复习计划
时光飞逝,时间在慢慢推演,很快就要开展新的工作了,让我们一起来学习写计划吧。相信大家又在为写计划犯愁了?以下是小编为大家整理的复习计划5篇,仅供参考,希望能够帮助到大家。
复习计划 篇1
数学复习具有基础性和长期性的特点,数学知识的学习是一个长期积累的过程,要遵循由浅入深的原则,先将知识基础打牢,构建起知识体系,然后再去追求技巧以及方法,一座高楼大厦必定是建立在坚实的地基之上的,因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。
同时,有一个科学的学习计划,才能迅速的更有效率的掌握数学知识。因此,我们按照这个原则制定了详尽的数学学习计划,使得同学们能够迅速的巩固基础知识,循序渐进,加快数学学习的步伐。为今后数学水平的提高打下一个坚实的基础。在研究生考试过程中先人一步,胜人一筹。
一、 数学二 试卷结构
此试卷结构参考往年考研大纲
种类
内容比例
题型比例
数学二
高等数学约78%
线性代数约22%
填空题与选择题约37%
解答题(包括证明题)约63%
二、 数学复习全年规划
第一阶段 夯实基础,全面复习
主要目标:基本教材阶段。吃透考研大纲的要求,做到准确定位,事无巨细地对大纲涉及到的知识点进行地毯式的复习,夯实基础,训练数学思维,掌握一些基本题型的解题思路和技巧,为下一个阶段的题型突破做好准备。
第二阶段 熟悉题型,前后贯通
主要目标:复习全书阶段。大量习题训练,熟悉考研题型,加强知识点的前后联系,分清重难点,让复习周期尽量缩短,把握整体的知识体系,熟练掌握定理公式和解题技巧。
第三阶段 查缺补漏,模拟训练
主要目标:套题、模拟训练题阶段。练习答题规范,保持卷面整洁,增加信心,练习掌握考试时间的分配,增强临场应变的能力,要对自己前两个阶段复习中出现含糊不清,掌握不牢的地方重点加强。
第四阶段 强化记忆,保持状态
主要目标:查漏补缺,回归教材。强化记忆,调整心态,保持状态,积极应考。
三、教材的选择
《高等数学》同济版:讲解比较细致,例题难度适中,涉及内容广泛,是现在高校中采用比较广泛的教材,配套的辅导教材也很多。
《线性代数》清华版:讲解详实,细致深入,适合时间充裕的同学(推荐)。
《线性代数》同济版:轻薄短小,简明易懂,适合基础不好的同学。
《概率论与数理统计》浙大版:课后习题中基本的题型都有覆盖。
四、学习方法解读
(1)强调学习而不是复习
对于大部分同学而言,由于高等数学学习的时间比较早,而且原来学习所针对的难度并不是很大,又加上遗忘,现在数学知识恐怕已经所剩无几了,所以,这一遍强调学习,要拿出重新学习的劲头亲自动手去做,去思考。
(2)复习顺序的选择问题
我们建议先高等数学再线性代数再概率论与数理统计。高等数学是线性代数和概率论与数理统计的基础,一定要先学习。我们并不主张三门课齐头并进,毕竟三门课有所区别,要学一门就先学精了再继续推进,做成夹生饭会让你有种骑虎难下的感觉,到时你反而会耗费更多的时间去收拾烂摊子。同学们也可根据自己的特殊情况调整复习顺序。
(3)注意基本概念、基本方法和基本定理的复习掌握
结合考研辅导书和大纲,先吃透基本概念、基本方法和基本定理,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。分析表明,考生失分的一个重要原因就是对基本概念、基本定理理解不准确,基本解题方法没有掌握。因此,首轮复习必须在掌握和理解数学基本概念、基本定理、重要的数学原理、重要的数学结论等数学基本要素上下足工夫,如果这个基础打不牢,其他一切都是空中楼阁。
(4)加强练习,重视总结、归纳解题思路、方法和技巧
数学考试的所有任务就是解题,而基本概念、公式、结论等也只有在反复练习中才能真正理解和巩固。试题千变万化,但其知识结构却基本相同,题型也相对固定,一般存在相应的解题规律。通过大量的训练可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
(5)不要依赖答案
学习的过程中一定要力求全部理解和掌握知识点,做题的过程中先不要看答案,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己把题目独立地做一遍。不要以为看明白了就会了,只有自己真正做一遍,印象才能深刻。
(6)强调积极主动地亲自参与,并整理出笔记
注意一定要在学习过程中写出自己的感受,可以在书上以题注的形式或者就是做笔记,尽量深挖例题内涵,这一点很重要,并且要贯彻前三轮的复习,如果最后一轮复习我们有了自己整理的笔记,就会很轻松。有同学说学习线性代数最好的办法就是亲自推导,这话很有道理,事实上如果我们学习什么知识都采取这种态度的话,那肯定都会学得非常好。
五、复习进度表
每天至少应该花2.5-3.5个小时左右来复习数学,这样才能保证在基础阶段把整个数学的基础知识复习完。其中用1.5-2个小时左右的时间理解掌握概念、定义等,用1-1.5小时左右来做习题巩固。对于数学基础较薄弱的同学建议每天再加一个小时的复习时间用来做习题并总结。
