范文资料网>反思报告>教案大全>《绝对值与相反数教案

绝对值与相反数教案

时间:2023-09-22 18:35:39 教案大全 我要投稿
  • 相关推荐

绝对值与相反数教案

  作为一名老师,就有可能用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么你有了解过教案吗?以下是小编精心整理的绝对值与相反数教案,仅供参考,大家一起来看看吧。

绝对值与相反数教案

绝对值与相反数教案1

  【学习目标】

  1.使学生能说出相反数的意义

  2.使学生能求出已知数的相反数

  3.使学生能根据相反数的意思进行化简

  【学习过程】

  【情景创设】

  回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点A,点B即是小明到达的位置。

  观察A,B两点位置及共到原点的距离,你有什么发现吗?

  《数轴》专题练习

  1.(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:

  A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.

  (1)将5个队按由低分到高分的顺序排序;

  (2)把每个队的得分标在数轴上,并标上代表该队的.字母;

  (3)从数轴上看A队与B队相差多少分?C队与E队呢?

  《2.4数轴》同步测试

  1下列说法中错误的是(  )

  A.一个正数的绝对值一定是正数

  B.任何数的绝对值都是正数

  C.一个负数的绝对值一定是正数

  D.任何数的绝对值都不是负数

  22017·海安县期中绝对值大于2且不大于5的整数有________个.

  3某检修小组乘坐一辆汽车沿公路检修供电线路,约定前进为正,后退为负,他们从出发到收工返回时,走过的路程记录如下(单位:km):+5,-3,+7,-1,-4,+8,-12.求他们从出发到收工返回时,总共行驶的路程.

绝对值与相反数教案2

  一、教学目标

  1、掌握绝对值的概念,有理数大小比较法则。

  2、学会绝对值的计算,会比较两个或多个有理数的大小。

  3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

  二、教学难点:

  两个负数大小的比较。

  三、知识重点:

  绝对值的概念。

  四、教学过程:

  (一)设置情境。

  1、引入课题。

  星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

  (1)用有理数表示黄老师两次所行的路程。

  (2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

  2、学生思考后,教师作如下说明:

  实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

  3、观察并思考:

  画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

  4、学生回答后,教师说明如下:

  数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

  例如,上面的问题中|20|=20|—10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。

  (二)合作交流。

  1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

  —3,5,0,+58,0.6。

  2、要求小组讨论,合作学习。

  3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则。

  (三)巩固练习。

  1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。

  2、结合实际发现新知引导学生看教科书第16页的'图,并回答相关问题:

  (1)把14个气温从低到高排列。

  (2)把这14个数用数轴上的点表示出来。

  3、观察并思考:

  (1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?

  (2)学生交流后,教师总结:

  14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

  4、想象练习:

  想象头脑中有一条数轴,其上有两个点,分别表示数—100和—90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系。要求学生在头脑中有清晰的图形。让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

  数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

  5、课堂练习例2,比较下列各数的大小。

  比较大小的过程要紧扣法则进行,注意书写格式。

  6、练习:第18页练习。

  (三)小结与作业。

  课堂小结怎样求一个数的绝对值,怎样比较有理数的大小?

  (四)本课作业。

  1、必做题:教产书第19页习题1,2,第4,5,6,10

  2、选做题:教师自行安排。

  五、本课教育评注。

  1、情景的创设出于如下考虑:

  (1)体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣。

  (2)教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受。

  2、一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

  3、有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,帮助学生建立数轴上越左边的点到原点的距离越大,所以表示的数越小这个数形结合的模型。为此设置了想象练习。

  4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

绝对值与相反数教案3

  教学目标:

  1、知识与技能:

  (1)借助数轴理解相反数的概念,会求一个数的相反数。

  (2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

  2、过程与方法:

  在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

  重点、难点

  1、重点:理解相反数的意义,会求一个数的相反数。

  2、难点:对相反数意义的理解。

  教学过程:

  一、创设情景,导入新课

  1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。

  二、合作交流,解读探究

  1、(出示小黑板)

  教师提出问题:上图中数轴上的'点B和点D表示的数各是什么?有什么关系?

