- 相关推荐
物理必修二知识点总结
总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,不妨坐下来好好写写总结吧。但是总结有什么要求呢?下面是小编精心整理的物理必修二知识点总结,欢迎阅读与收藏。
物理必修二知识点总结1
1、内容:在只有重力(和系统内弹簧或弹性绳弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变。
2、条件:
(1)对某一物体,若只有重力(或系统内弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒。
(2)对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒。
注:①竖直方向匀速直线运动和竖直方向匀速圆周运动机械能不守恒。
3、机械能守恒定律的各种表达形式
(1)E1E2 Ek1Ep1Ek2Ep2需要选择重力势能的零势能面
(2)EpEk Ep减Ek增
4、应用机械能守恒定律解题的基本步骤:
(1)根据题意选取研究对象(物体或系统),判断机械能是否守恒。
(2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况。
(3)恰当地选取零势能面,确定研究对象在过程中的始态和末态的机械能。
(4)根据机械能守恒定律的不同表达式列式方程。
能量转化和守恒定律
(1)某种形式的'能的减少量,一定等于其他形式能的增加量。
(2)某物体能量的减少量,一定等于其他物体能量的增加量。
物理学习方法
有目的的做题
在高中物理学习的过程中,习题的作用千万不能忽视,做题不是说题海战术,而是要通过有目的的做题理解相关的物理知识;这就需要我们在学习中有选择性地做题,包括认真分析教科书上的例题,根据教学重点和难度选择课外习题。选题不能一味依靠老师,要品味出老师选题的思路和要求,逐步做到能自己选题;在解题时要保持思路清晰,围绕知识点加深学习效果。当然,在学习中多向老师请教,将自己的想法与老师沟通一直是我们的极佳选择。
多读课外参考书
对于学有余力的学生们来说,课后利用剩余时间可以阅读物理课外参考书以及其他读物。此过程是课堂学习的继续和延伸过程,可以培养学生们的自学能力和非智力优秀品质。
选择课外参考书一定注意:所选课外参考书的数量不要太多,太滥。要注意阅读参考书最好在学完一部分或这一章内容之后进行。阅读课外参考书时,要对重点内容深入钻研、领会内容。
高中物理公式大全:振动和波
1、简谐振动F=—kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2、单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3、受迫振动频率特点:f=f驱动力
4、发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5、机械波、横波、纵波〔见第二册P2〕
6、波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7、声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8、波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9、波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10、多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
物理必修二知识点总结2
知识点总结
一、开普勒行星运动定律
(1)、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,
(2)、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积,
(3)、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律
1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比、
2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,称为引力常量、
3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的'距离、
三、万有引力定律的应用
1、解决天体(卫星)运动问题的基本思路
(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.
(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM.
2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.
(1)若已知天体的半径R,则天体的密度ρ=VM=πR34=GT2R33πr3
(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT23π可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度、
3、人造卫星
(1)研究人造卫星的基本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、
(2)卫星的线速度、角速度、周期与半径的关系
①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、
②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、
③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大
(3)人造卫星的超重与失重
①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、
②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下凡是与重力有关的力学现象都会停止发生、
(4)三种宇宙速度
①第一宇宙速度(环绕速度)v1=7.9 km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、若7.9 km/s≤v<11.2 km/s,物体绕地球运行、
②第二宇宙速度(脱离速度)v2=11.2 km/s.这是物体挣脱地球引力束缚的最小发射速度、若11.2 km/s≤v<16.7 km/s,物体绕太阳运行、
③第三宇宙速度(逃逸速度)v3=16.7 km/s这是物体挣脱太阳引力束缚的最小发射速度、若v≥16.7 km/s,物体将脱离太阳系在宇宙空间运行、
题型:
1、求星球表面的重力加速度在星球表面处万有引力等于或近似等于重力,则:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体表面重力加速度的关系为:g2g1=R12R22·M2M1.
2、求某高度处的重力加速度若设离星球表面高h处的重力加速度为gh,则:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2.
