小学数学教案

时间:2023-08-25 07:37:46 教案大全 我要投稿

小学数学教案(汇总3篇)

  作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。如何把教案做到重点突出呢?以下是小编精心整理的小学数学教案3篇,欢迎阅读,希望大家能够喜欢。

小学数学教案(汇总3篇)

小学数学教案 篇1

  教学内容:

  九年义务教育六年制小学数学第九册第58页准备题、例5。

  教学目的:

  1、使学生理解相遇问题的意义,学会分析“相遇问题”的数量关系,并能解答简单的相遇求路程的应用题。

  2、培养学生的观察、比较、分析、综合能力及解决实际问题 的能力。

  3、在教学过程中,渗透“事物是变化的、发展的”辨证唯物主义观点。

  教学重点:

  理解相遇问题的数量关系,建立解题思路,掌握解题方法。

  教学难点:

  理解相遇问题中速度和、相遇时间和总路程之间的关系。

  教学关键:

  使学生弄清每经过一个单位时间,两物体之间的距离变化。

  教具准备:

  计算机及辅助软件

  教学过程:

  一、展示设疑:

  ⑴复习铺垫

  同学们,过去我们已经学过一些有关行程问题的知识。今天,我们要在过去的知识基础上把这个问题作进一步的研究,为了更好地掌握新知识,现在我们把一些相关知识进行复习。

  1、口答:张华每分钟走65米,走了4分钟,一共走了多少米?(电脑辅助)

  为什么这样列式,谁会用一个数量关系式来回答?

  2、在27届奥运会中,我国体育健儿勇夺28枚金牌,使我们每一个中国人都感到无比激动和自豪。现在我提议,以热烈的掌声祝贺我国体育健儿为我们取得的荣誉。

  但是,鼓掌也很有学问,你们鼓掌时两只手是怎样运动的?从开始运动的地方,时间,方向及运动的'结果等方面进行回顾,思考。

  (边问、边答、边板书)

  两手运动:

  地点:两地 结果:相遇

  时间:同时

  方向:相对(相向)

  今天,我们就要从以前研究一个物体的运动转变为研究两个物体运动的行程问题。

  二、引导思疑

  1、准备题:张华家距李诚家390米。两人同时从家里出发,向对方走去。张华每分钟走60米,李诚每分钟70米。 (电脑辅助)

  请同学们看屏幕,张华和李诚是怎样走的,结果怎样?

  (电脑辅助)

  2、⑴先让学生独立填写表格中走的时间是1分钟这一行。完成后利用电脑演示两人同时出发相向而行1分钟的过程并集体校对答案。

  问:走1分钟两人所走路程的和是怎样求出来?两人之间的距离呢?

  ⑵让学生把表格填完,利用电脑演示来校对

  ⑶引导学生观察并思考,随着两人走的时间一分一分地增加,两人所走路程的和怎样变化?两人之间的距离同时发生什么变化?

  当两人的距离是0时,我们就说这时两人怎样了(相遇了)两人运动的结果就是相遇

  ⑷同桌讨论:相遇时两人所走路程的和与两家距离有什么关系?(电脑辅助)

小学数学教案 篇2

  教学目标:

  1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

  2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

  3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

  教学重点:会用假设法和方程法解答“鸡兔同笼”问题。

  教学难点:明白用假设法解决“鸡兔同笼”问题的算理。

  教学用具:

  多媒体课件。

  教学过程:

  一、创设情境,引入新课。

  1、引入:

  同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

  这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

  为便于研究,我们先从简单的生活问题入手,请看下面问题。

  ●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

  【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

  二、自主学习、小组探究

  对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

  温馨提示:

  ①用列举法怎样解决问题?

  ②你能用画图的方法解答吗?

  ③如果把这些票都看成学生票或都看成成人票如何解答?

  ④回顾列方程解决问题的经验,怎样用方程解决问题?

  学生自己根据提示用自己喜欢的方法解决问题。

  先把自己的想法在小组内说一说,再共同协商解决。

  教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

  三、汇报交流,评价质疑

  对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

  1.列举法。

  可以有目的的先展示这种方法。(多媒体展示。)

  学生票数(张)成人票数(张)钱数(元)

  2525250

  2426252

  2327254

  2228256

  2129258

  2030260

  质疑:有50张票,是否有必要一一列举,你是如何列举的?

  (引导学生通常先从总数的中间数列举。)

  质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

  (引导学生根据数据特点确定调整方向、调整幅度。)

  师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

  2.假设法

  (1)假设全是成人票:

  ①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

  ②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

  (学生试着列算式,请两个学生到黑板上去板演。)

  预设板演:

  50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

  50-20=30(张)

  ③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

  预设回答:

  假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

  而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

  (2)假设全是学生票:

  如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

  总结方法归纳抽象出这类问题的模型。

  学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).

