范文资料网>反思报告>教案大全>《平行四边形教案

平行四边形教案

时间:2023-05-24 11:22:26 教案大全 我要投稿

【实用】平行四边形教案四篇

  作为一名教职工,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。优秀的教案都具备一些什么特点呢?下面是小编整理的平行四边形教案4篇,欢迎阅读与收藏。

【实用】平行四边形教案四篇

平行四边形教案 篇1

  教学

  目标综合运用平行四边形的性质和四边形是平行四边形的条件解决问题

  重点

  难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。

  导学过程教师复备

  (学生笔记)

  复习回顾

  1.平行四边形有哪些性质?

  2.判别四边形是平行四边形的条件有哪些?

  3.平行四边形的性质与条件的区别?

  例题精讲

  例1、如图,在□ABCD中,点E、F分别在AB、CD上,AE=CF.四边形DEBF是平行四边形吗?为什么?

  例2、如图,□ABCD的`对角线相交于点O,直线EF过点O分别交BC、AD于点E、F,G、H分别为OB、OD的中点,四边形GEHF是平行四边形吗?为什么?

  反馈练习

  1.如图,在□ABCD中,AB=5,AD=8,∠A、∠D的角平分线分别交BC于E、F,则EF=__________(在右边写出过程)

  2.如图,在□ABCD中,过其对角线的交点O,引一条直线交BC于E,交AD于F,若AB=2.4CM,BC=4CM,OE=1.1CM。则四边形CDFE的周长为多少?

  3.如图,在□ABCD中,点E、F在对角线BD上,且BE=DF.四边形AECF是平行四边形吗?请说明你的理由.

平行四边形教案 篇2

  教学目标

  1、知识目标

  (1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

  (2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

  2、能力目标

  (1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

  (2)验证猜想结论,培养学生的论证和逻辑思维能力。

  (3)通过开放式教学,培养学生的创新意识和实践能力。

  3、非智力目标

  渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

  教学重点、难点

  重点:平行四边形的概念及其性质.

  难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

  平行四边形的概念及性质的灵活运用

  教学方法:讲解、分析、转化

  教学过程设计

  一、利用分类、特殊化的方法引出平行四边形的概念

  1.复习四边形的知识.

  (1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

  (2)将四边形的边角按位置关系分为两类:

  教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

  2.教师提问:四边形中的两组对边按位置关系分为几种情况?

  引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

  3.对比引出平行四边形的概念.

  (1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

  (2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

  (3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

  (4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

  ①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

  ②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

  练习1(投影)

  如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

  二、探索平行四边形的性质并证明

  1.探索性质.

  启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

  (3)对角线

  ⑤对角线互相平分(性质定理3)

  教师注意解释并强调对角线互相平分的含义及表示方法.

  2.利用化归的方法对性质逐一进行证明.

  (1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

  (2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

  (3)写出证明过程.

  3.关于“两条平行线间的平行线段和距离”的教学.

  (1)利用性质定理2

  导出推论:夹在两条平行线间的平行线段相等.

  ①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

  ②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

  ③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

  练习2

  (投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

  (2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

  练习3

  在图4-15(d)中,

  ①点A与点C的距离是线段__的长;

  ②点A到直线l2的距离是线段__的长;

  ③两条平行线l1与l2的距离是线段__或__的长;

  ④由推论可得:两条平行线间的距离__.

  三、平行四边形的`定义及性质的应用

  1.计算.

  1填空.

  (1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

  (2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

  (3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

  (4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

  (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

  2.证明.

  2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

  分析:

  (1)尽量利用平行四边形的定义和性质,避免证三角形全等.

  (2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

  3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

  着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

  4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

  分析:

  (1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

  (2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

  (3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

  3.供选用例题.

  (1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

  (2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

  (3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

  四、师生共同小结

  1.平行四边形与四边形的关系.

  2.学习了平行四边形哪些方面的性质?

  3.两条平行线的距离是怎样定义的?有什么性质?

  五、作业

  课本第143页第2,3,4,5,6题.

  课堂教学设计说明

  本教学设计需2课时完成.

  这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

  平行四边形及其性质

  教学目标

  1、知识目标

  (1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

  (2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.

  2、能力目标

  (1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

  (2)验证猜想结论,培养学生的论证和逻辑思维能力。

  (3)通过开放式教学,培养学生的创新意识和实践能力。

  3、非智力目标

  渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.

  教学重点、难点

  重点:平行四边形的概念及其性质.

  难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

  平行四边形的概念及性质的灵活运用

  教学方法:讲解、分析、转化

  教学过程设计

  一、利用分类、特殊化的方法引出平行四边形的概念

  1.复习四边形的知识.

