期末复习计划
光阴迅速,一眨眼就过去了,我们的工作又将在忙碌中充实着,在喜悦中收获着,此时此刻我们需要开始制定一个计划。那么你真正懂得怎么写好计划吗?以下是小编精心整理的期末复习计划5篇,仅供参考,大家一起来看看吧。
期末复习计划 篇1
一、指导思想:
以教材和新《课程标准》为依据,充分利用现有的教材,根据学生目前存在的问题,作系统性的复习,同时要面向全体学生,切实抓好基础知识和基本技能的复习,使好、中、差不同的学生都得到提高。
二、复习内容:
1、巩固本册生字词,理解一部分重要词语,能听写、运用本册中出现的词语。
2、能背诵指定课文,领会部分句子含义,会背诵、理解、默写古诗词。
3、进行系统分块复习,整理所学知识,进一步巩固单元目标的掌握,对听写、背诵、拼音、分析、审题、解题进行系统训练,并通过一定的.练习,进一步巩固已学知识。
4、通过复习,全面提高学生识字写字能力、阅读分析能力、作文的审题和写作能力等。
三、复习重点、难点:
本复习计划,针对不同层次学生,确定了不同的重点难点。
优生、中等生重点:在基本掌握识字写字等基本知识的基础上,重点进行阅读和作文训练。
难点:在阅读、作文训练中,贯穿各单元训练点及以前所学阅读训练要求,提高阅读能力。
后进生重点:以识字写字为重点抓好字词句的听写、背诵、默写.
难点:阅读中以对句段篇的理解,及学习训练点的巩固为重点,
巩固所学知识,提高分析、解题的应变能力,最终提高阅读能力。
四、具体措施:
(1)教会学生复习方法,先全面复习每一课,再重点攻有关重点课文的重点段落。
(2)采用多种方法,比如学生出题,抢答,抽查,学生互批等方法。提高学习兴趣。
(3)优帮差,加强合作与督促。
(4)课堂上教会学生抓住每篇课文的知识要点,重点突破,加强解决问题能力的培养。
(5)加强检查的落实,必要时动用小组长和班干协助,力求重要地方人人过关。
五、具体内容及时间:
时间:6月9日-----6月30日
第一阶段:语基部分
依据教材和试卷内容,对字、词语、句子方法所涉及到的项目进行归类概括。
第二阶段:阅读部分
内容:要求背诵的课文,重点课文的重点段落,第1课和第23的六首古诗词,以及加强课外阅读指导.形式:以学生练习为主,老师有针对性地重点评讲.
期末复习计划 篇2
一、复习目标:
1、全面复习本册书要求会认的400个生字,要求会写其中的100个生字,并能用常用字组词或者说话。
2、复习巩固拼音,能读准声母、韵母、声调和整体认读音节,能准确地拼读音节,正确书写声母、韵母和音节。包括:23个声母,24个韵母,16个整体认读音节。
二、复习内容:
1、汉语拼音:
1)、夯实语文基础知识,加强拼音(声母、韵母、整体认读音节)的复习,看拼音写词语和生字组词的训练。
2)、能读准声母、韵母,掌握拼音方法,能准确拼读音节,读准四声及轻声。能按要求规范书写声母、韵母和音节。通过各种方式记住要求会认的字。
1)、复习认读《生字表(一)》中的400个汉字, 复习掌握《生字表(二)》中的100个汉字。并能用常用字组词或者说话。
2)、复习和掌握一些常用的识字方法。
3)、复习辨析本册要求掌握生字中的形近字、同音字、多音字,复习本册要求的反义词、近义词,能用部分生字口头或书面组词。
本学期的写话仍然是看图写话,具体要求如下:
三、复习形式:
1、以归类复习为主,单元复习为辅,渗透学生的思维训练。不让学生硬性抄写和机械记忆,培养学生复习的兴趣。让学生比较轻松的度过复习阶段。
2、依据新课程标准,结合学生实际,有计划地进行字、词、句及听、说、读、写的综合复习,帮助学生归类整理学过的知识,查漏补缺,扎实基础知识和基本技能的训练,达到巩固知识、掌握规律、发展思维、提高能力的目的。
1、是互帮互学,优化组合。课内,我们主要采用互帮互学的形式,优等生与后进生搭配,发挥学生之间的`团结协作精神;课外,主要采用优优组合的形式,让同一层次的学生自由配对,发挥学生之间的竞争、激励机制。
3、是情绪的保持。积极的情绪是复习质量的保证。复习期间合理安排一些调节,通过创设和谐、平等的师生关系,让学生能保持积极的心理状态。
期末复习计划 篇3
复习要求:
1、注意复习的全面性。
2、注意重难点。
3、注意密度、合理分配时间。
4、以练为主,综合练习为主。
复习措施:
1、根据考试类型题,有系统的针对性的进行专项复习的针对性练习和反馈的巩固练习。
2、复习过程中进行阶段性综合练习。
3、在复习过程中要注重培优辅差工作。同时及时了解学生学习的思想动向,给予适当的鼓励和信心。
