范文资料网>书稿范文>计划>《期末复习计划

期末复习计划

时间:2023-09-04 15:52:18 计划 我要投稿

期末复习计划

  日子在弹指一挥间就毫无声息的流逝,我们的工作又将迎来新的进步,现在的你想必不是在做计划,就是在准备做计划吧。相信大家又在为写计划犯愁了吧?下面是小编为大家收集的期末复习计划4篇,欢迎大家借鉴与参考,希望对大家有所帮助。

期末复习计划

期末复习计划 篇1

  一、复习内容

  本期学习的主要内容有: 方程、公因数和公倍数、分数的意义和基本性质、异分母分数加减法以及圆和统计的有关知识。复习时建议按各知识点所属领域进行归类,充分利用同类知识之间的相互联系进行复习,复习时注意纵向深入、横向沟通。具体分类如下:

  1、数的世界——主要引导学生整理和复习方程、公倍数与公因数、分数的意义及基本性质等概念,结合概念的理解练习解方程、求两个数的最小公倍数和最大公因数、异分母分数加减法。

  2、图形王国——主要引导学生整理和复习用数对确定位置和圆的相关知识。

  3、统计天地——主要引导学生整理和复习复式折线统计图。

  4、应用广角——主要引导学生通过实际调整、测量和简单的实验,收集信息、交流信息,并利用信息解决一些简单的实际问题。涵盖的内容比较广,比如简单覆盖现象中的规律、“倒过来推想”的解决问题策略等。

  二、学情分析

  1、数与代数

  本学期数的概念知识较多。如方程、公倍数与公因数、真分数、假分数、通分、约分等概念,在单项练习中学生完成的正确率相对较高,一旦综合运用错误就较多。计算方面主要学习了解方程、异分母分数加减法及其混合运算。由于新教材中求最小公倍数和最大公因数主要介绍的是列举法,对口算和记忆的要求较高,所以导致学生(尤其中下生)在计算时不能很快的找到最小公分母,有时简单地将两个分母相乘,但计算的结果又不约成最简分数。许多同学简算的能力不强,观察和分析能力有待于进一步提高,不能把整数中的简便算法灵活的迁移到分数中。

  2、空间与图形

  本学期学习了圆的周长和面积的推导,学生能所学的知识进行公式的推导,能利用公式进行基本的计算,能计算比较简单的组合图形面积。但是对图形面积以及相关知识的灵活运用是学生学习的难点。

  3、统计与概率

  本学期主要学习了复式折线统计图,并能运用复式折线统计图解决问题,分析统计图中的信息,学生掌握比较好。

  4、实践与综合运用

  本学期主要学习了用数对确定位置;用平移的方法探索并发现把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律及用“倒过来推想”的策略解决问题。有部分学生在解决实际问题的灵活性不够,有待于在复习过程中加强。

  三、复习重难点

  1、重点:概念的清晰,如分数的意义、基本性质。

  2、难点:

  (1)提高异分母分数加减及混合运算的正确率。

  (2)灵活计算图形面积的相关问题。

  (3)培养学生认真审题的习惯,提高灵活运用知识解决问题的能力。

  四、复习课时安排(建议留2周左右时间进行复习)

  方程、公因数和公倍数…………1课时

  分数的意义和基本性质 ………1课时

  分数加减法…………1课时

  圆和统计…………1课时

  应用广角…………1课时

  综合练习…………2至4课时

  查漏补缺……………2课时

  五、复习建议

  1、重梳理,形成知识脉络

  比如分数的基本性质与除法中商不变性质的关系;分数基本性质与约分、通分、异分母分数加减等的应用;分数加减法与整数、小数加减的共同本质:即相同计数单位才能相加减。

  2、重应用,提高综合能力

  如公倍数与公因数在生活中应用的区别,通过画图等方法弄清要求的问题与公倍数还是公因数有关,不可片面的找关键词,如最多、最少等,重在理解。

  3、重提高,纵向深入、横向贯通

  复习的最后阶段,在各单元知识基本过关的情况下,尽量选择设计一些综合性强的练习,(如书本上117页的第20题)将各单元知识整合起来,让学生自主选择、收集信息,提取相关知识,解决实际问题。