3、近地卫星与同步卫星
(1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/s,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/s2是所有卫星的最大加速度、
(2)地球同步卫星的五个“一定”
①周期一定T=24 h. ②距离地球表面的高度(h)一定③线速度(v)一定④角速度(ω)一定
⑤向心加速度(a)一定
物理必修二知识点总结3
一、电源和电流
1、电流产生的条件:
(1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子)
(2)导体两端存在电势差(电压)
(3)导体中存在持续电流的条件:是保持导体两端的电势差。
2电流的方向
电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。习惯上规定:正电荷定向移动的方向为电流的方向。
说明:
(1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。金属导体中电流的方向与自由电子定向移动方向相反。
(2)电流有方向但电流强度不是矢量。
(3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。通常所说的直流常常指的是恒定电流。
二、电动势
1、电源
(1)电源是通过非静电力做功把其他形式的能转化为电势能的装置。
(2)非静电力在电源中所起的'作用:是把正电荷由负极搬运到正极,同时在该过程中非静电力做功,将其他形式的能转化为电势能。
【注意】在不同的电源中,是不同形式的能量转化为电能。
2、电动势
(1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。
(2)定义式:E=W/q
(3)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。
【注意】:①电动势的大小由电源中非静电力的特性(电源本身)决定,跟电源的体积、外电路无关。
②电动势在数值上等于电源没有接入电路时,电源两极间的电压。
③电动势在数值上等于非静电力把1C电量的正电荷在电源内从负极移送到正极所做的功。
3、电源(池)的几个重要参数
①电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。
②内阻(r):电源内部的电阻。
③容量:电池放电时能输出的总电荷量。其单位是:A·h,mA·h。
【注意】:对同一种电池来说,体积越大,容量越大,内阻越小。
【学习方法】
及时完成学习任务
进入高二,同学们应该适时调整学习时间,要注意当天的学习任务要当天完成,不能留下问题,免得积少成多,问题越多,学习压力越大,这样会影响到学好物理的信心。
总的来说,高中物理知识体系严密而完整,知识的系统性较强。因此,应注重掌握系统的知识、培养研究问题的方法。
重视实验,勤于实验
电学实验是高中物理的难点,也是高考常考的内容,因此一定要学好这部分的内容。在做实验之前一定要弄清楚实验的原理及步骤,注意观察,做好每一个实验。有能力的同学可以自己设计一些实验,并且到实验室进行验证。这对实验能力的提高是很大的帮助。
听讲与自学相结合
较之高一、高二的教学内容多,课堂容量大,同学们一定要注意听教师的讲解,跟上教师的思路。上课认真听,是同学们学习方法、提高能力的最直接、最有效的途径。在听课中要积极思考,不断地给自己提出问题,再通过听讲获得解答。要达到课堂的高效率,必须在课前进行预习,预习时要注意新旧知识的联系,把新学习的物理概念和物理规律整合到原有认知结构的模式之中,迅速掌握知识,顺利达到知识的迁移。预习既增加对相关内容的理解,又提高了自己的阅读理解能力、审题能力。久而久之,同学们的自学能力也会有很大的提高。
定期复习总结
在学习过程中要养成定期复习总结的好习惯。复习不是知识的简单重复,而是升华提高的过程。一是当天复习,这是高效省时的学习方法之一。二是章末复习,明确每章知识的主干线,掌握其知识结构,使知识系统化。找出节与节之间、章与章之间的联系,建立新的认识结构和知识系统。既巩固和加深了所学知识,又学到了方法,提高了能力。物理上单纯需要记忆的内容不多,多数需要理解。通过系统有效的复习,就会发现,厚厚的物理教科书其实是“很薄的”。要试着对做过的练习题分类,找出对应的解决方法,尽快改变不良的学习方法、学习习惯、学习心理。
物理必修二知识点总结4
认识静电
一、静电现象
1、了解常见的静电现象。
2、静电的产生
(1)摩擦起电:用丝绸摩擦的玻璃棒带正电,用毛皮摩擦的橡皮棒带负电。
(2)接触起电:(3)感应起电:
3、同种电荷相斥,异种电荷相吸。
二、物质的电性及电荷守恒定律