  (1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.

  (2)将四边形的边角按位置关系分为两类:

  教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.

  2.教师提问:四边形中的两组对边按位置关系分为几种情况?

  引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.

  3.对比引出平行四边形的概念.

  (1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.

  (2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).

  (3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.

  (4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.

  ①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)

  ②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)

  练习1(投影)

  如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.

  二、探索平行四边形的性质并证明

  1.探索性质.

  启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:

  (3)对角线

  ⑤对角线互相平分(性质定理3)

  教师注意解释并强调对角线互相平分的含义及表示方法.

  2.利用化归的方法对性质逐一进行证明.

  (1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.

  (2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.

  (3)写出证明过程.

  3.关于“两条平行线间的平行线段和距离”的教学.

  (1)利用性质定理2

  导出推论:夹在两条平行线间的平行线段相等.

  ①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.

  ②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.

  ③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.

  练习2

  (投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.

  (2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.

  练习3

  在图4-15(d)中,

  ①点A与点C的距离是线段__的长;

  ②点A到直线l2的距离是线段__的长;

  ③两条平行线l1与l2的距离是线段__或__的长;

  ④由推论可得:两条平行线间的距离__.

  三、平行四边形的定义及性质的应用

  1.计算.

  1填空.

  (1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;

  (2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;

  (3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;

  (4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;

  (5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;

  说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.

  2.证明.

  2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.

  分析:

  (1)尽量利用平行四边形的定义和性质,避免证三角形全等.

  (2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.

  3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.

  着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.

  4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.

  分析:

  (1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.

  (2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.

  (3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.

  3.供选用例题.

  (1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?

  (2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.

  (3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.

  四、师生共同小结

  1.平行四边形与四边形的关系.

  2.学习了平行四边形哪些方面的性质?

  3.两条平行线的距离是怎样定义的?有什么性质?

  五、作业

  课本第143页第2,3,4,5,6题.

  课堂教学设计说明

  本教学设计需2课时完成.

  这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.

平行四边形教案 篇3

  教学内容:

  《义务教育课程标准实验教科书数学(四年级上册)》教科书70-71页例1,练习十二相关练习题。

  教学目标:

  知识目标:

  1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;

  2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;

  能力目标:培养学生动手操作能力和概括能力,发展空间思维能力。

  情感目标:在小组合作中,培养学生团结合作互助精神,在拼图的过程中感受图形的美。

  教学重点:掌握平行四边形和梯形的特征。

  教学难点:理解平行四边形、长方形、正方形的关系。

  教学准备:

  教具:课件,四边形关系图,长方形、正方形、平行四边形、梯形模具各一个。

  学具:三角尺,直尺,量角器。

  教学过程:

  一、回顾旧知,引入新课。

  师:我们以前已学过很多图形了,请认真观察下面图形它们是由几条边围成的?(课件出示)

  生:四条。

  师:你观察得真仔细。由四条边围成的这些图形叫四边形。

  师:在这些四边形中,你最熟悉的是什么图形?

  生:长方形,正方形。

  师:长方形、正方形的边和角各有什么特点?

  生:长方形的对边相等,对边平行,四个角都是直角。(板书)

  生:正方形的四条边都相等,对边平行,四个角都是直角。(板书)

  师:看来同学们对以前的知识掌握得真牢固!正方形是长方形吗?

  生:是。

  师:正方形是特殊的长方形,我们也可以说长方形包含正方形。

  师:你知道这两个图形的名称吗?(指课件中的平行四边形和梯形)。

  生:平行四边形和梯形。

  师:你们认识得真多,这节课我们就一起来探究一下平行四边形和梯形的有关知识。(板书课题)

  二、合作学习,探究新知

  (一)动手操作初步感知平行四边形和梯形的特点。

  师:平行四边形和梯形又有什么特点呢?现在我们用学具分别量一量它们的边、角各有什么特点,把你的发现像这样写下来。并相互说说你是怎样发现的?四人小组活动开始。

  生:学生活动,教师巡视。

  (二)教学平行四边形的特点。

  1、汇报发现。

  师:谁来大胆汇报自己的发现?你是怎样知道的?

  (指名说说平行四边形的特点)

  师:谁还有其它的.发现吗?

  2、?验证结论

  师:刚才有的同学找到平行四边形的两组对边是互想平行的,我们一起来验证吧,请看大屏幕!(大屏幕展示方法:用直尺、三角尺平移验证)

  3、总结概念。

  师:(边操作边说)这组对边平行,这组对边也平行,两组对边都平行。

  师:你们能用自己的话说说怎样的四边形叫“平行四边形”吗?(指名回答)

  师:请打开课本71页,找找课本是怎么说的,画起来齐读一遍。

  揭示概念:[课件展示]两组对边分别平行的四边形叫做平行四边形。(并板书)

  4、引导学生找出关键词。

  师:在这定义中,你认为哪些词语比较重点?