4、加强单词的朗读和默写,给学生明确的任务,使他们也能尽自己最大能力过好单词关。将词组复习与单词分类复习相联系。在复习过程中,要紧紧抓住教材中的阅读,做到精读和导读相结合,在较短时间内起到良好的教学效果。把单词、词组、句子和阅读作为一个有机整体,在复习过程中将它们紧密联系起来,合理安排复习内容,提高学生整体运用知识的能力。
5、坚持每节课前适量单词的听写,加强他们认真、细心的学习态度,巩固知识的`运用等能力和增强学习成功的信心。
复习计划:
1、认记所归纳的词组
2 、归纳语法
3、进行针对性的专项练习(1)单项选择(2)完型填(3)阅读理解
复习时间安排:根据自己的实际情况制定
期末复习计划 篇4
一、复习目标
1.将本学期所学知识进行系统的整理,使学生在头脑中建立起系统的知识网络,温故而知新。
2.促进学生的认知策略和发展提高应用数学知识解决实际问题的能力,培养学生的创新意识。
3.测查考核进行全面、科学、轻松愉快的评价,减轻学生压力,增强学生学习数学的自信心。
二、复习内容
知识与技能
(一)数与代数
1.认识1-20各数,进一步体会数的意义。
2.能熟练计算20以内数的加减法,解决相关的实际问题。
3.进一步巩固小数的意义、性质,解决一些实际问题。
4.能根据观察发现规律。
(二)空间与图形
1.根据特征进一步认识长方体、正方体、圆柱、球。
2.巩固认识左右、前后、上下方位。
(三)统计与概率
1.能熟练比较多少、大小、轻重、高矮、长短、远近、宽窄、粗细、厚薄。
2.能进行简单的数据整理,进一步了解象形统计图和简单的统计表。
(四)实践与综合运用
1.能运用学过的`知识解决实际问题。
2.能初步了解用数学研究问题的。
三、时间安排
复习内容课时安排每课时复习内容
20以内数的认识21.数数。(正数、倒数、单数、双数)
2.回顾数位的认识。
3.进一步了解数的意义。
4.反馈练习。
20以内数的加减法21.回顾加减法的意义。
2.巩固进位加、退位减的计算方法。
3.运用所学知识解决实际问题。
分类比较、统计整理11.回顾分类比较的方法。
2.回顾数据整理的方法。
3.运用知识解决相关的实际问题。
图形与位置11.进一步巩固所学图形的特征。
2.说说认识方位的要领。
3.解决相关的实际问题。
综合复习
31.综合练习
2.查漏补缺
四、复习方法
1.20以内数的认识
(1)引导学生用不同的方式进行数数练习,通过直观的计数器让学生进一步了解数的意义。
(2)反馈练习。
2.20以内数的加减法:
(1)引导学生回顾加减法的意义,通过计算让学生自己说说20以内进位加、退位减的方法,以及计算时应该注意的地方。
(2)运用所学知识解决相关的实际问题。
3.分类比较、统计整理:
引导学生回顾分类比较的方法、数据整理的方法。运用所学的知识解决简单的实际问题。
4.图形与位置:
引导学生说说长方体、正方体、圆柱、球的特征,认识左右、前后、上下方位的要领,与生活实际结合进行反馈练习。
5.针对复习内容进行随堂测查,根据反馈出的问题加以指导。
6.综合测试,查漏补缺。
期末复习计划 篇5
第一单元
(丰富的图形世界)
复习目标
1、进一步认识生活中常见的柱体、锥体、球体,并能对它们进行一些简单的类。
2、能了解直棱柱、棱锥、圆柱、圆锥等简单几何体的表面展开图,能根据展开图想象、判断和制作几何模型。
3、能描绘出立体图形的三视图,并能根据三视图判断立体图形的形状。
4、了解截面,能想象截面的形状。
5、经历几何体的展开、折叠、切截等活动,激发好奇心、积累数学活动经验,形成和发展空间观念。
复习内容
一.基础知识填空
1、图形是由点、线、面构成的。
2、在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等,棱柱的上下底面的形状相同,侧面的形状都是长方形。
3、用一个平面去截一个几何体,截出的面叫做截面。
4、我们把从正面看到的物体的图形叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。
5、圆上A、B两点之间的部分叫做弧,由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形,圆可以分割成若干个扇形。
6、圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形。
二.典型例题
例题1:如图,甲的图形经折叠后能否形成乙图的棱柱?如果能形成,回答:
(1)这个棱柱有几个侧面?侧面个数与底面边数有什么关系?
