范文资料网>反思报告>教案大全>《平行四边形教案

平行四边形教案

时间:2023-05-26 11:15:51 教案大全 我要投稿

平行四边形教案范文合集五篇

  在教学工作者开展教学活动前,时常要开展教案准备工作,教案有助于学生理解并掌握系统的知识。来参考自己需要的教案吧!下面是小编为大家收集的平行四边形教案5篇,仅供参考,希望能够帮助到大家。

平行四边形教案范文合集五篇

平行四边形教案 篇1

  1、本单元教材内容

  例1.认识同一平面内两条直线的特殊位置关系:平行和垂直。

  例2.学习画垂线,认识点到直线的距离。

  例3.学习画平行线,理解平行线之间的距离处处相等。

  例1.把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。

  例2.认识平行四边形的不稳定性,认识平行四边形的底和高,学习画高,梯形的各部分名称。

  2、重难点、关键

  重点:垂直与平行的概念;平行四边形和梯形的特征。

  难点:画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的`高。

  关键:加强作图的训练和指导,重视作图能力的培养。

  3、教学目标

  (1)使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。

  (2)使学生掌握平行四边形和梯形的特征。

  (3)通过多种活动使学生逐步形成空间观念,进一步体会几何图形在日常生活中的广泛应用。

  4、课时划分

  6课时

  (1)垂直与平行 3课时左右

  (2)平行四边形和梯形 3课时左右

平行四边形教案 篇2

  教学目标:

  1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

  2.索并掌握平行四边形的性质,并能简单应用;

  3.在探索活动过程中发展学生的探究意识。

  教学重点:平行四边形性质的探索。

  教学难点:平行四边形性质的理解。

  教学准备:多媒体课件

  教学过程

  第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

  1.小组活动一

  内容:

  问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

  (1)你拼出了怎样的四边形?与同桌交流一下;

  (2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

  2.小组活动二

  内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

  第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

  小组活动3:

  用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?

  (1)让学生动手操作、复制、旋转、观察、分析;

  (2)学生交流、议论;

  (3)教师利用多媒体展示实践的过程。

  第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

  实践探索内容

  (1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

  (2)可以通过推理来证明这个结论,如图连结AC。

  ∵四边形ABCD是平行四边形

  ∴AD//BC,AB//CD

  ∴∠1=∠2,∠3=∠4

  ∴△ABC和△CDA中

  ∠2=∠1

  AC=CA

  ∠3=∠4

  ∴△ABC≌△CDA(ASA)

  ∴AB=DC,AD=CB,∠D=∠B

  又∵∠1=∠2

  ∠3=∠4

  ∴∠1+∠3=∠2+∠4

  即∠BAD=∠DCB

  第四环节应用巩固深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

  1.活动内容:

  (1)议一议:如果已知平行四边形的.一个内角度数,能确定其它三个内角的度数吗?

  A(学生思考、议论)

  B总结归纳:可以确定其它三个内角的度数。

  由平行四边形对边分边平行得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

  (2)练一练(P99随堂练习)

  练1如图:四边形ABCD是平行四边形。

  (1)求∠ADC、∠BCD度数

  (2)边AB、BC的度数、长度。

  练2四边形ABCD是平行四边形

  (1)它的四条边中哪些线段可以通过平移相到得到?

  (2)设对角线AC、BD交于O;AO与OC、BO与OD有何关系?说说理由。

  归纳:平行四边形的性质:平行四边形的对角线互相平分。

  第五环节评价反思概括总结(8分钟,学生踊跃谈感受和收获)

  活动内容

  师生相互交流、反思、总结。

  (1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

  (2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

  (3)本节学习到了什么?(知识上、方法上)

  考一考:

  1.ABCD中,∠B=60°,则∠A=,∠C=,∠D=。

  2.ABCD中,∠A比∠B大20°,则∠C=。

  3.ABCD中,AB=3,BC=5,则AD=CD=。

  4.ABCD中,周长为40cm,△ABC周长为25,则对角线AC=()cm。

  布置作业

  课本习题4.1

  A组(学优生)1、2

  B组(中等生)1、2

  C组(后三分之一生)1、2

平行四边形教案 篇3

  学习目标:

  1、理解并掌握平行四边形的定义

  2、掌握平行四边形的性质定理1及性质定理2

  3、提高综合运用知识的能力

  预习指导:

  1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。

  2、____________________________________是平行四边形。

  3、平行四边形的性质是:_________________________________________.