  生:两组,平行,四边形。

  师:你真会找。我们把重点词读重音,齐读一遍。

  生:学生读。

  师:下面我们男女同学比赛,看谁读得好。(男女分别读)

  师反问:要想判断一个图形是不是平行四边形,必须符合什么条件?

  5、穿插练习。

  请判断下面图形是平行四边形的打“”,不是打“”。

  (三)认识梯形

  1、汇报发现

  师:梯形的边又有哪些特点呢?

  生:只有一组对边平行。

  师:你们都有同样的发现吗?(板书)

  生:有。

  2、?验证结论

  师:我们一起来验证一下。

  师:(边操作边说)这组对边不平行,这组对边平行,只有一组对边平行。

  3、总结概念。

  师:你们能用自己的话说说怎样的四边形叫“梯形”吗?

  师:请打开课本71页,找找课本是怎么说的,画起来齐读一遍。

  揭示概念:[课件展示]只有一组对边平行的四边形叫做梯形。

  (并板书)

  4、引导学生找出关键词。

  师:在这定义中,你又认为哪些词语比较重点?

  生:只有一组,平行四边形。

  师:你找得真准确,我们把重点词读重音,再读一遍。

  师:下面我们来小组比赛,看哪个小组读得好。

  师反问:要想判断一个图形是不是梯形,必须要符合什么条件?

  5、穿插练习。

  请判断下面图形是梯形的打“”,不是打“”。

  6、比较平行四边形与梯形有什么不同。

  师:(指练习中的平行四边形)问:它为什么不是梯形?它其实是个平行四边形,那平行四边形与梯形有什么不同?

  三、教学四边形之间的关系。

  师:我们已经认识了这么多的图形了,这些图形都是四边形。(课件出示四边形的集合图)

  师:我们先看长方形,正方形和平行四边形的边都有什么共同的特点?

  生:两组对边都平行。

  师:那长方形,正方形是特殊的平行四边形吗?(四人小组讨论)

  师:指名汇报。

  师总结:长方形,正方形是特殊的平行四边形。它们特殊在哪里?

  生:四个角都是直角。

  师:梯形有没有两组对边平行?

  生:没有。

  师:所以梯形自己为一类。

  教师总结:所以在四边形这个大家族中[展示:四边形集合圈],有平行四边形、梯形、一般四边形这几个家庭组成[展示:平行四边形、梯形集合圈],在平行四边形这个家庭中,包含有长方形这个特殊的小家庭[展示:长方形集合圈],长方形这个小家庭中又包含正方形这个特殊的成员[展示:正方形集合圈]。

  师:现在我们对照课本71页的这个集合图,同桌互相说说这些四边形之间的关系。

  生:学生活动。

  师:谁来说说它们的关系。(指名说)

  四、质疑。

  师:请打开课本70--71页,看书有没有要问老师的呢?

  五、巩固练习。

  1、判断:

  (1)两组对边分别平行的图形是平行四边形。()

  (2)有一组对边平行的四边形是梯形。()

  (3)平行四边形的两组对边分别平行并且相等。()

  (4)长方形、正方形都是特殊的平行四边形。()

  2、找一找生活中的平行四边形和梯形。

  师:你们判断得真准确。其实平行四边形和梯形就在我们的身边,你们在哪里看到过平行四边形和梯形呢?(指名说说)

  师:好,老师现在带你们去校园找找,看这美丽的校园哪里有平行四边形和梯形呢?(主题图)

  师:谁愿意上来找找?

  师:同学们真会找,我们在生活中也要仔细观察身边的事物。老师也找到了一些生活中的平行四边和梯形。我们一起来欣赏一下。(课件欣赏生活中的平行四边形和梯形)

  师:我们生活中很多建筑物都要用到我们学过的图形的。你们想不想利用我们学过的图形亲手拼一幅美丽的图画呢?

  生:想。

  3、拼图。

  师:拼图要求:用学过的图形,拼出你们喜欢的图画。

  (1)找图形(2)小组拼图画。(3)展示作品。

  生:学生动手拼。

  师:同学们真能干,能利用我们学过的图形拼出这么漂亮的图画,你们的手真巧。在这些美丽的图画中,你最喜欢哪一幅?它是由哪些图形拼成的?

  六、总结:谈收获。

  师:同学们,你觉得这节课里你表现怎样?你有什么收获和体会?