(2)哪些面的形状与大小一定完全相同?如果不能形成,简要说明理由。
分析与解:按顺序将上、下两个五边形折叠到所在长方形同侧,然后对着五边形的边依次折下去,就能形成右边的五棱柱。
(1)这个棱柱共有5个侧面,侧面个数与底面边数相同。
(2)五棱柱的上、下两个底面一定完全相同,其侧面都是长方形,但不一定完全相同。
注意:从展开图折叠成棱柱,得到的图形是唯一的,而把棱柱展开成平面图形,得到的展开图不是唯一的。
例题2:将正方体的表面沿某些棱剪开,能否展开成如下图所示的图形?
分析与解:解答此类问题要有一定的空间想象能力,也要掌握一些技巧。(2)中有五个小正方形连成一条线,正方体表面不可能展开成这种图形。(7)中有七个小正方形,这就更不可能了。一般来说,有四个小正方形连成一条线,这条“线”的两侧各有一个小正方形,都可以折成一个正方体。因此,正方体表面可以展开成(1)、(3)所示的图形。发展空间想象能力或用手折叠可知,正方体表面也可以展开成(5)、(6)所示的图形,但不能展开成(4)所示的图形。即(2)、(4)、(7)不可能,其余都可能。
例题3:请你设计一种方法,用平面去截正方体使得截口是三边相等的三角形。
分析与解:在正方体相邻的三个棱上各取一点,使这点到这三个棱的交点距离相等,连结这三个点得到三条连结线,沿这三条连结线用平面去截,所得的截口是三边相等的三角形。见下图
注意:做此类题目时,应先充分想象一下,然后操作,以保证正确性。
例题4:如图,是由几个小立方块搭成的几何体的甲、乙两个几何体的俯视图,小正方形中的数字表示在该位置上小立方块的个数,请画出它们的主视图与左视图。
分析与解:本题可根据俯视图确定主视图和左视图的列数,然后再根据数字确定每列方块的个数。
注意:从俯视图画主视图和左视图时,应从左到右找每列个数最多的作为该排的个数。
例题5:如图,是由几个一样的小正方体搭成的几何体的三视图,请在俯视图中的小正方形中填上该位置上的小立方体的块数。
分析与解:由主视图可知,俯视图第2行第1列的正方形中有1个小立方体,同
理可知俯视图右上角的正方形中有1个小立方体;由左视图可知,俯视图第2列中的两个正方形中都有两个小立方体。
第二单元
(平面图形及其位置关系)
复习目标
1、知道线段、射线、直线、角以及平行线、垂线的含义,并能举出现实生活中有关这些的实例。
2、会画线段和角,会画线段等于已知线段,会画角等于已知角;会比较两条线段的长短,会比较两个角的大小;会画已知直线的平行线和垂线。
3、了解七巧板和七巧板的使用;会根据实际需要设计简单的图案。
复习内容
一、基础知识填空
1、线段有两个端点,将线段向一端点无限延伸就形成了射线,射线有1个端点。将线段向两端点无限延伸就形成了直线,直线有0个端点。
2、两点之间的所有连线中,线段最短;两点之间线段的长度,叫做这两点的距离。
3、若点M把线段AB分成相等的两条线段AM与BM,则点M叫做线段AB的中点,这时,AM=BM=AB
4、由两条公共端点的射线组成的图象叫做角。
5、1°=60′=360″
6、从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线就叫做这个角的角平分线。
7、在同一平面内,不相交的两条直线叫做平行线。
8、经过直线外一点,有且只有一条直线与这条直线平行。
9、如果两条直线都与第三条直线平行,那么这两条直线平行。
10、如果两条直线_相交成直角,那么这两条直线互相垂直,互相垂直的两条直线的交点叫做垂足。
11、平面内,过一点有且只有一条直线与已知直线垂直。
12、过A点做l的垂线,垂足为B,线段AB的长度叫做点A到直线l的距离。
二、典型例题
例题1:如下图共有几条直线,几条线段,几条可以读出的射线,分么?