  成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).

  3、方程法:

  除了以上两种方法,还有别的计算方法了吗?

  学生汇报列方程的方法。

  (1)找出相等的数量关系。

  (学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

  元)

  (2)根据等量关系列式:

  设成人票有x张,则学生票有(50-x)张。

  列方程为:6x+4(50-x)=260

  (解略)

  4.学生比较以上几种方法解题方法。

  四、抽象概括,总结提升。

  让学生结合自己解决问题的经验,用自己的语言进行总结。

  列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

  画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

  假设法:适合所有的这类问题,但比较抽象,不好理解。

  方程法:适用面广,便捷,容易理解。

  师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

  【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的.模型,及解决这类问题的一般方法和策略。

  五、巩固应用,拓展提高

  1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

  温馨提示:

  A.先让学生认真读题,(同桌讨论)。

  B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

  2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

  处理方法:

  ①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

  ②小组内交流算法。

  ③全班交流。

  【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。

  3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

  【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

  3、全课小结:

  回顾总结,引发思考

  本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

  师总结:

  这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

小学数学教案 篇3

  课题一:比的意义(A)

  教学内容

  教科书第46~47页和相应的“做一做”,练习十二的第1~4题。

  教学目的

  1。理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

  2。弄清比同除法、分数的关系。

  教具准备

  长3分米、宽2分米的红旗一面,投影仪。

  教学过程

  一、复习

  教师:在日常生活和工农业生产中,常常需要对两个数量进行比较。比如这面红旗(教师出示红旗),它长3分米,宽2分米。要对这面红旗的长和宽进行比较,可以用什么方法?

  引导学生回答:可以用减法,比较长比宽多多少或宽比长少多少。用除法,比较长是宽的几倍,或者宽是长的几分之几。板书:3÷2==1?????长是宽的1倍

  2÷3=????????宽是长的

  二、新课

  1。导入新课。

  教师:刚才我们用以前学过的方法对红旗的长、宽进行比较。这节课,我们要在用除法对两个数量进行比较的基础上,学习一种新的对两个数量进行比较的数学方法──比。(板书:比。)

  教师:比表示什么意义呢?它怎么读,怎么写?各部分的名称是什么?比又和除法、分数有什么关系呢?这些都是我们这节课要学习的内容。下面我们先学习比的意义。(板书课题。)

  2。教学比的意义。

  教师:(指3÷2)看这个除法算式,长是宽的几倍需要哪个量和哪个量比较?(长和宽比较。)

  红旗的长是多少?宽呢?红旗的长和宽比较也就是几和几比?

  (长和宽比较也就是3和2比。)

  求红旗长是宽的几倍又可以说成长和宽的比是3比2。(板书:长和宽的比是3比2。)(指2÷3)宽是长的几分之几是哪个量和哪个量比较?根据这个例子(指上例),想一想,宽是长的几分之几又可以说成什么?

  引导学生说出:宽和长的比是2比3。教师板书。

  小结:现在我们知道谁是谁的几倍或几分之几,又可以说成谁和谁的比。

  教师:这两个例子都是对长、宽两个量进行比较,为什么一个比是3比2,而一个比是2比3呢?

  引导学生回答:3比2是长和宽的比,2比3是宽和长的比。

  这两个例子告诉我们:两个数量进行比较一定要弄清谁和谁比。谁在前、谁在后不能颠倒位置。

  教师:刚才我们用除法和比的方法对红旗的长、宽进行了比较。在日常生活中,两个数量进行比较的事例有许多,请看这个例子(出示投影片):

  “一辆汽车2小时行驶了100千米,这辆汽车的速度是每小时多少千米?求汽车行驶的速度怎样计算?

  学生回答时,板书:100÷2=50(千米)

  100千米是汽车行驶的什么?2小时呢?汽车的速度需要哪个量和哪个量比较?(路程和时间比较。)

  那么汽车行驶的速度又可以说成路程和时间的比。

  教师:在这个例子中,路程和时间的比是几比几?