具体每章复习所用的时间我们在每章题目旁边给出了一个复习时间限定期限,如果超出这个时间,或者少于这个时间最好要和你的主管顾问讲明原因,由主管顾问根据你学习的.情况来调整复习的时间与内容。
注意:本计划对应习题涵盖在以下教材中:
《高等数学》第五版 同济大学应用数学系主编 高等教育出版社
《线性代数》第二版 居余马编著 清华大学出版社
复习计划使用说明:
(1) 学习计划里有日期、学习时间,日期是对本章知识内容的限定时间,学习时间是针对复习知识点在大纲中的要求而建议应该使用的学习时间,同学们在学习的时候一定要两者同时兼顾,平时如果学习时间不够,可利用周末的时间做调整。
(2) 计划里明确了每章该看的知识点、该做的习题,后面备有大纲要求,学员要根据大纲要求合理学习知识点。
(3) 每章复习结束后都必须做单元测试题,单元测试题是准确把握学员是否按照大纲要求掌握了本章内容。学员在做复习完每章内容后,跟主管顾问要本章测试题。测试题做完后一定要把成绩反馈给你的主管顾问,以便主管顾问和教研组老师根据你的复习情况及时调整你的学习方法与内容。
(4) 同学们在复习的时候一定要和你周围的同学、老师多交流学习心得。只有你总结出来的方法才是最适合你的方法。
(5) 同学们在复习的过程中肯定要遇到一些疑难问题、做错的题目,一定要在第一时间整理到你的笔记本里,方便的时候可以答疑。
高等数学
第一章 函数与极限(10天)
微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系。极限是微积分的理论基础,研究函数实质上是研究各种类型极限。无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。我们研究的对象是连续函数或除若干点外是连续的函数。
日期
学习时间
复习知识点与对应习题
大纲要求
第一周第二周
2.5-3.5小时
函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式. 习题1-1:4,5,7,8,9,13,15,18
1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系
2. 了解函数的有界性、单调性、周期性和奇偶性
3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念
4. 掌握基本初等函数的性质及其图形,了解初等函数的概念
5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系
6. 掌握极限的性质及四则运算法则
7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限,
9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型
10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
2.5-3.5小时
数列定义,数列极限的性质(唯一性、有界性、保号性 ) P26(例1,例2)P27(例3)习题1-2:1,3,4,5,6
2.5-3.5小时
函数极限的基本性质(不等式 性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等)P33(例4,例5)P35(例7)习题1-3:1,2,4,6,7,8
2.5-3.5小时
无穷小与无穷大的定义,它们之间的关系,以及与极限的关系习题1-4:1,2,4,5,6,7
2.5-3.5小时
极限的运算法则(6个定理以及一些推论)P46(例3,例4),P47(例6),习题1-5:1,2,3
2.5-3.5小时
两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限
P51(例1)习题1-6:1,2,4
2.5-3.5小时
无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法 P57(例1)P58(例5)习题1-7:1,2,3,4
2.5-3.5小时
函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。例1-例5习题1-8:2,3,4,5
2.5-3.5小时
连续函数的运算与初等函数的连续性(包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性)
例4-例8 习题1-9:1,2,3,4,5
2.5-3小时
理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理(零点定理对于证明根的存在是非常重要的一种方法).