  4、重反馈,因材施教

  (1)精心设计练习题,注重练习题的综合性和层次性,做到练习适量、适度。

  (2)加强口算基础题目的练习和易错题的讲解,培养学生认真检查的习惯减少计算的错误。

  (3)针对学生集中的问题,设计有效的单项练习。(比如约分,由于缺少互质关系的教学环节,这部分内容的教学时间短,练习量少,个别分数不易看出倍数关系要集中练习;再如分数的意义,学生对“分数表示两个量的关系”及“分数表示具体的量”容易混淆,可收集这类题型进行专项练习,一一攻克,加深理解;再比如,求圆周长的一半和半圆的周长。)要注意的是所有练习应该先做后讲,切不可简单地核对答案或先讲再做,在复习阶段要充分暴露问题,找准问题根源,通过变式练习来加深理解。

  (4)对不同层次的学生因材施教,重视学生的个别差异,学习有困难的学生多做基本练习,优异的学生尝试拔高练习。尽量让不同层次的学生都得到发展。建立“一帮一”互助学习小组,让学生在帮助别人的同时,也体验到学习的快乐,逐渐形成良好的班风和学风。

  (5)重视培养学生独立审题、思考的习惯,尤其是后进生更要重视审题能力的培养,而不是一味地死记硬背。(比如,公倍数和公因数的实际应用,个别教师喜欢通过找关键词来暗示学生,如有“最多”二字就是求“最大公因数”,这种方法可能做题的正确率较高,但容易脱离生活实际,一味套题型,一旦问题或条件有变化就无从下手;再比如,找规律,虽然有一定的数量关系式来表示规律,但公式的得出源于实践的发现和数学化提炼,而不能强加于学生,一旦遗忘可通过画一画或操作来重新发现,避免理论与实践的脱节;再比如,分数大小比较的应用题重点在于通过分数的大小来解决实际问题,而有的学生比大小后却不能根据所比的内容灵活地解决问题,比如:同样是比较工作效率的大小,若比时间,越少越快;比工作量,越多越快。

  )(6)养成自觉检查的习惯和方法。(比如:方程的检验,即要重视书面检验的方法,更要重视口头检验习惯的养成,避免“假检验”,即没有通过计算,直接抄得数;再比如分数的化简和加减,化简前是真分数但化简后成了假分数,两个大于二分之一的分数相加,结果却小于二分之一等,诸如此类的目测法应该教给学生,随时随地进行自我检查。)

  附:苏教版五年级下册知识点罗列

  第一单元:方程

  1、表示相等关系的式子叫做等式。

  2、含有未知数的等式是方程。

  3、方程一定是等式;等式不一定是方程.

  4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

  等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

  5、求方程中未知数的过程,叫做解方程。

  注意:解完方程,要养成检验的好习惯。

  6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。

  7、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的数量关系C、设未知数,一般是把问题中的量用X表示。D、根据数量关系列出方程E、解方程F、检验G、作答。

  第二单元:确定位置

  8、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。

  9、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度(°)、分(′)、秒(″)表示。

  第三单元 :公倍数和公因数

  10、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

  一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

  一个数最大的因数等于这个数最小的倍数。

  11、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。几个数的公倍数也是无限的。

  12、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。两个数的公因数也是有限的。

  13、两个素数的积一定是合数。

  14、两个数的最小公倍数一定是它们的最大公因数的倍数。

  15、求最大公因数和最小公倍数的方法:

  倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。

  互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。

  一般关系的两个数,求最大公因数用小数列举法或短除法,求最小公倍数用大数翻倍法或短除法。

  16、我国目前采用的邮政编码为“四级六码”制。第一、二位代表省(自治区、直辖市),第三位代表邮区,第四位代表县(市)邮电局,最后两位是投递局(区)的编号。

  17、身份证编码规则:1-6位数字为行政区划代码,其中1、2位数为各省级政府的代码,3、4位数为地、市级政府的代码,5、6位数为县、区级政府代码。 7-14位为您的出生日期,其中7-10位为出生年份(4位),11-12位为出生月份,13-14位为出生日期,15-17位为顺序码,是县、区级政府所辖派出所的分配码,其中单数为男性分配码,双数为女性分配码。18位为校验码,是由号码编制单位按照统一的公式计算得出来的,其取值范围是0至10,当值等于10时,用罗马数字符X表示。

  第四单元:认识分数

  18、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

  19、分母越大,分数单位越小,分数单位是由分母决定的。

  20、举例说明一个分数的意义。

  21、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。23、真分数小于1。假分数大于或等于1。真分数总是小于假分数。能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。带分数都大于真分数,同时也都大于1。

  22、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

  被除数÷除数=如果用a表示被除数,b表示除数,可以写成a÷b=a/b(b≠0)

  利用分数与除法的关系可求“一个数是另一个数的几分之几”,如男生人数是女生人数的2/3,则女生人数是男生人数的3/2.

  利用分数与除法的关系还可以把分数化成小数的方法:用分数的分子除以分母。

  23、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

  24、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。把带分数化成假分数不作要求。

  25、分数大小比较的应用题重点在于通过分数的大小来解决实际问题:

  如:同样是比较工作效率的大小,若比时间,越少越快;比工作量,越多越快。

  26、一些特殊分数的值。

  第五单元:找规律

  27、平移的次数+每次框出的个数=方格的总个数

  28、平移的次数+1=得到不同和的个数

  29、一共有多少种贴法=沿着长的贴法×沿着宽的贴法

  30、中间的数×框出的个数=框出的每个数的和

  第六单元:分数的基本性质

  31、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。它和整数除法中的商不变规律类似。

  32、分子和分母只有公因数1,这样的分数叫最简分数。约分时,通常要约成最简分数。

  33、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

  约分方法:直接除以分子、分母的最大公因数。

  34、把几个分母不同的分数(也叫做异分母分数)分别化成和原来

  分数相等的同分母分数,叫做通分。通分过程中,相同的分母

  叫做这几个分数的公分母。通分时,一般用原来几个分母的最小公倍数作公分母。

  35、比较异分母分数的方法:1.先通分转化成同分母的分数再比较。2.化成小数后再比较。

  36、球的反弹高度实验的结论:

  (1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。

  (2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的'分数是不一样的,这说明不同的球的弹性是不一样的。

  第七单元:统计

  37、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

  38、作复式折线统计图时要注意:①描点;②标数;③实线和虚线的区分(画线用直尺);④统计时间。

  第八单元:分数的加减

  39、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数;计算后要验算。

  40、分母的最大公因数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。分母的最大公因数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。

  41、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近;分子分母越接近,分数就越接近1。

  42、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

  43、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。

  第十单元:圆

  44、圆是由一条曲线围成的平面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)

  45、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

  46、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

  47、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d÷2)

  48、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

  49、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。

  50、正方形里最大的圆。两者联系:边长=直径

  画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

  51、长方形里最大的圆。两者联系:宽=直径

  画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

  52、同一个圆内的所有线段中,圆的直径是最长的。

  53、车轮滚动一周前进的路程就是车轮的周长。每分前进米数(速度)=车轮的周长×转数

  54、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

  用字母π(读pài)表示。π是一个无限不循环小数。π=3.141592653……

  我们在计算时,一般保留两位小数,取它的近似值3.14。

  55、如果用C表示圆的周长,那么C=πd或C = 2πr

  56、求圆的半径或直径的方法:d = C圆÷π r= C圆÷ π÷2

  57、半圆的周长等于圆周长的一半加一条直径。 C半圆= πr+2r C半圆= πd÷2+d

  58、常用的3.14的倍数

  59、圆的面积公式:S圆=πr2。圆的面积是半径平方的π倍。

  60、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a==πr)。即:S长方形= a × b

  ↓ ↓

  S圆 = πr × r

  = πr2

  S圆 = π r2

  注意:切拼后的长方形的周长比圆的周长多了两条半径。C长方形=2πr+2r=C圆+d

  61、半圆的面积是圆面积的一半。S半圆=πr2÷2

  62、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径的倍数2

  63、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

  64、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。

期末复习计划 篇2

  一、学生知识现状分析:

  第一单元:图形的变换

  学生能认识轴对称图形,理解图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。学生进一步认识了图形的旋转,探索图形旋转的特征和性质,

  能在方格纸上把简单图形旋转90°。初步能运用对称、平移和旋转的方法在方格纸上设计图案。

  部分学生在方格纸上画出连续多次旋转后图形,容易出现错误。

  第二单元:因数与倍数

  学生掌握了因数、倍数、质数、合数等基本概念,知道因数与倍数等概念之间的联系和区别。掌握了2、3、5的倍数的特征。

  少数学生混淆了因数与倍数、质数与合数等概念;虽然理解并掌握了2、3、5的倍数的特征,但在综合运用情况较差。

  第三单元:长方体与正方体

  学生认识了长方体和正方体的特征以及它们的展开图,了解体积(容积)的意义及体积和容积单位,会进行单位间的换算。感受了每个单位的实际意义。掌握了长方体、正方体的棱长和以及表面积、体积的计算方法,能运用所学知识解决一些简单的实际问题。

  少数学生没有理解表面积、体积等公式的算理,因此实际运用中不能准确使用公式进行计算;还有部分学生对某些实际生活中的特例(如:粉刷教室、游泳池贴瓷砖等)不注意观察实际生活现象,不能正确解题。

  第四单元:分数的意义和性质

  学生理解了分数的意义,明确了分数与除法的关系;认识了真分数和假分数,知道了带分数是假分数的另一种书写形式,能把假分数化成带分数或者整数;理解掌握了分数的基本性质,会比较分数的大小;理解了公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练的进行通分和约分;会进行分数与小数的互化。

  很多学生“量”、“率”不分;通分时找不到最小公倍数,导致在计算分数加减法时增加无谓的约分步骤;部分学生约分时没有

  约成最简分数; 部分学生不能灵活运用分数的基本性质解决实际问题。

  第五单元:分数的加法和减法

  理解了分数加减法的算理,掌握分数加减法的计算方法,并能正确地计算出结果。理解整数加法的运算定律对分数加法仍然适用,并会运用这些运算定律进行一些分数加法的简便运算。

  个别学生在计算出结果后,往往不能对结果进行约分;在运用减法的性质进行简便运算时学生错误率较高。

  第六单元:统计

  理解了众数的含义及其在统计学上的意义;掌握了求一组数据众数的方法;能根据数据的具体情况,选择适当的统计量表示数据的不同特征;认识复式折线统计图,了解其特点,能根据需要,选择条形、折线统计图直观、有效地表示数据,并能对数据进行简单的分析和预测。

  学生在求项数较多的一列数的中位数时找不到准确数据进行计算;在对统计结果进行分析时比较片面,语言缺乏准确性。

  第七单元:数学广角

  学生通过观察、猜测、试验、推理等活动,在解决找次品这个问题的过程中,体会解决问题策略的多样性及运用优化的.方法解决问题的有效性。

  个别学生在找次品的过程中,往往不能找出最优方法。在解题思路的叙述上也存在一定的困难,不能准确地用恰当的方式来合理解释自己的解题思路。

  二、复习重、难点:

  复习重点:

  1、因数与倍数、质数与合数、奇数与偶数等概念以及2、3、5的倍数的特征,以及综合运用这些知识解决实际问题。

  2、分数的意义和基本性质,以及运用分数的基本性质解决实际问题,熟练地进行约分和通分,分数大小比较,把假分数化成带分数或整数以及整数、小数的互化。

  3、求两个数的最大公因数和最小公倍数。

  4、分数加减法的意义以及计算方法,把整数加减法的运算定律推广运用到分数加减法。

  5、体积和表面积的意义及度量单位,能进行单位间的换算,长方体和正方体表面积和体积的计算方法以及一些生活中的实物的表面积和体积的测量和

  计算。

  6、在方格纸上画轴对称图形以及将简单图形旋转900

  复习难点:

  1、在方格纸上将一个简单图形旋转900。

  2、分数的意义和基本性质的实际运用。

  3、生活中的某些实物的表面积和体积的测量及计算。

  4、整数加减法的运算定律推广运用到分数加减法。(尤其是减法的性质的运用)

  5、根据具体问题,选择适当的统计量(平均数、中位数、众数)表示数据的不同特征。

  6、对统计图中的数据进行合理分析。

  三、复习目标:

  知识目标:

  1、掌握长方体和正方体的特征,会计算它们的表面积和体积,认识常用的体积和容积单位,能够进行简单的名数的改写。

  2、使学生进一步掌握因数和倍数、质数和合数等概念,会分解质因数;会求最大公因数和最小公倍数。

  3、进一步理解分数的意义和基本性质,会比较分数的大小,会进行假分数、带分数、整数的互化,能够比较熟练地进行约分和通分。

  4、进一步理解分数加、减法的意义,掌握分数加、减法的计算法则,比较熟练地计算分数加、减法。

  5、探索轴对称图形及旋转的特征和性质,能在方格纸画轴对称图形及旋转图形,认识众数及作用,会制作复式折线统计图及根据统计图解决简单问题。

  能力目标:

  1、通过对本册知识的系统归类、整理、综合,进一步提高学生的解题能力,提高解题的正确率。

  2、加强对知识点的区别比较,包括纵向、横向的比较。分析知识的意义性质、规律的异同,把各方面的知识像串珍珠一样连接起来,纳入学生的认知系统,便于记忆储存,理解运用。进一步提高学生运用知识解决生活中的实际问题的能力。

  3、通过复习,进一步加强学生的审题和分析能力,能正确解答各种类型的实际问题。

  4、通过复习,提高学生解题的灵活性以及正确性。

  四、复习措施:

  1、对本册内容进行系统归类、整理,帮助学生形成网状立体知

  识结构系统,在归纳中,要让学生有序、多角度概括地思考问题,沟通知识间的内在联系,全面而系统地思考各类问题,同时对该类型知识进行整合。

  如:第二单元因数与倍数和第四单元分数的意义与性质的知识点有着紧密的联系,复习时可将这两个单元合并在一起进行复习。

  注意因数与最大公因数、倍数与最小公倍数、质数与互质数等概念的区别与联系。

  2、复习内容要有针对性,对学生知识的缺陷、误区、理解困难的重难点进行有针对性的复习。复习知识的覆盖面要广,针对性和系统性要强。

  如:这样的练习题,始终有学生混淆不清

  把一根3米长的木条平均分成7段,每段是这根木条的,每段长米,是1米的,是3米的

  这样的练习题要引导学生从数量关系上以及分数的意义上去理解:每段是这根木条的,是把3米长的木条看作单位“1”,把单位“1”平均分成7份,列式为1÷7,所以应填;每段长米,是把3米长的木条平均分成7份,列式为3÷7,所以应填;而从分数的意义上来理解米:表示把1米平均分成7份,取其中的3份,也可以表示把3米平均分成7份,取其中的1份,所以米既是1米的,又是3米的。

  3、教师要主动理清知识的体系,分层、分类,拉紧贯穿全册教材的主线,要深钻本册教材,仔细领会编者意图,掌握教材的重难点和学生知识现状,发现学生普遍不会的,难理解的,遗漏的要重点讲。

  4、加强作业设计,进行分层练习,使不同层次的学生能学习到不同层次的数学知识。但绝不搞题海战术,不加重学生负担。复习中的练习设计,不是旧知识的单一重复,机械操作,要体现知识的综合性,每天在练习过程中,教师要有针对性让学生尝试做智力冲浪式的题目,体现质的飞跃,训练学生思维的敏捷性、创造性。