分析与解:(1)直线有一条MN;
(2)线段有:线段AB、线段BC、线段AC;
(3)射线有:射线AB、射线AM、射线BC、射线BA、射线CB、射线CN。
注意:解题过程中,做到“分类”“有序”,“分类”的原则
即不重复也不遗漏;“有序”的方法是指从某点,某条线段开
始有序地数。
例题2:(1)把25°2436"化为度(2)求80°224"×6
分析与解:
(1)度、分、秒化为度,应从秒开始,将36秒先单独列出
转化为分即36″÷60=0.6′再把24′+0.6′=24.6′转化为度即24.6′÷60=0.41,最后
得25.41。
(2)有关度数的计算与有理数的计算方法同样,只是运
算的顺序与进制不同,具体如下:
80°224"×6=80×6+2′×6+24″=480+12′+144″=48014′24″
注意:
(1)是低级单位向高级单位转化,使用的公式是1′=()
1"=()′;(2)的计算方法类似于有理数运算法则中的乘法对加法的分配律,使用的是60进制,且度分秒的互化是逐级进行的,不能“跳级”。
例题3:如图所示:直线AB、CD相交于点O,OE平分AOD,AOC=38,求DOE的度数。
分析与解:由于点C、O、D在同一条直线上可知COD是一个平角,度数为180
因为AOC=38
所以AOD=142
又OE平分AOD
因此DOE=AOD=71
注意:(1)题中有一个隐藏条件,就是COD=180,这是由直线AB、CD相交于点O得到的。
(2)根据角平分线的定义与角的和、差来考虑,由OE平分AOD,可得AOE=DOE=AOD
例题4:学校进行校际广播操比赛,体育老师是怎样整队的?
1、全体立正,各排向前看齐,是为了什么?
2、以某一排为基准,各排向左、向右看齐又是为了什么?
3、以某一排为基准,各排成广播操队形散开(保持前后左右适当距离),这样的广播操队形整齐美观。为什么?
分析与解:(1)各排向前看齐,使每排成为一条直线;
(2)各排向左、向右看齐,使每一行成为一条直线;
(3)保持左、右适当距离,使各排和各行所在直线互
相平行,而且对角线上的所有同学所在队列也互相平行。
注意:通过学生熟悉的亲身经历体验,感受几何美,同时能对理解“平行线”的概念有一定帮助。
例题5:如图所示,过O点分别作CB、AD的垂线。
分析与解:把三角尺的一边和AB重合,同时使另一边紧靠在O点上,沿这条边画直线就是AB的垂线,同理可以过O点作出CD的垂线。
注意:在用三角尺作已知直线的垂线时,必须把三角尺的一边(理解为一条直线)和已知直线重合。
例题6:我们对钟表再熟悉不过了,可是你是否注意过时钟、分针的相关位置所蕴含的数量关系呢?
(1)分针每分钟转6°,时针每分钟转0.5°;
(2)同一段时间内,分针所转的角度与时针所转的角度的比值等于12;由此,你能不能算出1点和2点之间,时针和分针什么时候重合?什么时候两针成90°的角呢?
