、10立方厘米呢?这说明了什么?(生:体积是多少就含有多少个体积单位。)

  (师出示一长方体教具)

  师:你能猜出这个长方体的体积是多少吗?

  生:长方体的体积=长×宽×高

  师:你怎么知道的?

  生:我以前问过我爸爸。

  师:你真是一个勤学上进的.孩子!

  师:你们对他的回答有什么问题想问吗?

  生:为什么长方体的体积=长×宽×高。

  二、观察操作,实验探究长方体体积的计算方法

  1、探索活动:

  小组合作(每四人一组做实验并记录):用40个体积是1立方厘米的小正方体摆出不同的长方体。

  活动前师友情提示:

  (1)每个小组用40个体积是1立方厘米的小正方体摆出4个不同的长方体;

  (2)注意观察你所摆的长方体有几层?每层有几行?每行有几块小正方体?你所摆的长方体的长、宽、高分别是多少?

  (3)我的发现是___。

  2、成果展示:

  (请小组代表到台前利用实物投影展示拼摆的过程并汇报方法及结果。)

  (1)体积与每排个数、排数、层数的关系。

  (板书:长方体体积=每排个数×排数×层数)

  每排个数、排数、层数与长方体的长、宽、高的关系。(每排个数相当于长;排数相当于宽;层数相当于高)

  (板书: 长 宽 高)

  (2)长方体所含体积单位的个数与它的长、宽、高的关系。

  (长方体体积等于长方体所含体积单位的个数,所含体积单位的个数正好等于长方体长、宽、高的乘积)

  长方体体积公式 长方体体积=长×宽×高

  (3)如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高体积的字母公式怎样写?V=a×b×h V=abh(板书)

  (4)说一说:长方体的体积与什么有关?(长、宽、高)

  3、运用长方体体积公式解决问题

  4、小结:刚才我们通过实验推导出了长方体体积公式,这就是我们这节课学习的主要内容。

  三、巩固发展

  计算出数学课本的体积。(学生两人一组完成该项任务)

  四、小结

  板书设计:

  长方体的体积=长×宽×高

  V=abh

长方体的体积教案13

  教学目标:

  1.强化对长方体和正方体的体积计算的认识,进一步巩固所学知识

  2.能运用长、正方体的体积计算解决一些简单的实际问题.

  3.培养学生归纳推理,抽象概括的能力.

  教学重点

  长方体和正方体体积的计算方法.

  教学用具

  教具:1立方厘米的立方体24块,1立方分米的立方体1块.

  学具:1立方厘米的立方体20块.

  教学用时:2课时

  第1课时

  教学过程

  一、复习.

  1.提问:什么是体积?

  2.说出体积的计算公式。

  二、板演练习

  独立计算,交流时,关注学生可能出现的一些问题,并给予及时指导与帮助。

  三、课堂练习:

  教师巡视指导,针对部分学困生,重点提醒他们运用计算公式解决以上问题。

  学生分析,归纳可能出现的错误。

  四、课堂分析:

  (1)找规律:

  指导学生应用体积的单位进率,来判断,第一组不相等的数是多少?先让学生找一找,再让学生交流思考的方法。

  (2)填上适当的单位:

  交流时,让学生比画以上物体的实际空间大小。

  (3)板演练习

  分组练习,然后由小组组织讨论,校对答案。

  五、这堂课你练习中有什么收获吗?

  第2课时

  教学过程:

  一、课堂分析:

  引导分析:两个图形所占的'空间就是它们的体积吗?什么是体积?

  哪个图形所占的空间大,也就是说它的体积大?你又如何确定它所占的空间的大小呢?

  用数的方法。

  怎么数?

  二、课堂练习:

  另见:P53页9----10题。

  教师巡视指导

  9:先让学生独立尝试解决问题,再说说解题思路,即先算出一箱汽油的容积,再计算可以行驶多少千米。

  10、本题在于让学生理解,要用多少铁皮实际上就是求水池的表面积,最多可以盛多少水,就是求体积。

  三、机动:课堂实践作业

  四、课后作业;见伴你成长。

长方体的体积教案14

  教学内容:

  长方体、正方体的体积计算

  教学目标:

  1.通过讲授,引导学生找出规律,总结出体积的公式。

  2.指导学生运用公式正确计算长方体、正方体的体积。

  3.培养学生积极思考、探索新知的思维品质。

  教学重点:

  长方体、正方体体积计算。

  教学难点:

  长方体、正方体体积计算

  教具运用:

  正方体木块若干。

  教学过程:

  一、复习导入

  1.什么叫体积?计量物体的体积常用的单位有哪些?