1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。而原子核又是由质子和中子组成的。质子带正电、中子不带电。在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。
2、电荷守恒定律:任何孤立系统的电荷总数保持不变。在一个系统的内部,电荷可以从一个物体传到另一个物体。但是,在这个过程中系统的总的电荷时不改变的。
3、用物质的原子结构和电荷守恒定律分析静电现象
(1)分析摩擦起电(2)分析接触起电(3)分析感应起电
4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。
电荷间的相互作用
一、电荷量和点电荷
1、电荷量:物体所带电荷的多少,叫做电荷量,简称电量。单位为库仑,简称库,用符号C表示。
2、点电荷:带电体的形状、大小及电荷量分布对相互作用力的影响可以忽略不计,在这种情况下,我们就可以把带电体简化为一个点,并称之为点电荷。
二、电荷量的检验
1、检测仪器:验电器
2、了解验电器的工作原理
三、库仑定律
1、内容:在真空中两个静止的点电荷间相互作用的库仑力跟它们电荷量的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。
2、大小:
方向:在两个电电荷的连线上,同性相斥,异性相吸。
3、公式中k为静电力常量,
4、成立条件
①真空中(空气中也近似成立),②点电荷
电场及其描述
一、电场
1、电场:电荷的周围存在着电场,带电体间的相互作用是通过周围的电场发生的'。
2、电场基本性质:对放入其中的电荷有力的作用。
3、电场力:电场对放入其中的电荷有作用力,这种力叫电场力
电荷间的静电力就是一个电荷受到另一个电荷激发电场的作用力。
电场的描述
1、电场强度:
(1)定义:把电场中某一点的电荷受到的电场力F跟它的电荷量q的比值,定义为该点的电场强度,简称场强,用E表示。
(2)定义式:
F——电场力国际单位:牛(N)
q——电荷量国际单位:库(C)
E——电场强度国际单位:牛/库(N/C)
(3)方向:规定为正电荷在该点受电场力的方向。
(4)点电荷的电场强度:
(5)物理意义:某点的场强为1N/C,它表示1C的点电荷在此处会受到1N的电场力。
(6)匀强电场:各点场强的大小和方向都相同。
2、电场线:
(1)意义:如果在电场中画出一些曲线,使曲线上每一点的切线方向,都跟该点的场强方向一致,这样的曲线就叫做电场线。
(2)特点:
电场线不是电场里实际存在的线,而是为形象地描述电场而假想的线,因此电场线是一种理想化模型。
电场线始于正电荷,止于负电荷,在正电荷形成的电场中,电场线起于正电荷,延伸到无穷远处;在负电荷形成的电场中,电场线起于无穷远处,止于负电荷。电场线不闭合,不相交,也不是带电粒子的运动轨迹。
在同一电场里,电场线越密的地方,场强越大;电场线越稀的地方,场强越小。
趋利避害—静电的利用与防止
一、静电的利用
1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:
静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。
2、利用高压静电产生的电场,应用有:
静电保鲜、静电灭菌、作物种子处理等。
3、利用静电放电产生的臭氧、无菌消毒等
雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。
二、静电的防止
静电的主要危害是放电火花,如油罐车运油时,因为油与金属的振荡摩擦,会产生静电的积累,达到一定程度产生火花放电,容易引爆燃油,引起事故,所以要用一根铁链拖到地上,以导走产生的静电。
另外,静电的吸附性会使印染行业的染色出现偏差,也要注意防止。
2、防止静电的主要途径:
(1)避免产生静电。如在可能情况下选用不容易产生静电的材料。
(2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。
物理必修二知识点总结5
曲线运动
1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2.物体做直线或曲线运动的条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a)
(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;
(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。
3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
分运动:
(1)在水平方向上由于不受力,将做匀速直线运动;
(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下.