例1-例2,习题1-10:1,2,3,4,5
3.5小时
总复习题一:1,2,8,9,10,11,12
2小时
总结本章 做本章测试题- 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。
第二章:导数与微分(9天)
一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。函数微分是函数增量的线性主要部分。
日期
学习时间
复习知识点与对应习题
大纲要求
第二章 第三周
2.5-3.5小时
导数的定义、几何意义、力学意义,单侧与双侧可导的关系,可导与连续之间的关系(非常重要,经常会出现在选择题中),函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平面曲线的切线方程和法线方程.
例3-例7 习题2-1:6,7,9,11,14,15,16,17
1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
2.5-3.5小时
复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,(幂、指数函数求导法,反函数求导法),分段函数求导法
例-例17 习题2-2:2,3,4,7,8,9,1012)
2.5-3.5小时
高阶导数和N阶导数的求法(归纳法,分解法,用莱布尼兹法则)
例1-例7 习题2-3:2,3,4,7,8,9
2.5-3.5小时
由参数方程确定的函数的求导法,变限积分的求导法,隐函数的求导法
例1-例10 习题2-4:2,4,7,8,9,11
2.5-3.5小时
函数微分的定义,微分运算法则,一元函数微分学的简单应用
例1-例6 习题2-5:1,2,3,4,5,6,
2.5-3.5小时
总复习题二:1,2,3,5,6,9,11,13
2小时
第二章测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑。
第三章:微分中值定理与导数的应用(10天)
连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。微分学的另一个重要应用是求函数的最大值和最小值。
日期
学习时间
复习知识点与对应习题
大纲要求
第三周-第四周
2.5-3.5小时
微分中值定理及其应用(费马定理及其几何意义,罗尔定理及其几何意义,拉格郎日定理及其几何意义、柯西定理及其几何意义)例1,习题3-1:1-15
1.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
2.掌握用洛必达法则求未定式极限的方法.
3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.
4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
5.了解曲率和曲率半径的概念,会计算曲率和曲率半径.
2.5-3.5小时
洛比达法则及其应用 例1-例10,习题3-2:1-4
2.5-3.5小时
泰勒中值定理,麦克劳林展开式 例1-例3 习题3-3:1-7,10
2.5-3.5小时
求函数的单调性、凹凸性区间、极值点、拐点、渐进线(选择题及大题常考)例1-例12 习题3-4:4,5,8,9,11,12,14
2.5-3.5小时
函数的极值,(一个必要条件,两个充分条件),最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题 例1-例6 习题3-5:1,4,5,6,7,10,11,14
2.5-3.5小时
简单了解利用导数作函数图形(一般出选择题及判断图形题),对其中的渐进线和间断点要熟练掌握,一元函数的最值问题(三种情形)。例1-例3 习题3-6:1-5
2.5-3.5小时
曲率、曲率的计算公式,与曲率相关的问题 例1-例3,习题3-7:1-8
2.5-3.5小时
总结本章知识点,总复习题三:1-12,19
2小时
第三章测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。
第四章:不定积分(9天)
积分学是微积分的主要部分之一。函数积分学包括不定积分和定积分两部分。在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。
日期
学习时间
复习知识点与对应习题
大纲要求
第五周-第六周
2.5-3.5小时
原函数与不定积分的概念与基本性质(它们各自的定义,之间的关系,求不定积分与求微分或导数的关系),基本的积分公式,原函数的存在性,原函数的几何意义和力学意义例1-例16 习题4-1:1
1.理解原函数概念,理解不定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分换元积分法与分部积分法.
3.会求有理函数、三角函数有理式及简单无理函数的积分.