平行四边形教案 篇4

  【教学目标】

  1、知识与技能:

  探索与应用平行四边形的对角线互相平分的性质,理解平行线间的距离处处相等的结论,学会简单推理。

  2、过程与方法:

  经历探索平行四边形性质的过程,进一步发展学生的逻辑推理能力及有条理的表达能力。

  3、情感态度与价值观:

  在探索平行四边形性质的过程中,感受几何图形中呈现的数学美。让学生学会在独立思考的基础上积极参与对数学问题的讨论,享受运用知识解决问题的成功体验,增强学好数学的自信心。

  【教学重点】:

  探索并掌握平行四边形的对角线互相平分和平行线间的距离处处相等的性质。

  【教学难点】:

  发展合情推理及逻辑推理能力

  【教学方法】:

  启发诱导法,探索分析法

  【教具准备】:多媒体课件

  【教学过程设计】

  第一环节回顾思考,引入新课

  什么叫平行四边形?

  平行四边形都有哪些性质?

  利用平行四边形的性质,我们可以解决相关的计算问题。阿凡提是传说中很聪明的人。一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说:给你两块地,一块是平行四边形形状的(如下图,AB=10,OA=3,BC=8),还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?

  [学生活动]此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的`面积,但找不到合适的解决办法.

  [教学内容]教师乘机引出课题,明确学习任务.

  第二环节探索发现,应用深化

  1、做一做:(电脑显示P100“做一做”的内容)

  如图4-2,□ABCD的两条对角线AC,BD相交于点O,

  (1)图中有哪些三角形是全等的?有哪些线段是相等的?

  (2)能设法验证你的猜想吗?

  [教师活动]教师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具(刻度尺、剪刀、图钉),尝试在交流合作中动手探究平行四边形的对角线有何性质.

  2、观察、讨论:(小组交流)

  通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。

  [教师活动]探究结束后,分组展示结果,教师利用课件展示“旋转法”的实验过程,增强教学的直观性.

  结论:平行四边形的对角线互相平分。

  [教师活动]“实验都是有误差的,我们能否对此进行理论证明?”

  [学生活动]此问题难度不大.

  [教师活动]教师让学生口述证明过程.最后师生共同归纳出“平行四边形的对角线互相平分”这条性质.

  活动二

  刚才财主巴依提出的问题你能解决吗?

  学生口述过程,教师最后给出规范的解题过程。

  练一练:

  财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中(点E与A、D不重合),你能知道这里有多少对全等三角形吗?

  [教师活动]此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形.

  活动三

  电脑显示P101关于铁轨的图片

  提出问题:“想一想”

  已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,

  (1)线段AC,BD所在直线有什么样的位置关系?

  (2)比较线段AC,BD的长。

  引出平行线间距离的概念,并引导学生对比点到直线的距离,两点间距离等概念。

  (让学生进一步感知生活中处处有数学)

  A.(学生思考、交流)

  B.(师生归纳)

  解(1)由AC⊥b,BD⊥b,得AC//BD。

  (2)a//b,AC//BD,→四边形ACDB是平行四边形

  →AC=BD

  归纳:

  若两条直线平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线间的距离。

  即平行线间的距离相等。

  [议一议]:

  举你能举出反映“平行线之间的垂直段处处相等实例吗”?

  活动目的:

  通过生活中的实例的应用,深化对知识的理解。

  第三环节巩固反馈,总结提高

  1、说一说下列说法正确吗

  ①平行四边形是轴对称图形()

  ②平行四边形的边相等()

  ③平行线间的线段相等()

  ④平行四边形的对角线互相平分()

  2、已知,平行四边形ABCD的周长是28,对角线AC,BD相交于点O,且△OBC的周长比△OBA的周长大4,则AB=

  3、已知P为平行四边形ABCD的边CD上的任意点,则△APB与平行四边形ABCD的面积比为

  4、平行四边形ABCD中,AC,DB交于点O,AC=10。DB=12,则AB的取值范围是什么?

  5、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

  第四环节评价反思,目标回顾

  活动内容:

  本节课你有哪些收获?你能将平行四边形的性质进行归纳吗?

  [布置作业]:

  P102习题4.21,2,3

  探究题已知如下图,在ABCD中,AC与BD相交于点O,点E,F在AC上,且BE∥DF.求证:BE=DF

【平行四边形教案】相关文章:

平行四边形教案04-01

平行四边形的面积教案11-27

平行四边形面积教案02-09

《平行四边形的面积》教案02-17

《平行四边形的判定》教案06-03

认识平行四边形教案03-05

《平行四边形的认识》教案03-15

数学《平行四边形的面积》教案02-14

平行四边形和梯形教案03-11

数学平行四边形的面积教案02-28