6.①水平分速度:②竖直分速度:③t秒末的合速度
④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示
7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
8.描述匀速圆周运动快慢的物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上
9.匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变
(2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的
(3)周期T,频率:f=1/T
(4)线速度、角速度及周期之间的关系:
10.向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
11.向心加速度:描述线速度变化快慢,方向与向心力的方向相同,12.注意:
(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的'物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
13.离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67× N?m2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g )
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg = G g = G ≈9.8m/s2
高空物体的重力加速度:mg = G g = G<9.8m/s2
4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的。
由mg=mv2/R或由= =7.9km/s
5.开普勒三大定律
6.利用万有引力定律计算天体质量
7.通过万有引力定律和向心力公式计算环绕速度
8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)
功、功率、机械能和能源
1.做功两要素:力和物体在力的方向上发生位移
2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)
3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)
(1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,如小球在水平桌面上滚动,桌面对球的支持力不做功。
(2)当α<90度时,>0,W>0.这表示力F对物体做正功。
如人用力推车前进时,人的推力F对车做正功。
(3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。
如人用力阻碍车前进时,人的推力F对车做负功。
一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。
例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功
4.动能是标量,只有大小,没有方向。
5.重力势能是标量,表达式
(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。
(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。
6.动能定理:
W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度
解答思路:
①选取研究对象,明确它的运动过程。
②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。
③明确物体在过程始末状态的动能和。
④列出动能定理的方程。
7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)
解题思路:
①选取研究对象----物体系或物体
②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。
③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。
④根据机械能守恒定律列方程,进行求解。
8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负
9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。
实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。
10、能量守恒定律及能量耗散
物理必修二知识点总结6
牛顿运动定律的应用
1、运用牛顿第二定律解题的基本思路
(1)通过认真审题,确定研究对象。
(2)采用隔离体法,正确受力分析。
(3)建立坐标系,正交分解力。
(4)根据牛顿第二定律列出方程。
(5)统一单位,求出答案。
2、解决连接体问题的基本方法是:
(1)选取的研究对象。选取研究对象时可采取“先整体,后隔离”或“分别隔离”等方法。一般当各部分加速度大小、方向相同时,可当作整体研究,当各部分的加速度大小、方向不相同时,要分别隔离研究。
(2)对选取的研究对象进行受力分析,依据牛顿第二定律列出方程式,求出答案。
3、解决临界问题的基本方法是:
(1)要详细分析物理过程,根据条件变化或随着过程进行引起的受力情况和运动状态变化,找到临界状态和临界条件。
(2)在某些物理过程比较复杂的情况下,用极限分析的.方法可以尽快找到临界状态和临界条件。
易错现象:
(1)加速系统中,有些同学错误地认为用拉力F直接拉物体与用一重力为F的物体拉该物体所产生的加速度是一样的。
(2)在加速系统中,有些同学错误地认为两物体组成的系统在竖直方向上有加速度时支持力等于重力。