  如在复习长方体和正方体的有关知识时,对于学困生,要求他们掌握简单的求棱长和、表面积、体积的计算方法,对于优生,可适当增加长方体与正方体的拓展提高练习,如:“切、拼”长方体与正方体后,求表面积和体积的练习,拓展学生的思维空间和解题的灵活性以及运用知识解决实际问题的能力。

  5、重视学生能力的培养以及数学知识与现实生活的联系,能够运用所学知识解决生活中的实际问题。

  6、加强对学困生的辅导,建立一个优生与一个学困生结对的互帮小组,对学困生的作业尽量进行面批。

  五、复习时要注意的几个问题:

  1、要重视查漏补缺。要根据所教班级的具体情况,进行有效的期末复习,对相对比较薄弱的内容要加强复习和练习。

  2、要注意区别对待不同的学生。对不同的学生要有不同的要求。注意复习题设计的层次性。

  3、要重视学生积极主动的参与到复习过程中去。鼓励学生自己去整理知识,学生与学生之间形成交流与合作。

  4、加强复习考试期间的安全教育。

  六、复习课时安排:

  1、长方体和立方体2课时

  2、分数加减法1课时

  3、分数意义和性质2课时

  4、因数和倍数1课时

  5、图形的变换、统计、数学广角2课时

  6、综合练习:2课时

期末复习计划 篇3

  通过总复习,使学生获得的知识更加巩固,计算能力更加提高,能用所学的数学知识解决简单的实际问题,全面达到本学期规定的教学目标。

  一、复习目标

  1、通过复习,进一步理解和掌握计数单位“百”和”千“,知道相邻两个计数单位之间的十进关系;掌握万以内的数位顺序,会读、写万以内的数;知道万以内数的组成,会比较万以内数的大小,理解并认识万以内的近似数。

  2、会口算百以内的两位数加、减两位数,会口算整百、整千数加、减法,会进行几百几十加,减几百几十的计算,并能结合实际进行估算。

  3、通过复习,加深对除法的含义的理解,除法算式中各部分的名称,乘法和除法的关系;能够熟练地用乘法口诀求商。

  4、知道小括号的作用,会在解决问题中使用小括号。

  5、感知平移、旋转现象。

  6、理解认识质量单位克和千克,知道1千克=1000克。

  7、了解统计的意义,体验数据的.收集、整理、描述和分析的过程;会用简单的方法收集和整理数据,认识条形统计图和简单的复式统计表;能根据统计图表中的数据提出并回答简单的问题,并能进行简单的分析。

  8、养成认真作业,书写整洁的良好习惯。

  二、复习内容

  复习共分为七部分:表内除法,万以内数的认识,万以内的加、减法,克和千克,图形与变换,解决问题,统计。

  三、学生情况分析

  本有36人,经过一学期的学习,大部分学生都有了进步,计算能力有了明显的提高,但还是有一部分学生,学习习惯及基础都比较弱,年龄较小或智力发育较同龄孩子晚,造成学习困难,尤其是解决问题部分,读不懂题意或不明白文字所表达的意思,针对这些情况,我在复习阶段也作了相应的复习调整,努力做好提优补差工作,争取达到一个满意的效果。

  四、复习重点、难点

  本次复习的重点是复习表内除法,万以内数的认识和加、减法,以及根据所学的知识解决简单的实际问题。

  五、具体复习安排

  1.“表内除法”的复习。

  开始复习表内除法时,可以通过第119页第1题所提供的情境复习除法的含义。使学生更加明确在什么样的情境下要用除法解决问题。借助乘法表对表内除法进行适当整理,引导学生发现简单的规律,从而更好的掌握表内除法。练习形式注意多样化,除教材中的练习形式只要学生能正确、迅速地进行计算就可以了。

  2.“万以内数的认识和加减法”的复习。

  复习万以内数的认识时,引导学生回忆万以内数的有关知识,然后再分别复习。读、写数可以像教材中的看计数器。近似数的复习,让学生认真仔细辨别哪些是准确数,哪些是近似数。