注意:有关钟表问题计算,可以利用上述(1)、(2)两个规律来解决。
例题7:用七巧板拼图:
(1)请用两副一样的七巧板拼出两个人见面互相行礼的图形,如下图(1)
(2)请用三套一样的七巧板拼出两人打乒乓球的图形,如图(2)分析与解:对组成七巧板的各种图形的正确认识是解该题的关键。
三、课时小结
1、本章知识是在小学几何初步知识基础上,进一步对几何中的线段、射线、直线、角、平行线、垂线的含义进行研究,并结合生活常识给出了一些基本性质,使我们对几何基本图形有了更深刻的理解。
2、通过本章学习不仅要求同学要养成动手操作的习惯,而且要培养数形结合的思想。
四、课外作业
第三单元
(有理数及其运算)
复习目标
1、能灵活运用数轴上的点来表示有理数,理解相反数、绝对值,并能用数轴比较有理数的大小。
2、能熟练运用有理数的运算法则进行有理数的加、减、乘、除、乘方计算,并能用运算律简化计算。
3、能运用有理数及其运算解决简单的实际问题。
4、会用计算器进行加、减、乘、除、乘方计算和解决实际问题中的复杂计算。
复习内容
一、基础知识填空
1.0既不是正数,也不是负数。
2.整数和分数统称有理数。、
4.规定了原点、正方向、单位长度的直线叫做数轴。
5.只有符号不同的两个数,我们称其中一个数为另一个数的相反数。
6.数轴上两个点表示的数,右边的数的总比左边的数的大;正数都大于0,都小于0,正数大于一切负数。
7.在数轴上一个数所对应的点与原点距离叫做该数的绝对值;正数的绝对值是它本身;负数的绝对值是它的相反数,0的绝对值是0;两个负数比较大小,绝对值大的反而小。
8.有理数加法法则:同号两数相加,取加数的符号,并把绝对值相加,异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加仍得这个数。
9.减去一个数,等于加上这个数的相反数。
10.有理数乘法法则:两数相乘,同号得正,异号得负,任何数与0相乘,积为0
11.乘积为1的两个有理数互为倒数
12.求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂
13.中,a叫做底数,n叫做指数
14.有理数的混合运算的运算顺序是:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号
二、典型例题
例题1:用“”号连接下列各数:,-2.5的相反数,-3.8,3,-4的绝对值
分析与解:当多个有理数进行比较大小时
,往往借助数轴,利用右边的数比左边的数大来比较。可分别用字母表示各个数,再在数轴上表出字母对应的数。
A:0B:-2.5的相反数C:-3.8D:3E:-4的绝对值
所以-4的绝对值-2.5的相反数0-3.8
注意:比较两个以上的数的大小可借助于数轴这一重要工具,把这5个数字用数轴上的点表示,从大到小的排序就自然完成了。
例题2:把下列各数填在表示相应集合的大括号中
正数集合:{┄},分数集合:{┄}
负整数集合:{┄},非负数集合:{┄}
自然数集合:{┄},有理数集合:{┄}
分析与解:明确非负数,自然数、负整数和有理数等概念,是解决问题的关键,非负数包括0和正数,自然数包括0和正整数,题中的小数可以当作分数对待。
注意:各个集合之间的区别与联系,务必弄得清清楚楚,才能保证集合中的数准确无误。
例题3:计算:
分析与解:本题可先把加减混合运算统一成加法,再写成简化的`代数式,然后利用运算律简化运算。
注意:应用加法交换律、结合律时一定要注意每个数的性质符号不能改变,根据问题特点,灵活选择合适的解法是解题关键。
例题4:计算
分析与解:将题中的除法运算转化为乘法运算以后,可发现本题能利用乘法的运算性质简化运算。
注意:对于计算题,应仔细观察题目的特点,尽量使用简便方法。
例题5:计算(-0.25)20xx×42004的值
分析与解:当发现一个题算起来比较麻烦时,我们就应该细观察,多动脑,尽可能找出简便的方法来此题若直接求(-0.25)20xx和42004比较难,但细观察可以发现这就是提醒我们利用乘法交换律和结合律,就比较容易求出结果16。
第四单元
(字母表示数)
复习目标
1、进一步经历探索事物之间的数量关系,并能用字母与代数式表示出来。
2、理解用字母表示数的意义和代数式的含义,会分析和解释一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系。
3、掌握合并同类项和去括号的法则,会进行计算。
4、会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律。
复习内容:
一、基础知识填空
1、用运算符号把数或表示数的字母连接而成的式子叫做_代数式;单独一个数或一个字母也是_代数式。
2、在代数式中,字母前的数字因数叫做它的_系数______。
3、所含_字母_相同,并且相同_字母的指数__也相同的
项叫做同类项,把同类项合并成一项就叫做_合并同类项_.
4、合并同类项法则:__把同类项的系数相加,字母和字母的指数不变。
5、去括号法则:__括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“—”号,把括号和它前面的“—”号去掉后,原括号里各项的符号都要改变
二、典型例题
例题1:用字母表示下面实际问题:
(1)长方体的长、宽、高分别为a、b、c,那么长方体的体积是多少?表面积是多少?
(2)某服装标价为a元,按八折优惠出售,那么出售价是多少元?