(3)在加速系统中,有些同学错误地认为两物体要产生相对滑动拉力必须克服它们之间的静摩擦力。
物理必修二知识点总结7
一、动能
如果一个物体能对外做功,我们就说这个物体具有能量。物体由于运动而具有的能。 Ek=mv2,其大小与参照系的选取有关。动能是描述物体运动状态的物理量。是相对量。
二、动能定理
做功可以改变物体的能量。所有外力对物体做的总功等于物体动能的增量。 W1+W2+W3+=mvt2—mv02
1、反映了物体动能的变化与引起变化的原因力对物体所做功之间的因果关系。可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小。所以正功是加号,负功是减号。
2、增量是末动能减初动能。EK0表示动能增加,EK0表示动能减小。
3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理。由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化。在动能定理中。总功指各外力对物体做功的代数和。这里我们所说的`外力包括重力、弹力、摩擦力、电场力等。
4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和。
5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式。但动能定理是标量式。功和动能都是标量,不能利用矢量法则分解。故动能定理无分量式。在处理一些问题时,可在某一方向应用动能定理。
6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的。但它也适用于变为及物体作曲线运动的情况。即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用。
7、对动能定理中的位移与速度必须相对同一参照物。
物理必修二知识点总结8
功、功率、机械能和能源
1.做功两要素:力和物体在力的方向上发生位移
2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)
3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)
(1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,
如小球在水平桌面上滚动,桌面对球的支持力不做功。
(2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。
如人用力推车前进时,人的推力F对车做正功。
(3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。
如人用力阻碍车前进时,人的推力F对车做负功。
一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。
例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功
4.动能是标量,只有大小,没有方向。表达式
5.重力势能是标量,表达式
(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。
(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。
6.动能定理:
W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度
解答思路:
①选取研究对象,明确它的'运动过程。
②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。
③明确物体在过程始末状态的动能和。
④列出动能定理的方程。
7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)
解题思路:
①选取研究对象----物体系或物体
②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。
③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。
④根据机械能守恒定律列方程,进行求解。
8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负
9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。
实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。
10、能量守恒定律及能量耗散
物理必修二知识点总结9
一、知识点
(一)能、势能、动能的概念
(二)功
1功的定义、定义式及其计算
2正功和负功的判断:力与位移夹角角度、动力学角度
(三)功率
1功率的定义、定义式
2额定功率、实际功率的概念
3功率与速度的关系式:瞬时功率、平均功率
4功率的计算:力与速度角度、功与时间角度
(四)重力势能
1重力做功与路径无关
2重力势能的表达式
3重力做功与重力势能的关系式
4重力势能的相对性:零势能参考平面
5重力势能系统共有
(五)动能和动能定理
1动能的表达式
2动能定理的内容、表达式
(六)机械能守恒定律:内容、表达式
二、重点考察内容、要求及方式
1正负功的判断:夹角角度、动力学角度:力对物体产生的加速度与物体运动方向一致或相反,导致物体加速或减速,动能增大或减小(选择、判断)
2功的计算:重力做功、合外力做功(动能定理或功的定义角度)(填空、计算)
3功率的计算:力与速度角度、功与时间角度(填空、计算)
4机车启动模型:功率与速度、力的关系式;运动学规律(填空、计算)
5动能定理与受力分析:求牵引力、阻力;要求正确受力分析、运动学规律(计算)
6机械能守恒定律应用:机械能守恒定律表达式、设定零势能参考平面;求解动能、高度等。
必修二物理学习方法
重视物理概念
初中将学习大量的重要的物理概念、规律,而这些概念、规律,是解决各类问题的基础,因此要真正理解和掌握,应力求做到“五会”:
会表述:能熟记并正确地叙述概念、规律的内容。