2.5-3.5小时
不定积分的换元积分法,第二类换元法 例1-例27
2.5-3.5小时
不定积分的计算 习题4-2:2(1-20)
2.5-3.5小时
不定积分的计算 习题4-2:2(21-40)
2.5-3.5小时
不定积分的分部积分法 例1-例10 习题4-3:1-20
2.5-3.5小时
有理函数积分法,可化为有理函数的积分,例1-例8 习题4-4:5-20
2.5-3.5小时
不定积分计算,总复习题四:1-20
2.5-3.5小时
不定积分计算 总复习题四:21-40
2小时
总结本章,做第四章单元测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。
第五章: 定积分(9天)
日期
学习时间
复习知识点与对应习题
大纲要求
第六周-第七周
2.5-3.5小时
定积分的概念与性质(可积存在定理)(定积分的7个性质)
习题5-1:2,3,5,6,7,8
1.理解原函数概念,理解定积分的概念.
2.掌握定积分的基本公式,掌握定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式及简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解广义反常积分的概念,会计算广义反常积分.
2.5-3.5小时
微积分的基本公式 积分上限函数及其导数 牛顿-莱布尼兹公式 例1-例8 习题5-2:1-5
2.5-3.5小时
习题5-2:6-12
2.5-3.5小时
定积分的换元法与分部积分法 例1-例10 习题5-3:1
2.5-3.5小时
习题5-3:2-11
2.5-3.5小时
反常积分 无界函数反常积分与无穷限反常积分 例1-例5 习题:5-4:1-3
2.5-3.5小时
反常积分的审敛法 例1-例8 习题5-5:1-3
2.5-3.5小时
总复习题五:1-11 12,13
2小时
总结本章,做第五章单元测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性的对本章的内容进行复习或者到总部答疑。
第六章:定积分的应用(7天)
日期
学习时间
复习知识点与对应习题
大纲要求
第七周-第八周
2.5-3.5小时
定积分元素法 一元函数积分学的几何应用(求平面曲线的弧长与曲率,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积,求旋转面的面积)例1-例14
1. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等)及函数的平均值等.
2.5-3.5小时
定积分应用的一些计算 习题6-2:1-15
2.5-3.5小时
定积分的几何应用相关计算 习题6-2:16-30
2.5-3.5小时
定积分的物理应用(用定积分求引力,用定积分求液体静压力,用定积分求功)。综合题目的求解。例1-例5 习题6-3:1-5
2.5-3.5小时
定积分的物理应用 定积分综合题目求解 习题6-3:6-12
2.5-3.5小时
总复习题六:1-9
2小时
总结本章,做第六章单元测试题 检验自己是否对本章的复习合格(合格成绩为80分以上),如果合格继续向前复习,如果不合格总结自己的薄弱点,还要针对性对本章的内容进行复习或者到总部答疑。
复习计划 篇2
(一)复习核心
此阶段平均每天学习英语约3.5小时,主要学习内容包括:
①单词记忆,每天30分钟,目标是记忆易混超难词汇、词汇前缀后缀、熟词生义、同义词近义词辨析、短语等,在比较中进行记忆,对单词深化记忆。
②阅读理解,阅读专项训练一定要按时按质完成。暑假时间比较充分,一定得好好利用。对阅读的要求是能够在70分钟内做完4篇阅读理解题目,掌握阅读技巧,阅读理解能力有一个质的飞跃。
③完形填空的集中练习,平均每天20分钟,熟悉考研英语完形填空的命题特点,并进行强化训练,进一步巩固单词和语法。