  学生活动:分小组讨论,与同伴交流。

  教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。

  2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。

  0的相反数是0。

  3、学生活动:

  在数轴上,表示互为相反数的两个点有什么关系?

  学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

  4、练习填空:

  3的相反数是;-6的相反数是;-(-3)=;-(-0.8)=;

  学生活动:在练习本上解答,并与同伴交流,师生共同订正。

  归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

  三、应用迁移,巩固提高

  1、课本P10第1题。

  2、填空:

  (1)xx的相反数是;(2)xx的相反数是;(3)xx的相反数是2/3。

  3、如果一个数的相反数是它本身,则这个数是。

  4、若α、β互为相反数,则α+β= 。

  5、-(-4)是的相反数,-(-2)的相反数是。

  6、化简下列各数的符号

  -(-9)=; +(-3.5)= ;

  -=;-{-[+(-7)]}= 。

  7、若-x=10,则x的相反数在原点的侧。

  8、若x的相反数是-3,则;若x的相反数是-5.7,则。

  四、总结反思

  本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

  五、课后作业

  课本P13习题1.2A组第3、4题。

绝对值与相反数教案4

  【学习目标】

  1、使学生能说出相反数的意义

  2、使学生能求出已知数的相反数

  3、使学生能根据相反数的意思进行化简

  【学习过程】

  【情景创设】

  回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点a,点b即是小明到达的位置。

  观察a,b两点位置及共到原点的距离,你有什么发现吗?

  观察下列各对数,你有什么发现?

  ‐5与5,‐6、1与6、1,‐34 与+34

  相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)

  规定0的相反数是0

  想一想:你能举出互为相反数的例子吗?

  【例题精讲】

  例1

  例2

  试一试: 化简―[―(+3、2)]

  想一想:

  请同学们仔细观察这五个等式,它们的符号变化有什么规律?

  把一个数的多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正、

  练一练:填空

  (1)-2的相反数是 ,

  3、75与 互为相反数,

  相反数是其本身的数是 ;

  (2)-(+7)= ,

  -(-7)= ,

  -[+(-7)]= ,

  -[-(-7)]= ;

  (3)判断下列语句,正确的是 、

  ① ―5 是相反数;

  ② ―5 与 +3 互为相反数;

  ③ ―5 是 5 的.相反数;

  ④ ―5 和 5 互为相反数;

  ⑤ 0 的相反数还是 0 、

  选择:

  (1)下列说法正确的是 ( )

  a、正数的绝对值是负数;

  b、符号不同的两个数互为相反数;

  c、π的相反数是 ―3、14;

  d、任何一个有理数都有相反数、

  (2)一个数的相反数是非正数,那么这

  个数一定是 ( )

  a、正数 b、负数 c、零或正数 d、零

  画一画:

  在数轴上画出表示下列各数以及它们的相反数的点:

  动脑筋:

  如果数轴上两点 a、b 所表示的数互为相反数,点 a 在原点左侧,且 a、b 两点距离为 8 ,你知道点 b 代表什么数吗?

  【课后作业】

  1、判断题

  (1) 0没有相反数。 ( )

  (2)任何一个有理数的相反数都与原来的符号相反。 ( )

  (3)如果一个有理数的相反数是正数,则这个数是负数、 ( )

  (4)只有0的相反数是它本身 ( )

  (5) 互为相反数的两个数绝对值相等

  2、填空题

  (1) —(—2、8)= _________; —(+7)= _________;

  (2) —3、4的相反数是 ________、

  (3) —2、6是________的相反数、

  (4)│—3、4│=________;│5、7│=________;

  —│2、65│=_______;—│—12、56│=_______

  (5)绝对值等于5的数是_________

  (6)相反数等于本身的数是__________

  3、化简:

  (1) —(—1966)=______ (2) +│—1978│=______(3)+(—1983)=______

  (4) —(+1997)=_______ (5) +│+XX│=______

  4、选择题:

  (1)在—3、+(—3)、—(—4)、—(+2)中,负数的个数有( )

  a、1个 b、2个 c、3个

  (2)在+(—2)与—2、—(+1)与+1、—(—4)与+(—4)、

  —(+5)与+(—5)、—(—6)与+(+6)、+(+7)与+(—7)

  这几对数中,互为相反数的有( )

  a、6对 b、5对 c、4对 d、3对

  5、在数轴上标出3、—2、5、2、0、 以及它们的相反数。

  6、请在数轴上画出表示3、—2、—3、5及它们相反数的点,并分别用a、b、c、d、e、f来表示

  (1)把这6个数按从小到大的顺序用<连接起来

  (2)点c与原点之间的距离是多少?点a与点c之间的距离是多少?