能表达:明确概念、规律的表达公式及公式中每个符号的'科学意义。
会理解:能控制公式的利用范围和使用条件。
会变形:会对公式进行精确变形,并理解变形后的含义。
能应用:能应用概念和公式进行简单的判断、推理和计算。
必修二物理学习技巧
(1)立足课堂,夯实基础。课堂是学习物理基础知识和基本技能的主阵地,只有把握课堂,抓牢“双基”,学习必要的方法,才会有拓展、提高的可能。
(2)注重探究过程,学习研究方法。物理是一门实验科学,学习物理要注重科学探究的过程,对于每一个实验探究不仅要知道怎样做,而且要理解为什么要这样做,并能对探究过程和结果作出适当的评估;除了学习物理知识,还应学习相关的研究方法,如:转化法,控制变量法,对比法,理想实验推理法,归纳法、等效法、类比法、建立理想模型法等。(3)强化训练,提高知识的迁移应用能力。课外适当做一些补充练习是消化、巩固所学知识,拓展提高的一种较为有效的措施。在解题过程中注意培养、提高审题能力。
(4)优化学习方法,提高学习效率。如遇到学习的难点、疑点,由于初三阶段的学习较为紧张,不能花很多的时间去慢慢“磨”,应做好标记,跟同学讨论,最好求得老师的解答,理解过程,掌握方法。
(5)归纳概括、串前联后,形成综合能力。在平时的学习过程中,对所学的知识进行必要的归纳总结,并将新学的知识和前面的内容联系起来,注意它们的相同点与不同点,做到前后贯通。如学习功率的概念时可以对照已经学过的速度概念进行综合思考。
(6)规范解答,注意细节。“规范”在考试中主要体现在简答题、作图题、计算题中。历年中考中,因解答不规范而失分的情况屡见不鲜。
物理必修二知识点总结10
1、万有引力定律:引力常量G=6.67×N?m2/kg2
2、适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距。(物体的'尺寸比两物体的距离r小得多时,可以看成质点)
3、万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈9.8m/s2
高空物体的重力加速度:mg=Gg=G<9.8m/s2
4、第一宇宙速度————在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是的。
由mg=mv2/R或由==7.9km/s
5、开普勒三大定律
6、利用万有引力定律计算天体质量
7、通过万有引力定律和向心力公式计算环绕速度
8、大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)
物理必修二知识点总结11
一、牛顿第一定律
1、内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。——物体的运动并不需要力来维持。(揭示物体不受力或合力为零的情形)
2、两个概念:①、力②、惯性:(一切物体都具有惯性,质量是惯性大小的唯一量)
二、牛顿第二定律
1、内容:(不能从纯数学的角度表述)
2、公式:F=ma
3、理解牛顿第二定律的要点:
①、式中F是物体所受的一切外力的合力。②、矢量性。③、瞬时性。④、独立性。⑤、相对性。
三、牛顿第三定律
作用力和反作用力的概念
1、内容:一个物体对另一个物体有作用力时,同时也受到另一物体对它的作用力,这种相互作用力称为作用力和反作用力。
2、作用力和反作用力的特点:①等值、反向、共线、两物体;②瞬时对应;③性质相同;④各自产生其作用效果;
3、一对相互作用力与一对平衡力的异同点
同:等大,反向,共线
异:相互作用力具有同时性(产生、变化、消失),异体性(作用效果不同,不可抵消),二力同性质。平衡力不具备同时性,可相互抵消,二力性质可不同。
四、力学单位制
1、力学基本物理量:长度(l)质量(m)时间(t)
力学基本单位:米(m)千克(kg)秒(s)
2、应用:用单位判断结果表达式,能肯定错误(但不能肯定正确)
五、动力学的`两类问题。
1、已知物体的受力情况,求物体的运动情况(v0 v t x )
2、已知物体的运动情况,求物体的受力情况( F合或某个分力)
3、应用牛顿第二定律解决问题的一般思路
(1)明确研究对象。
(2)对研究对象进行受力情况分析,画出受力示意图。
(3)建立直角坐标系,以初速度的方向或运动方向为正方向,与正方向相同的力为正,与正方向相反的力为负。在Y轴和X轴分别列牛顿第二定律的方程。
(4)解方程时,所有物理量都应统一单位,一般统一为国际单位。
4、分析两类问题的基本方法
(1)抓住受力情况和运动情况之间联系的桥梁——加速度。
(2)分析流程图
六、平衡状态、平衡条件、推论
1、处理方法:解三角形法(合成法、分解法、相似三角形法、封闭三角形法)和正交分解法
2、若物体受三力平衡,封闭三角形法最简捷。若物体受四力或四力以上平衡,用正交分解法
七、超重和失重
1、超重现象和失重现象
2、超重指加速度向上(加速上升和减速下降),超了F=ma大的弹力;失重指加速度向下(加速下降和减速上升),失了F=ma大的弹力。
自由落体运动、太空行走等现象时,弹力为0,处于完全失重状态。
物理题目该怎么解比较好
做物理题目时,大家的感受一般是简单题目会做,一旦出题人设陷阱,很多考生都会纷纷往里面跳。原因很简单,就是物理学的不透彻,不知道知识点的真正内涵及要注意的细节,只是学会了大概的解题步骤,所以一绕弯子就会难倒大家。
物理解题要回归教材,把例题看透了,学会举一反三,懂得万变不离其宗的道理。做物理题目每做一道综合题目都要完完全全做会,每一个步骤都要分析的很透彻,不要看懂答案就以外自己会了,要能够给别人讲出来才是真的懂了,别人提问难不住你了才是真的会了。
学物理不要贪多,刷题是没有用的,只有理解了做题思路,能独立分析会每一道题目时,才能学好物理。物理会做的题目不必反复去做,而应以自己不会做的题目为主,突破重点和难点。
恒定电流知识点
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3 I并=I1+I2+I3+
电压关系U总=U1+U2+U3+ U总=U1=U2=U3
功率分配P总=P1+P2+P3+ P总=P1+P2+P3
物理必修二知识点总结12
一、重力
1.产生:由于地球的吸引而使物体受到的力.
