范文资料网>反思报告>教案大全>《平行四边形教案

平行四边形教案

时间:2023-05-28 15:56:42 教案大全 我要投稿

【实用】平行四边形教案4篇

  作为一名优秀的教育工作者,有必要进行细致的教案准备工作,借助教案可以有效提升自己的教学能力。怎样写教案才更能起到其作用呢?以下是小编为大家收集的平行四边形教案4篇,欢迎大家分享。

【实用】平行四边形教案4篇

平行四边形教案 篇1

  【设计理念】

  本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容

  【教学内容】

  《义务教育教科书》人教版数学课本五年级上册87——88页。

  【教材、学情分析】

  平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

  学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

  【教学目标】

  1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

  2、在探究的过程中感悟“转化”的数学思想和方法。

  3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

  4、引领学生回顾反思,获得基本的数学活动经验。

  【教学重点】

  推导平行四边形面积计算公式。应用公式解决实际问题。

  【教学难点】

  理解平行四边形的面积计算公式的推导过程。

  【教学准备】

  平行四边形纸片若干,直尺、剪刀、。

  【教学过程】

  一、创设情境,激发兴趣。

  讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

  【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】

  二、组织探究,推导公式。

  1、联系旧知,做出猜想。

  看到这个题目,你想到了我们学过哪些有关面积的知识?

  大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?

  【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】

  2、初步验证,感悟方法。

  根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。

  引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)

  学生数方格并来验证自己的猜想。

  【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的.猜想。】

  3、剪拼转化,发现规律。

  除了数方格,我们还能用什么方法来验证呢?(学生思考)

  能否将平行四边形转化成我们学过的图形再来进行计算呢?

  (1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

  (2)展示交流。(演示)

  【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】

  4、观察比较,推导公式。

  剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

  小结: 长方形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

  【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】

  5、展开想象,再次验证。

  是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?

  学生先闭眼想象,再借助手中的工具加以验证。

  6、回顾反思,总结经验。

  回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。

  把平行四边形转化成长方形面积。(剪拼—转化)

  然后找到转化前、后图形之间的联系。(寻找—联系)

  根据长方形面积公式推导出平行四边形面积公式。(推导—公式)

  【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】

  三、实践应用,解决问题。

  1、解决实际问题

  平行四边形花坛底是6米,高是4米,它的面积是多少?

  2、出示如下图

  算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

  3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)

  王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?

  4、现在你明白阿凡提是怎么打败巴依的了吗?

  引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。

  思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?

  【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】

  四、总结全课,拓展延伸。

  转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。

  通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。

  【设计意图:试图把学生带入更加广阔的学习空间。】

  五、板书设计

  平行四边形的面积

  长 方 形面积 = 长 × 宽

  平行四边形面积 = 底 × 高

  S = a × h

平行四边形教案 篇2

  (一)教学目标

  1.使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。

  2.使学生掌握平行四边形和梯形的特征。

  3.通过多种活动,使学生逐步形成空间观念。

  (二)教材说明和教学建议 教材说明

  本单元是在学生学习了角的度量的基础上教学的,内容包括:同一平面内两条直线的特殊位置关系,即垂直与平行;平行四边形和梯形的认识。学生在前面已经学习了有关四边形的知识,对平行四边形也有了初步的认识,这里着重给出的是平行四边形的特征以及与正方形、长方形的关系。梯形在这里是第一次正式出现,教材除教学梯形的特征外,还注意说明与平行四边形的联系和区别。

  例题

  具体内容及要求

  垂直与平行

  例1

  认识同一平面内两条直线的特殊位置关系:平行和垂直。

  例2

  学习画垂线,认识“点到直线的距离”。

  例3

  学习画平行线,理解“平行线之间的距离处处相等”。

  平行四边形和梯形

  例1

  把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。

  例2

  认识平行四边形的不稳定性,认识平行四边形的底和高,及梯形的的各部分名称。

  学习画高。

  教学建议

  1.关注学生已有的生活经验和知识基础,把握教学的起点和难点。

  教学的任务是解决学生现有的认识水平与教育要求之间的.矛盾,为学习而设计教学,是教学设计的出发点,也是归宿。这一单元中涉及的知识点:平行与垂直,平行四边形与梯形等,一方面这些几何图形在日常生活中应用广泛,学生头脑中已经积累了许多表象;另一方面,经过三年的数学学习,也具备了一定的知识基础。这些都是影响学生学习新知最重要的因素。为此,教师必须关注学生已有的生活经验和知识基础,从学生出发,把握教学的起点和难点,根据学生的实际情况,增加或补充一些内容。

  2.理清知识之间的内在联系,突出教学的重点。

  由于数学知识的系统性和严密的逻辑性,决定了旧知识中孕育着新内容,新知识又是原有知识的扩展。教学时,要善于理清知识间的联系,根据教学目标来确定内容的容量、密度和教学的重点,有机地联系单元、全册,乃至整个年级、整个学段的教学内容加以研究。如果把“平行与垂直”这一内容放到整个教材体系中,就不难发现它的学习既需要直线及角的知识做基础,同时又是认识平行四边形和梯形的基础。

  3.注重学用结合,就地取材,充实教材内容。

  尽管教材在素材的选材上尽可能地提供一些现实背景,设计了一些学以致用的习题,如借助于运动场景里的一些活动器材引出垂直与平行的内容,要求学生思考和讨论怎样测定立定跳远的成绩、怎样修路最近等。但由于教材的容量有限,还需要教师在教学过程中做必要的充实和拓展,使学生理解和认识数学知识的发生和发展过程,进一步认识和体会数学知识的重要用途,增强应用意识。

  4.加强作图的训练和指导,重视作图能力的培养。

  这一单元涉及到许多作图的内容,如画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高等,对四年级学生来说,这些都有一定的难度,教学时要加强作图的训练和指导,重视作图能力的培养。

  5.本单元可用6课时完成。

平行四边形教案 篇3

  教学目标

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点 O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与 OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3 如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的`两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

平行四边形教案 篇4

  教学内容:人教版第九册 64 – 67页

  说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。

  教学重点:平行四边形面积的推导过程。

  本课采用的教法:自学法 、 转化方法、小组合作法、实验法。

  学法:1、自主学习法

  2、小组合作探究学习法。

  教学程序:

  一、创设问题情景, 为新课作铺垫。

  请同学们帮李师傅的一个忙,

  求出下面的面积,你是怎样想的?3厘米

  5厘米

  二、突出学生主体地位,发展学生的创新思维。

  首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

  有的同学说:长方形面积与平行四边形面积相等(数出来的)。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的面积等于底乘高。通过同学们发现与猜想

  三、小组合作,培养学生的合作精神。

  小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的.右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高

  学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

  学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。

  四例题独立完成,体现学生自己解决问题的能力。

  例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。

  板书设计:

  长方形面积==长乘宽

  平行四边形面积=底乘高

  s= a h

【平行四边形教案】相关文章:

平行四边形教案04-01

《平行四边形的判定》教案06-03

平行四边形的面积教案11-27

《平行四边形的认识》教案03-15

平行四边形面积教案02-09

认识平行四边形教案03-05

《平行四边形的面积》教案02-17

平行四边形教案4篇05-12

平行四边形教案三篇05-14

精选平行四边形教案8篇05-14