绝对值与相反数教案5

  一、教学目标

  1、知识与技能 (1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个

  负数的大小。 (2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。 2、过程与方法目标: (1)、通过运用“| |”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学

  生抽象思维的目的 (2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过

  观察,发现规律、总结方法,发展学生的实践能力,培养创新意识; (3)、通过对“做一做”“议一议” “试一试”的交流和讨论,培养学生有条理地用语言

  表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

  3、情感态度与价值观:

  借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的.数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

  二、教学重点和难点

  理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

  三、教学过程:

  1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)

  2.在组长的组织下进行讨论、交流。(约5分钟)

  3、小组分任务展示。(约25分钟)

  4、达标检测。(约5分钟)

  5、总结(约5分钟)

  四、小组对学案进行分任务展示

  (一)、温故知新:前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴?数轴的三要素什么?

  (二) 小组合作交流,探究新知

  1、观察下图,回答问题: (五组完成)

  大象距原点多远?两只小狗分别距原点多远?

  归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的 。一个数a的绝对值记作: 。

  4的绝对值记作 ,它表示在 上 与 的距离, 所以| 4|= 。

  2、做一做:

  (1)、求下列各数的绝对值:(四组完成) -1.5, 0, -7, 2

  (2)、求下列各组数的绝对值:(一组完成)

  (1)4,-4; (2) 0.8,-0.8;

  从上面的结果你发现了什么?

  3、议一议:(八组完成)

  (1)|+2|= ,1= |+8.2|= ; 5(2)|-3|= |-0.2|= |-8|= 。 (3)|0|= ;

  你能从中发现什么规律?

  小结:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是 。

  4、试一试:(二组完成)

  若字母a表示一个有理数,你知道a的绝对值等于什么吗?

  (通过上题例子 ,学生归纳总结出一个数的绝对值与这个数的关系。)

  5:做一做:(三组完成)

  1、( 1 )在数轴上表示下列各数,并比较它们的大小:- 3 , - 1

  ( 2 ) 求出(1)中各数的绝对值,并比较它们的大小

  ( 3 )你发现了什么?

  2、比较下列每组数的大小。

  (1) -1和 – 5;(五组完成) (2) ?

  (3) -8和 -3(七组完成)

  5和- 2.7(六组完成) 6

  五、达标检测:

  1:填空:

  绝对值是10的数有( )

  |+15|=( ) |–4|=( )

  | 0 |=( ) | 4 |=( )

  2:判断

  (1)、绝对值最小的数是0。( )

  (2)、一个数的绝对值一定是正数。( )

  (3)、一个数的绝对值不可能是负数。( )

  (4)、互为相反数的两个数,它们的绝对值一定相等。( )

  (5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。( )

  六、总结:

  1绝对值 :在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  2、绝对值的性质:正数的绝对值是它本身;

  负数的绝对值是它的相反数; 0 的绝对值是 0.

  因为正数可用a>0表示,负数可用a<0表示,所以上述三条可表述成: a="">0,那么|a|=a (2)如果a<0,那么|a|=-a (3)如果a=0,那么|a|=0

  3、会利用绝对值比较两个负数的大小: 两个负数比较大小,绝对值大的反而小。

  七、布置作业

  P50页,知识技能第1,2题。

【绝对值与相反数教案】相关文章:

绝对值教案11-10

《绝对值》教案02-26

绝对值教案15篇11-12

教案教案及反思04-18

教案中班教案02-23

小班教案小班教案03-10

小班教案安全教案03-16

教案幼儿中班教案02-15

猫和老鼠教案大班教案04-03