2.大小:G=mg.
3.方向:总是竖直向下.
4.重心:因为物体各部分都受重力的作用,从效果上看,可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心.
二、弹力
1.定义:发生弹性形变的物体由于要恢复原状,对与它接触的物体产生力的作用.
2.产生的条件
(1)两物体相互接触;
(2)发生弹性形变.
3.方向:与物体形变方向相反.
三、胡克定律
1.内容:弹簧发生弹性形变时,弹簧的弹力的大小F跟弹簧伸长(或缩短)的长度x成正比.
2.表达式:F=kx.
(1)k是弹簧的劲度系数,单位为N/m;k的大小由弹簧自身性质决定.
(2)x是弹簧长度的变化量,不是弹簧形变以后的长度.
四、摩擦力
1.产生:相互接触且发生形变的粗糙物体间,有相对运动或相对运动趋势时,在接触面上所受的阻碍相对运动或相对运动趋势的力.
2.产生条件:接触面粗糙;接触面间有弹力;物体间有相对运动或相对运动趋势.
3.大小:滑动摩擦力Ff=μFN,静摩擦力:0≤Ff≤Ffmax.
4.方向:与相对运动或相对运动趋势方向相反.
5.作用效果:阻碍物体间的相对运动或相对运动趋势.
【重要考点归纳】
考点一 弹力的分析与计算
1.弹力有无的判断方法
(1)条件法:根据物体是否直接接触并发生弹性形变来判断是否存在弹力.此方法多用来判断形变较明显的情况.
(2)假设法:对形变不明显的情况,可假设两个物体间弹力不存在,看物体能否保持原有的状态,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定有弹力.
(3)状态法:根据物体的运动状态,利用牛顿第二定律或共点力平衡条件判断弹力是否存在.
2.弹力方向的判断方法
(1)根据物体所受弹力方向与施力物体形变的方向相反判断.
(2)根据共点力的平衡条件或牛顿第二定律确定弹力的方向.
3.计算弹力大小的三种方法
(1)根据胡克定律进行求解.
(2)根据力的平衡条件进行求解.
(3)根据牛顿第二定律进行求解.
考点二 摩擦力的.分析与计算
1.静摩擦力的有无和方向的判断方法
(1)假设法:利用假设法判断的思维程序如下:
(2)状态法:先判明物体的运动状态(即加速度的方向),再利用牛顿第二定律(F=ma)确定合力,然后通过受力分析确定静摩擦力的大小及方向.
(3)牛顿第三定律法:先确定受力较少的物体受到的静摩擦力的方向,再根据“力的相互性”确定另一物体受到的静摩擦力方向.
2.静摩擦力大小的计算
(1)物体处于平衡状态(静止或匀速运动),利用力的平衡条件来判断其大小.
(2)物体有加速度时,若只有静摩擦力,则Ff=ma.若除静摩擦力外,物体还受其他力,则F合=ma,先求合力再求静摩擦力.
3.滑动摩擦力的计算
滑动摩擦力的大小用公式Ff=μFN来计算,应用此公式时要注意以下几点:
(1)μ为动摩擦因数,其大小与接触面的材料、表面的粗糙程度有关;FN为两接触面间的正压力,其大小不一定等于物体的重力.
(2)滑动摩擦力的大小与物体的运动速度和接触面的大小均无关.
方法技巧:
(1)在分析两个或两个以上物体间的相互作用时,一般采用整体法与隔离法进行分析.
(2)受静摩擦力作用的物体不一定是静止的,受滑动摩擦力作用的物体不一定是运动的
(3)摩擦力阻碍的是物体间的相对运动或相对运动趋势,但摩擦力不一定阻碍物体的运动,即摩擦力不一定是阻力.
物理必修二知识点总结13
1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2.物体做直线或曲线运动的条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a)(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。
3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。分运动:
(1)在水平方向上由于不受力,将做匀速直线运动;
(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下.
