范文资料网>书稿范文>总结>《椭圆知识点总结

椭圆知识点总结

时间:2024-03-11 07:33:18 总结 我要投稿
  • 相关推荐

椭圆知识点总结

  总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,写总结有利于我们学习和工作能力的提高,让我们一起认真地写一份总结吧。总结一般是怎么写的呢?以下是小编为大家整理的椭圆知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

椭圆知识点总结

  椭圆知识点总结

  1.椭圆的概念

  在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.

  集合P={M||MF1|+|MF2|=2a}|F1F2|=2c,其中a>0,c>0,且a,c为常数:

  (1)若a>c,则集合P为椭圆;

  (2)若a=c,则集合P为线段;

  (3)若a

  2.椭圆的标准方程和几何性质

  一条规律

  椭圆焦点位置与x2,y2系数间的关系:

  两种方法

  (1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程.

  (2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程.

  三种技巧

  (1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c.

  (2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0

  (3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴.

  椭圆方程的第一定义:

  ⑴①椭圆的标准方程:

  i. 中心在原点,焦点在x轴上:. ii. 中心在原点,焦点在轴上:.

  ②一般方程:.③椭圆的标准参数方程:的参数方程为(一象限应是属于

  ).

  ⑵①顶点:或.②轴:对称轴:x轴,轴;长轴长,短轴长.③焦点:或.④焦距:.⑤准线:或.⑥离心率:.⑦焦点半径:

  i. 设为椭圆上的一点,为左、右焦点,则

  由椭圆方程的第二定义可以推出.

  ii.设为椭圆上的一点,为上、下焦点,则

  由椭圆方程的第二定义可以推出.

  由椭圆第二定义可知:归结起来为“左加右减”.

  注意:椭圆参数方程的推导:得方程的轨迹为椭圆.

  ⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标:和

  ⑶共离心率的椭圆系的方程:椭圆的离心率是,方程是大于0的参数,的离心率也是 我们称此方程为共离心率的椭圆系方程.

  (4)若P是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.

【椭圆知识点总结】相关文章:

椭圆形活动反思03-30

《认识椭圆形》教案02-05

高中数学椭圆教案12-16

中班椭圆形活动反思03-30

认识椭圆形活动反思03-31

生物知识点总结03-03

物理知识点总结03-01

中班数学椭圆形教案03-29

高考数列知识点总结01-31