  2.怎样计算一个物体的体积呢?

  二、新课讲授

  1.长方体体积的计算。

  教师课件出示一块长方体积木,一块盖房用的大型砖板。

  (1)提问:它们的体积是多少?你是怎样想的?

  引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

  教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的'数学知识来计算。

  (2)观察操作,探究长方体的体积公式。

  小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

  学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

  说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

  学生独立思考,然后小组内讨论交流,得出结论。

  小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

  板书:长方体的体积=长宽高

  讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

  (3)质疑:求长方体的体积公式需要知道什么条件?

  2.探究正方体的体积公式。

  (1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

  (2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

  3.运用长方体的体积公式解决问题。

  (1)出示教材第30页的例1。

  (2)学生看图,理解题意。

  (3)说出题中所给信息,和所求问题。

  (4)指名说出长方体的体积公式。

  (5)指名学生上台板演过程,其他同学判断。

  (6)老师订正书写。V=abh=743=84(cm3)

  (7)看图,学生独立在练习本上完成。

  (8)指名板演,集体订正。

  三、课堂作业

  完成课本第31页做一做第1、2题。

  四、课堂小结

  1.这节课,你有什么收获?

  2.在计算长方体和正方体的体积时,要注意哪些问题?

  五、课后作业

  完成练习册中本课时练习。

  板书设计 :

  长方体和正方体的体积

  长方体的体积=长宽高

  V=abh

  正方体体积=棱长棱长棱长

  V=aaa=a3

长方体的体积教案15

  教学目标

  使学生能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。

  教学重点、难点

  重难点:

  能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。

  教具、学具准备

  教 学过程

  一、基本练习

  运用长方体和立方体的体积计算公式,计算长方体和立方体的体积。

  1、计算长方体和立方体的体积。

  (1)长8米,宽6米,高5米。

  (2)棱长40厘米。

  学生独立完成,反馈。

  V=abhV=a3

  8×6×5=240(立方米)40×40×40=64000(立方厘米)

  2、一根长方体木料,长2米,宽1.5分米,厚2分米。这根木料的体积是多少?

  提醒学生注意单位名称的统一,请学生说说”厚“的意思。

  学生独立完成,反馈。

  2米=20分米

  20×1.5×2=60(立方分米)

  3、一块立方体石料,棱长50厘米。这块石料的体积是多少立方厘米?

  学生独立完成,反馈。

  4、一个底面是长方形的沙坑,底面积是24平方米,深0.5米。需要多少立方米的黄沙才能填满这个沙坑?

  学生独立完成,反馈时交流解题思路。

  24×0.5=12(立方米)

  二、综合练习

  1、先求体积,再求质量的练习。

  一块立方体钢的棱长是2分米,如果1立方分米钢重7.8千克,这块钢重多少千克?

  学生独立完成,反馈时交流解题思路。

  2×2×2=8(立方分米)

  7.8×8=62.4(千克)

  教学过程

  备 注

  2、已知体积、长、宽、或底面积,求高的练习。

  (1)一个长方体的木箱,长8分米,宽6分米,体积是240立方分米。这个木箱的高是多少分米?

  (2)一块立方体石料的体积是512立方厘米,底面积是64平方厘米,这块石料的高是多少厘米?

  学生独立完成,反馈时交流解题思路。

  240÷8÷6=5(分米)

  512÷64=8(厘米)

  3、小结

  三、思考题

  把一个立方体的六个面都涂上油漆,如果按面上的线将它分割成27个小立方体,那么,

  三面涂油漆的小立方体有()个,

  两面涂油漆的小立方体有()个,

  一面涂油漆的小立方体有()个,

  没有涂油漆的'小立方体有()个。

  1、弄清题意

  2、看立体图想象

  3、反馈交流

  4、用实物验证

  四、学生总结

  课后反思:

  在教学时,为了使学生透彻理解长方体所占空间的大小是由它的长、宽、高所决定的,其体积公式的推导,可让学生动手操作,通过”摆、看、想、推、说“进行。这样,通过动手操作引发思维和用数学语言表达,不仅加深了对公式的来源及公式的运用的理解,还可以检查学生掌握新知识的情况,同时也培养发展了学生的逻辑思维能力。

【长方体的体积教案】相关文章:

《长方体和正方体的体积》教案03-03

体积和体积单位教案02-04

《圆锥的体积》教案03-18

圆锥的体积教案02-13

《圆柱的体积》教案01-02

《体积单位》教案03-07

体积单位教案02-28

《体积与容积》教案03-08

圆柱的体积教案11-18

体积与容积优秀教案03-01