④翻译的集中练习,平均每天20分钟,熟悉考研英语翻译的命题特点,并进行强化训练,进一步巩固单词和语法。
⑤考研真题研究,本阶段用时大约为60-90小时,对近十年的真题以做套题的方式模拟一遍并认真分析,对考研英语真题的特点有更系统深入的研究和把握;对于阅读理解要从命题角度去掌握每一篇文章;单词、短语、长难句全部过关。
⑥作文范文的`学习及练习,每个学员必须在这阶段开始作文练习,形成自己的写作模式。参考真题中的作文题目,熟练运用大、小作文常用模板;通过作文练习,把握作文结构和主题,能够写出符合考研作文要求的文章,最大限度避免常见语法错误。
经过一段时间的复习后,考生基本了解了自己各模块的水平,在这一阶段,应强化优势,弥补劣势,在习题方面可以选择专项训练,并养成记复习笔记的好习惯,把做题过程中遇到的问题以及生词都记在笔记上,经常翻阅。
(二)学习误区及应对指导
切忌阅读题只做后面的题目,要理清文章的结构和行文思路,把握文章的主题,明确作者的态度。
(三)学习方法及建议
英语复习要有计划性和针对性,看似简单的道理如何付诸实践却需要毅力和技巧。建议如下:
1.最好每天制订详细的复习计划并努力完成。
2.另外,在复习的过程中,不仅要计划明确,还要注意重点突出。
3.在时间和精力有限的情况下,一方面是要抓有可能快速提高的项目,另一方面就是要抓分值高的项目。
4.在英语考试中,阅读和作文总计占了70分,四篇阅读文章每道题占2分,因而,对阅读应当充分重视。
5.最后,利用最后的机会查漏补缺。请坚信只要具备了信心、毅力,辅之以正确的方法,再加上良好的身体和心理素质,最后的胜利非你莫属!
复习计划 篇3
一、复习目的:
在完成必须的学习任务后,引导学生进行系统的复习,巩固知识,进行考试,对一学期的学习有一个小结。
二、复习的时间:
从12月19日到12月28日,包括四天周末的时间,共15天时间。
三、复习安排和内容:
1、12月12日到12月16日,把分项考试考完。
(1)朗读课文;(2)背诵课文;
(3)背诵宋词;(4)口语交际;
(5)读词语表的词语;(6)听写词语;
(7)作文;(8)写字。
2、12月19日到12月28日,每天系统复习。
每天过一至两单元的书本内容,在复习本上写重点强调的内容(不要过多)。
3、复习的内容:
(1)生字词语;(2)句子;(3)课文;
(4)作文;(5)形近字;(6)多音字;
(7)阅读;(8)句式;(9)古诗。
(一)口试复习指导:
1、背诵宋词:能正确、流利地背诵五首宋词——水调歌头.苏轼、少年游.柳永、雨霖铃.柳永、如梦令.李清照、卜算子咏梅.陆游。
2、读词语:生字表(一)(180页—182页)会认的字会读、会组词。
3、朗读课文:能正确、流利、有感情地朗读本册书32篇课文和8篇选读课文。
4、背诵课文:本册书所有指定背诵的课文能正确、流利、有感情地背诵。
5、口语交际:考第八单元口语交际《我们的奇思妙想》。
(二)笔试复习指导:
1、听写生字词语:生字表(二)(183页——185页)所有的生字,知道生字的拼音、结构、偏旁,会正确书写、组词、扩词。(组词不能用拼音代替生字)
2、会写的内容:本册书要求会背的古诗、八个单元的“读读写写”“日积月累”要会背会写、。
3、默写的内容:《题西林壁》、《游山西村》、《黄鹤楼送孟浩然之广陵》、《送元二使安西》。
4、写字:注意写好每个字,规范美观,整洁干净。
5、作文:认真完成平时的作文,期末考试作文要读清楚题目要求再写,书写工整。
6、整理复习:将单元考试卷和练习册所带的单元复习卷装订,进行整理复习。
(具体复习内容补充)
所背的篇目:第1课3——4自然段、第2课7——8自然段和12——13自然段、第5课、第6课、第13课3——5自然段、第15课、第18课4——5自然段、第20课、第26课7——9自然段以及第31课第1自然段。
笔试复习指导:
1、生字表(二)(183页——185页)所有的生字,知道生字的拼音、结构、偏旁,会正确书写、组词、扩词。(组词不能用拼音代替生字)
2、本册书要求会背的古诗、八个单元的.“读读写写”“日积月累”要会背会写、。
默写的内容:《题西林壁》、《游山西村》、《黄鹤楼送孟浩然之广陵》、《送元二使安西》;17页的“读读写写”、19页的“日积月累”、35页的“读读写写”、38页的“日积月累”、58页的“读读写写”、77页的“读读写写”、79页的“日积月累”、95页的“读读写写”、98页的“日积月累”、116页的“读读写写”、138页的“读读写写”、141页的“日积月累”、156页的“读读写写”。
3、给生字表(二)的生字找形近字或同音字,生字、形近字或同音字会组词。
4、在本册书中找多音字,给多音字组词。
5、本册书中出现的成语以及四字词组,能正确书写(常用成语会解释词义字义),并会积累更多的成语。
6、积累近、反义词,能正确书写。
7、积累打比方句、拟人句和反问句,会用正确使用。
8、做因果关系、递进关系、转折关系、条件关系、假设关系等句型训练题,掌握这几种关系的关联词语。
9、训练改病句——词语搭配不当、缺句子成分、词序颠倒、词语重复等。
10训练给错乱句子排序的习题。
11有选择的认真做十篇阅读题。
12多看优秀习作,积累好词佳句。
复习计划 篇4
教学目标:
1、经历工程问题的笼统化过程,进一步感知它的发生。
2、复习巩固工程问题的一般解决战略。同时通过联想熟悉的事件解决与此相类似的数学问题,进而进行类比数学思想的渗透。
3、在基本解决简单工程问题的基础上进行拓展练习。
教学过程:
课前谈话。同学们,在数学这门学科里,大家最感到头痛的是什么?(解决问题)同学们还知道在这门学科里最有价值的是什么?(解决问题)它能让我们感受到数学的价值,体验到学习的快乐与胜利。
一、感知工程问题的特征和发生的原因。
1、出示课件。上面显示以下习题。
1盘柏公路长8千米,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?
2盘达公路长20千米,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?
3柏达公路长28千米,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?
4一段路,单独修甲队40天完成,乙队单独做50天修完,两队合修多少天完成?
请同学们先认真观察这几个题有什么特征,再冷静地考虑一下,看谁能最快解答出来?(教师巡视,发现那么没有一个一个解答的同学,只解答一个的同学。然后让这位同学汇报原因,直击中心两队每天的工作量(占总共的几分之几没发生变化)从而得出这一段路的长度可以有多种数量表示,我们可以把它们看作“单位1”来进行解答。对这些同学进行大力褒扬。
8÷( + )
20÷( + )
28÷( + )
1÷( + )
二、复习基本解决战略。
1、出示例题。一项工程,甲队单独做20天完成,乙队单独做15天完成,假如两队合做多少天可以完成总共的 ?
1先认真读题,独立考虑(理清思路)完成习题。
2汇报交流。要求说出解题思路。通常有综合法和分析法两种。
3假如同学回答较好,则不必出示解题思路,假如不是很好则出示。而且要布置一个习题让同学做后进行交流说出自身的解题思路。
解题思路:我是这样想的。甲队单独做20天完成,就可以想到甲队每天做的(也就是甲队的工作效率)占总共的 ;乙队单独15天完成,就可以想到乙队每天做的(也就是乙的工作效率)占总共的 。甲乙两队合作一天就是甲队每天修的 和乙队每天修的' ,也就是 + 。用两队完成总工程的 ,除以两队每天完成总共的 + ,就可以得到需要多少天。 ÷( + )
像这种从条件入手解决问题的战略称为综合法。
我还可以这样想:要想求出甲乙合作多少天完成总共的 ,就必需找出甲乙合作的工作总量( )和甲乙合作一天的工作效率的和( + ),然后根据工作总量÷工作效率和=合作时间 ÷( + )像这种从问题入手解决问题的战略称为分析法。