(3)下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n1)盆花,每个图案花盆的总数是S。按此规律,推出S与n的关系。
分析与解:(1)由长方体体积公式=长×宽×高,表面积=六个小面积的和,可得长方体体积是abc,表面积是2(ab+bc+ac);(2)所谓的八折指得是按标价的百分之八十出售,因此出售价是0.8a元;(3)由于每条边上都是n盆花,这样三条边上花盆的总和为3n,其中重复地计算了顶点上的花盆数,因此,花盆总数应为3n-3。因此当n=2时,花盆总数是2×3-3=3;
当n=3时,花盆总数是3×3-3=6;
当n=4时,花盆总数是4×3-3=9;
…
当每条边有n个花盆时,花盆总数S=3n-3
注意:(1)用含有字母的式子表示实际问题时,必须弄清楚实际问题中的数量关系;
(2)数字与字母相乘,或数乘以含有字母的式子,一般省略乘号,并把数字写在前面;
(3)字母和字母相乘时,可以把“×”写成“·”,或不写。
例题2:求下列代数式的值:
分析与解:(1)先要找准同类项,然后把同类项的系数相加,字母和字母的指数不变。
(2)此题可以直接去括号,再合并同类项最后求值,但仔细观察可以发现每
个括号里的式子都一样,所以可以像合并同类项一样对这几个式子直接合并。
注意:一般地在求代数式的值时,我们都要先看代数式是否可以合并同类项,如果可以,我们应先合并,再求值。
例题4:在如图所示的20xx年1月份的日历中,用一个方框圈出任意3×3个数。
第五单元
(一元一次方程)
复习目标
1、了解一元一次方程的概念及一元一次方程的解法;
2、能熟练地解一元一次方程,并能利用它解决一些实际问题;
3、体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性。
复习内容
一、知识填空
1、含有未知数的等式叫做方程。
2、只含有一个未知数,并且未知数的指数是1次的方程,叫做一元一次方程。
3、等式两边同时加上(或减去)同一个代数式所得结果仍是等式;等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式。
4、把原方程中的某项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
5、解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成的形式。
6、本金+利息=本息和,利息=本金×利率×期数。
二、典型例题
注意:①解一元一次方程应认真观察其特点;②去分母时,不能漏乘无分母的项;③分数线不仅表示除号和比号,还起着括号的作用,因此去分母时,要去分数线,应将分子作为一个整体,加上括号,然后再去括号。
例题3:某同学用十字形框子套住日历中某个月的5个数,这5个数的和是125可能吗?为什么?
分析与解:由日历上的数字排列规律:上下两数相差7,左右两数相差1,因此设中间的数为x,则另外4个数分别为:x-1,x+1,x-7,x+7得方程(x-1)+(x+1)+x+(x-7)+(x+7)=125,解得x=25,所以x+7=32,因32>31,不合要求,所以这5个数之和是125是不可能的.
注意:先按常规方法求出这5个数的大小,再检验是否合乎常理就行了。
例题4:有甲、乙两个容器,甲容器是长方体,底面是边长为2的正方形,高为3;乙容器是圆柱形,底面半径为1,高为3,如果甲容器装满水,将其中一部分水倒进乙容器,使两个容器内的液面一样高,求此时液面的高。(为3.14,精确到0.01)
分析与解:①长方体的体积:v=abc,圆柱体的体积:②甲容器的容积=甲容器中水的体积+乙容器中水的体积。由以上两点可列出方程。设此时液面的高为x,由题意得,得x=1.68。
注意:解答本题的关键是找出等量关系:两个容器里的水的体积之和等于甲容器的容积。
例题5:某城市按以下规定收取每月煤气费,一个如果不超过70m3,按每立方米0.9元收费,如果超过70m3,超过部分按每立方米1.1元收费,已知某用户5月份的煤气费平均每立方米0.95元,那么5月份这个用户应交煤气费多少元?
分析与解:
因为五月份的煤气费平均每立方米0.95元,介于0.9元到1.1元之间,由此可知该用户5月份的煤气使用量超过70m3,煤气费应由两部分组成。所以可设该用户5月份用了xm3煤气,由题意得70×0.9+1.1(x-70)=0.95x
解之得x≈93.3∴0.95x=89
即5月份这个用户应交煤气费89元。
三、课时小结
1、一元一次方程是方程知识中最基础的内容,是学习一元二次、一元多次及二元一次、二元二次等其它方程的奠基石;
2、一元一次方程的解法也是其它方程解法的基础,其它方程的求解最终会转化成求一元一次方程的解;
3、生活中的一些实际问题可以通过建立方程的模型来解决。
四、课外作业
【期末复习计划】相关文章:
期末的复习计划01-23
(经典)期末复习计划07-28
【精选】期末复习计划07-05
期末复习计划(精选)07-05
期末复习计划06-20
(经典)期末复习计划07-29
期末复习计划(经典)07-29
[经典]期末复习计划08-02
期末复习计划[经典]07-30
期末复习计划【经典】08-04