  学生回答后教师板书:路程和时间的比是100比2。

  教师:现在看这些例子,都是用什么方法对两个数量进行比较的?(用除法。)那么表示两种量的两个数,它们之间具有什么关系?(相除关系。)是几个数相除?(两个数相除。)

  学生回答后板书。

  再看长和宽的比是3比2,宽和长的比是2比3,路程和时间的比是100比2,这又是用什么方法对两个数量进行比较的?(比的方法。)几个数的比?学生回答后教师板书:两个数的比。

  (教师引导学生总结出比的意义:)通过这些例子可以清楚地看出:两个数相除又叫做两个数的比。

  从比的意义看,两个数的比是表示两个数之间的什么关系?(相除关系。)学生回答后,教师在相除二字下面画上着重号,然后齐读。

  3。教学比的读写法,各部分名称及求比值的方法。

  教师:以上我们学习了比的意义,在数学中,比还有这样的记法。

  3比2记作(板书:记作),先写3,再写“∶”,最后写2。(板书:3∶2)

  提示学生比号的两个小圆点要写在两个数的正中间,它叫比号,读作“比”,那么这个比就读作3比2。让学生齐读一遍。

  2比3记作(板书:记作),先写什么?再写什么?最后写什么?

  教师提问,学生回答后教师板书。

  100比2怎么写?学生回答后,教师板书:100∶2。

  这两个比会读吗?齐读一遍,学生练习写比。

  教师:在比中,每一部分都有它的名称。我们以3∶2为例(板书:3∶2),这叫什么符号?(学生答后板书:比号)比号前面的数叫做比的前项,(板书:前项)比号后面的数叫做比的后项。(板书:后项)

  根据比的意义,比的前项和后项是什么关系?(相除关系。)在这个比中,用谁除以谁?(3除以2。)3除以2的商是多少?(1)

  教师指出:我们把比的前项除以后项所得的商叫做比值。(板书:比值)1在这里就叫做3∶2的比值。

  板书:3∶2=3÷2=1

  ┇┇┇┇

  前比后比

  项号项值

  教师:从上面的式子可以看出,同除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于除法的商,可以用下表来表示。

  列完表后,教师指出:比和除法还是有区别的,不能完全混同起来,除法是一种运算,而比表示两个数的关系。

  教师提问:那么,比和比值有什么区别和联系呢?

  引导学生根据比的意义和比值的定义,弄清楚比值是一个数,是比的前后项相除所得的商,它通常用分数表示,也可以用小数表示,有时也可能是整数;而比是表示所比较的两个数的关系,如3∶2,也可以写成分数形式(但不能写成带分数,仍读作3比2。)

  需要指出:比的后项不能是零。

  让学生想一想这是为什么?引导学生联系比和除法的关系,由于比的后项相当于除法的除数,而除数不能为零,所以比的后项也不能为0。同时还要进一步指出,在体育比赛中的“几比几”,也使用“∶”号。但这只表示哪一队对哪一队比赛,各得多少分,不表示两队所得分数的倍比关系,与数学中的比的意义不同。比赛中时常出现0∶0或几比0的情况,而数学中比的后项是不能为0的。另外,比赛中的.几比几是不能化简的。

  4。做教科书第62页上半部分“做一做”的题目。

  (1)完成第1题。

  指名一学生在黑板上板演,其他学生独立完成。教师注意巡视,并察看学生是否将比号的位置写得规范。

  然后提问:每个比的前项是几?后项是几?能不能把比的前项和后项颠倒?教师指出:正如前面所讲,求长是宽的几倍,用长÷宽;求宽是长的几分之几,

  用宽÷长;所以交换了比的前后项的位置,比的具体意义就变了。

  (2)完成第2题。

  让学生独立完成,教师巡视,做完后集体订正。

  5。教学比与分数的关系。教师:两个数的比也可以写成分数形式。例如:3∶2可以写作

  示两个数的比,仍读作3比2。

  让学生齐读。,在这里,它表

  进一步举例:2∶3可以写作,100∶2可以写作。然后让学生齐读。

  提问:分数和除法有什么关系呢?(分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。)

  提问:根据分数和除法的关系以及比和除法的关系,比和分数又有什么关系呢?引导学生弄清楚:比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。列表如下:

  列完表后,提问:比和分数有没有区别呢?

  让学生明确分数是一种数,而比表示两个数相除的关系。

  总结比、除法、分数三者在意义上的区别:比是指两个数相除,表示两个数的关系;除法是一种运算;分数是一种数。它们的意义是不同的。

  6。做教科书第62页下半部分“做一做”的题目。

  让学生独立完成,教师巡视。

  集体订正时,指名学生说说自己用分数表示的比,并强调指出:虽然写的是分数形式,但不能读作几分之几,而应读作几比几。

【小学数学教案】相关文章:

小学数学教案03-27

小学数学教案08-31

(精选)小学数学教案08-11

(经典)小学数学教案08-09

(精选)小学数学教案08-09

小学数学教案(经典)07-22

小学数学教案(精选)08-07

小学数学教案[经典]07-24

小学数学教案【经典】08-03

[精选]小学数学教案08-20