  学习过程:

  一、学习新知

  1、平行四边形的定义

  (1)定义:________________ ________________________叫做平行四边形。

  (2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形

  (3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形,

  反过来,平行四边形就一定具有性质。

  (4)平行四边形的表示:平行四边形ABCD 记作_________,读作___________.

  2、平行四边形的性质

  平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?

  已知:如图 ABCD,

  求证:AB=CD,CB=AD.

  分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.

  证明:

  总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。

  在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的.方法试一试。

  证明:

  通过上面的证明,我们得到了:

  平行四边形的性质定理1是_______________________________________.

  平行四边形的性质定理2是_______________________________________.

  二、应用举例:

  例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.

  例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。

  (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的 度数。

  例1、如图,在平行四边形ABC D中,AE=CF,求证:AF=CE.

  例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。

  (2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。

  三、随堂练习

  1.平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。

  2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。

  四、课堂小结 :

  1、平行四边形的概念。

  2、平行四边形的性质定理及其应用。

  五、当堂检测

  1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ).

  (A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是

  2.(选择)如图,在 ABCD中,如果EF∥AD,GH∥CD,

  EF与GH相交与点O,那么图中的平行四边形一共有( ).

  (A)4个 (B)5个 (C)8个 (D)9个

  3.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.

平行四边形教案 篇4

  教学目的:

  1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。

  2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

  3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  4、培养学生自主学习的能力。

  教学重点:掌握平行四边形面积公式。

  教学难点:平行四边形面积公式的推导过程。

  教具、学具准备:1、多媒体计算机及课件;2、投影仪;3、硬纸板做成的可拉动的长方形框架;4、每个学生5张平行四边形硬纸片及剪刀一把。

  教学过程():

  一、复习导入:

  1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

  2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

  3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

  二、质疑引新:

  1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

  2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

  3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

  4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

  三、引导探求:

  (一)、复习铺垫:

  1、什么图形是平行四边形呢?

  2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

  3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

  (二)、推导公式:

  1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

  2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

  4、学生实验操作,教师巡视指导。

  5、学生交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、微机演示各种转化方法。

  6、归纳总结规律:

  沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶、剪样成的.图形面积怎样计算?得出:

  因为:平行四边形的面积=长方形的面积=长×宽=底×高

  所以:平行四边形的面积=底×高

  (板书平行四边形面积推导过程)

  7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

  四、巩固练习:

  1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

  2、练习:

  (1)、(微机显示例一)求平行四边形的面积

  (2)、判断题(微机显示,强调高是底边上的高)

  (3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

  (4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

  五、问答总结:

  1、通过这节课的学习,你学到了哪些知识?

  2、平行四边形面积的计算公式是什么?

  3、平行四边形面积公式是如何推导得出的?

  六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

平行四边形教案 篇5

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  3.培养同学们分析问题、解决问题的能力。

  教学重点:

  运用所学知识解答有关平行四边形面积的应用题。

  教具准备:

  卡片

  教学过程:

  一、基本练习

  1.口算。

  2.平行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积。

  (1)底12米,高7米;

  (2)高13分米,底6分米;

  (3)底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  (1)生独立列式解答,集体订正。

  (2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:25078010000=1.95公顷,

  再求共收小麦多少千克:70001.95=13650千克

  (3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

  与(2)比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500(250781000)

  (4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的`两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  (1)你能找出图中的两个平行四边形吗?

  (2)他们的面积相等吗?为什么?

  (3)生计算每个平行四边形的面积。

  (4)你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.练习第10题:已知一个平行四边形的面积和底,求高。

  分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  第7题。

  四、小结

  本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?

【平行四边形教案】相关文章:

平行四边形教案04-01

平行四边形的面积教案11-27

平行四边形面积教案02-09

《平行四边形的面积》教案02-17

《平行四边形的判定》教案06-03

认识平行四边形教案03-05

《平行四边形的认识》教案03-15

数学《平行四边形的面积》教案02-14

平行四边形和梯形教案03-11

数学平行四边形的面积教案02-28