  复习万以内的加、减法时,结合第120页的第6、7题,让学生说一说是怎样算的,计算应注意的问题。对于学生中出现的错误,教师要及时了解错误的原因,采用适当的方法进行订正。第121页的第8题,是让学生用估算的方法解决问题。

  3.“克和千克及图形的变换”的复习。

  复习“克和千克”时。第121页的第9题,在学生作出选择后,让学生说一说选择(或不选择)的理由,从而加深对克和千克的认识。复习“图形与变换”时,采取小组活动的方式,让学生说一说生活中的平移和旋转。

  4.“解决问题和统计”的复习。

  复习“解决问题”(第122页的第13、14题)时,引导学生仔细看题,知道题中所说的事理,正确选择解决的方法。

  复习“统计”时,要注意让学生经历统计的过程。可先让学生讨论收集数据的方法,然后根据讨论的结果进行数据的收集和整理,完成统计表。

  六、复习阶段提优补差的措施

  1、在复习过程中查漏补缺,抓学生的薄弱环节。

  2、采用‘一帮一“互助活动,成立学生互助小组,让小组之间互相交流。

  4、在复习中重视学生已有知识和生活经验中学习和理解教学。

  5、在复习中重视引导学生自主探索,培养学生的创新意识和学习数学的兴趣。

  6、认真落实作业辅导这一环节,及时做好作业情况记载。并对问题学生及时提醒,限时改正。

  7、复习时少讲精讲,让学生多练,在练习中发现问题,解决问题。

  8、重点指导学困生,缩小他们与优生的差距。

期末复习计划 篇4

  一、班级学生数学学习情况分析

  六年级共有学生53人,通过一学期的努力,学生的学习习惯有一定的改善,思维水平有了一定的提高,绝大多数学生已能按时完成作业。其中还有少部分同学基础较差,只好想办法争取让他们获得一定的进步。

  二、复习内容及要点:

  1、分数乘法

  复习分数乘法和意义和计算方法,记熟单位“1”的判断方法,巩固训练简便计算;复习“求一个数的几分之几是多少”和“求一个数比另一个数多(或少)几分之几”的应用题,能快速确定一个数的倒数。

  2、可能性

  复习时,能对生活中简单的随机现象发生的可能性大小做出确定性的描述。

  3、分数除法

  复习巩固分数除法的意义和计算方法,强化训练解答“已知一个数的'几分之几是多少求这个数”和“求一个数比另一个数多(或少)几分之几”的实际问题。

  4、比

  复习比的意义,比与分数、除法的关系,比的基本性质,进一步巩固化简比和求比值,让每个学生都能运用比的知识解决有关的实际问题。

  5、圆

  复习圆的组成、直径与半径的相互关系、扇形的组成、圆周率的意义、圆的周长与面积的计算公式、环形面积的计算公式,强化训练求圆的周长与面积、环形的面积。

  6、百分数

  复习百分数的意义、读法、写法,进一步训练小数、分数和百分数的互化。复习巩固求百分率的方法,并运用这些方法进行简单的计算。复习在理解、分析数量关系的基础上,正确地解答有关百分数的问题。

  8、拓展平台

  复习“黄金比之美”和“智慧广场”,了解黄金比,能够用“一一列举”的方法解决简单的实际问题。

  三、复习思路

  先分块复习,按照“数与代数”、“图形与几何”、“统计与概率”的顺序进行,然后进行综合练习,最后按单元引导学生查缺补漏、分层复习,让不同能力的学生得到不同的发展。

  注重在复习中引导学生总结和提炼数学思想方法,并发挥好评价的激励功能。

  四、具体安排

  12.19--23日 引导学生分块复习查缺补漏

  12.26——1.6 综合练习总结提升

  1.9——1.10 再次查缺补漏

  1.11——1.12 期末检测

【期末复习计划】相关文章:

期末复习计划06-20

期末复习计划08-28

期末复习计划08-28

期末复习计划08-28

期末复习计划08-28

期末复习计划08-28

期末复习计划08-28

期末复习计划08-28

期末复习计划08-28

期末复习计划08-27