4练习题。
复习计划 篇5
一、夯实基础
“纲”是《数学考试大纲》,“本”为课本。虽然17年的数学考试大纲尚未颁布,但万变不离其宗,考研数学的基本内容一般变化不大,考生可以参照去年的大纲和试题进行复习。详细了解本专业应考的数学卷种的基本要求,考试的题型、类别和难易度,以便更好的展开复习。凡是在大纲中表述为“会”、“理解”、“掌握”等的考试内容往往都是主要考点,务必要作为复习的重点。
数学复习不像英语、政治对辅导书的依赖性很大,主要靠课本来打下坚实的基础。翻一下数学大纲,上面列出的知识点全部来源于课本。老师提醒同学们一定要老老实实参照大纲的要求把原来的课本找出来,按照大纲对数学基本概念、基本方法、基本定理准确把握。
数学学习中很重要的莫过于坚实的基础,包括对定理公式的深入理解,对基本运算的熟练和高正确率,对比较基本的一些解题方法的掌握和运用。从这几年的数学统考试题来看很少有偏题、怪题。中公考研的老师通过多年析和授课经验,发现很多考生由于对基本概念、定理记不全、记不牢,理解不准确而丢分。所以数学首轮复习一定要注重基础。
二、强化练习
研究生数学考试注重考察考生的综合能力,最终要看你解题的真功夫,而能力的提高要通过大量的练习,所以不能眼高手低,只看书不做题,每天可以做适量的题目。在做题的过程中才会发现考试重点、难点以及自己的薄弱环节。以便及时弥补自己的缺陷、把握重难点。 近年来的数学考研试题的一大特征是要求考生能将一些范围并不固定的`几何、物理或者其它问题先建模抽象为数学问题,再利用相应的数学知识解答。(理工类已考过井底清污、雪堆融化、攀岩选址、压力计算、海洋勘测、汽锤作功、飞机滑行等问题)考研也考“熟练”度,只有通过针对性地实际训练才能真正地理解和巩固数学的基本概念、公式、结论。
另外,在复习过程中还要总结解题的技巧、套路,积累经验,把分散的知识在实际运用中联系起来,在理解的基础上触类旁通,熟能生巧后才能运用所学知识解决实际问题,以不变应万变。
当然,在考研数学复习中要注意到一些不应该犯的错误,大家要明确这些错误,要有针对性要避开的,这样才能把复习的效益更大化的提高。
1、阶段复习,
不分阶段的复习是复习无计划的表现,大家在复习的时候一定要分阶段复习,并且分阶段复习重点更是至关重要的。第一阶段为系统复习阶段,结合考试大纲,从头至尾复习,达到记住所有公式、概念的目的。第二、三阶段为强化训练阶段,通过练习,强化能力。
2、报辅导班,
数学基础差、搞不懂基本概念、公式的学生是不适合直接上暑期和秋季的强化班。因为不同的班次有着不同的辅导目的,强化班解决不了学生的基础差问题,基础不好的学生上强化班是不会有好效果的。建议同学报中公考研基础班可以先打好扎实的基础再投入强化的复习,循序渐进——这个才是正确的报班观念。
3、多看多做,
看懂了题不等于就会亲自解题,要以动手练习为主,锻炼好自己的运算能力,否则就会出现正式考试时会做的题因为运算不过关而拿不到分。所以,平时一定要注重实际的训练,不仅多看还要多做。
4、归纳总结,
无论是作同一类型的题目还是作整套试卷,都要总结规律。通过作同一类型试题可以总结考试重点;通过作整套试卷,可以总结答题方法和时间分配方面的经验。
5、经常交流,
“三人行必有我师”——交流可以碰撞出思想的火花,少到可以多探讨出一种解题方法,交流的好,可以改变自己的错误观点和坏习惯。你可以与同学交流,也可以尽可能找到上课的老师与他们交流,谦虚好学,不断总结,不断进步,争取让自己站到分析问题,审视问题的高度。
【复习计划】相关文章:
复习计划(精选)07-30
复习计划(经典)08-08
复习计划(经典)08-09
(经典)复习计划08-01
[精选]复习计划07-28
复习计划【精选】08-02
(精选)复习计划08-06
(经典)复习计划07-26
复习计划08-23
复习计划08-23