6.速度
①水平分速度:
②竖直分速度:
③t秒末的合速度
④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示
7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
8.描述匀速圆周运动快慢的物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上
9.匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变
(2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的(3)周期T,频率:f=1/T
(4)线速度、角速度及周期之间的关系:
10.向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
11.向心加速度:描述线速度变化快慢,方向与向心力的方向相同,
12.注意:
(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
13.离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动万有引力定律及其应用
1.万有引力定律:引力常量G=6.67×Nm2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的`重力加速度:mg=Gg=G≈9.8m/s2高空物体的重力加速度:mg=Gg=G0.这表示力F对物体做正功。如人用力推车前进时,人的推力F对车做正功。
(3)当α大于90度小于等于180度时,cosα例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功
4.动能是标量,只有大小,没有方向。表达式
5.重力势能是标量,表达式
(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。
(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。
6.动能定理:
W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度解答思路:
①选取研究对象,明确它的运动过程。
②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。
③明确物体在过程始末状态的动能和。
④列出动能定理的方程。
7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)解题思路:
①选取研究对象----物体系或物体
②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。
③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。
④根据机械能守恒定律列方程,进行求解。
8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负
9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。
10、能量守恒定律及能量耗散
物理必修二知识点总结14
重力势能
1.电势能的概念
(1)电势能
电荷在电场中具有的势能。
(2)电场力做功与电势能变化的关系
在电场中移动电荷时电场力所做的功在数值上等于电荷电势能的减少量,即WAB=εA-εB。
①当电场力做正功时,即WAB>0,则εA>εB,电势能减少,电势能的减少量等于电场力所做的功,即Δε减=WAB。
②当电场力做负功时,即WAB<0,则εA<εB,电势能在增加,增加的'电势能等于电场力做功的绝对值,即Δε增=εB-εA=-WAB=|WAB|,但仍可以说电势能在减少,只不过电势能的减少量为负值,即ε减=εA-εB=WAB。
说明:某一物理过程中其物理量的增加量一定是该物理量的末状态值减去其初状态值,减少量一定是初状态值减去末状态值。
(3)零电势能点
在电场中规定的任何电荷在该点电势能为零的点。理论研究中通常取无限远点为零电势能点,实际应用中通常取大地为零电势能点。
说明:①零电势能点的选择具有任意性。
②电势能的数值具有相对性。
③某一电荷在电场中确定两点间的电势能之差与零电势能点的选取无关。
2.电势的概念
(1)定义及定义式
电场中某点的电荷的电势能跟它的电量比值,叫做这一点的电势。
(2)电势的单位:伏(V)。
(3)电势是标量。
(4)电势是反映电场能的性质的物理量。
(5)零电势点
规定的电势能为零的点叫零电势点。理论研究中,通常以无限远点为零电势点,实际研究中,通常取大地为零电势点。
(6)电势具有相对性
电势的数值与零电势点的选取有关,零电势点的选取不同,同一点的电势的数值则不同。
(7)顺着电场线的方向电势越来越低。电场强度的方向是电势降低最快的方向。
(8)电势能与电势的关系:ε=qU。
物理必修二知识点总结15
1、“绳模型”如上图所示,小球在竖直平面内做圆周运动过点情况。
(注意:绳对小球只能产生拉力)
(1)小球能过点的临界条件:绳子和轨道对小球刚好没有力的.作用
(2)小球能过点条件:v≥(当v>时,绳对球产生拉力,轨道对球产生压力)
(3)不能过点条件:v<(实际上球还没有到点时,就脱离了轨道)
2、“杆模型”,小球在竖直平面内做圆周运动过点情况
(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。)
(1)小球能过点的临界条件:v=0,F=mg(F为支持力)
(2)当0F>0(F为支持力)
(3)当v=时,F=0
(4)当v>时,F随v增大而增大,且F>0(F为拉力)
【物理必修二知识点总结】相关文章:
高一物理必修二知识点总结05-10
必修二物理教学反思05-19
高一历史必修二知识点总结01-17
高一物理必修1知识点归纳总结05-25
必修二物理教学反思范文04-25
初二物理知识点总结12-10
高一历史必修二知识点归纳01-04
必修三化学知识点总结11-17
高二物理上册知识点总结12-01