范文资料网>反思报告>教案大全>《平行四边形教案

平行四边形教案

时间:2023-05-24 11:17:34 教案大全 我要投稿

关于平行四边形教案4篇

  作为一无名无私奉献的教育工作者,编写教案是必不可少的,教案有助于学生理解并掌握系统的知识。怎样写教案才更能起到其作用呢?下面是小编收集整理的平行四边形教案4篇,欢迎阅读,希望大家能够喜欢。

关于平行四边形教案4篇

平行四边形教案 篇1

  教学目的

  1.使学生掌握用平行四边形的定义判定一个四边形是 平行四边形;

  2.理解并掌握用二组对边分别相等的四边形是平行四 边形

  3.能运这两种方法来证明一个四边形是平行四边形。

  教学重点和难点

  重点:平行四边形的判定定理;

  难点:掌握平行四边形的性 质和判定的区别及熟练应用。

  教学过程

  (一)复习提问:

  1. 什么 叫平行四边形 ?平行四边形有什么性质?(学生口答,教师板书)

  2. 将 以上的性质定理,分别用命题形式 叙述出来。(如果……那么……)

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平 行四边形性质定理的逆命题是否成立?

  (二)新课

  一.平行四边形的判定:

  方法一(定义法):两组对边分别平行的四边形的平边形。

  几何语言表达定义法:

  ∵AB∥C D,AD∥BC,∴四边形ABCD是平行四边形

  解析:一个四边形只要其两组对边 分别互相平行,

  则可判定这个四边形是一个平行四边形。

  活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

  方法二:两组对边分别相等的四边形是平行四边形。

  设问:这个命题的前提和结论是什么?

  已知:四边形ABCD中,AB=CD,AD=BC

  求 证:四边ABCD是平行四边形。

  分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易 证三角形全等。(见图1)

  板书证明过程。

  小结:用几何语言 表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的`方法为:

  判定一:二组对边分别相等的四边形是平行四边形

  ∵AB=CD,AD=BC, ∴四边形A BCD是平行四边形

  练习:课本P103练习题第1题。

  例题讲解:

  例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。

  求证:

  分析:由我们学过平行四边形的性质中,对角相 等,得若证明四边形EBFD为平行四边形,便可得到 ,哪么如何证明该四边形为平行边形呢?可通过证 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分别为AD和BC的中点得ED=FB。

  练习:2. 已知如 图7, E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。

  求证:四边 形EFGH是平行四边形。

平行四边形教案 篇2

  【学习目标】

  1.能运用勾股定理解决生活中与直角三角形有关的问题;

  2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。

  3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值

  【学习重、难点】

  重点:勾股定理的应用

  难点:将实际问题转化为数学问题

  【新知预习】

  1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.

  【导学过程】

  一、情境创设

  欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?

  二、探索活动

  活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.

  活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

  活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?

  三、例题讲解:

  1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?

  2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?

  【反馈练习】

  1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;

  (2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;

  (3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.

  2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )

  A.20cm B.10cm C.14cm D.无法确定

  3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?

  【课后作业】P67 习题2.7 1、4题

  八年级数学竞赛辅导教案:由中点想到什么

  第十八讲 由中点想到什么

  线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:

  1.中线倍长;

  2.作直角三角形斜边中线;

  3.构造中位线;

  4.构造中心对称全等三角形等.

  熟悉以下基本图形,基本结论:

  例题求解

  【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .

  (“希望杯”邀请赛试题)

  思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的.运用创造条件.

  注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:

  (1)利用直角三角斜边中线定理;

  (2)运用中位线定理;

  (3)倍长(或折半)法.

  【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )

  A.AB=MN B.AB>MN C.AB

  (20xx年河北省初中数学创新与知识应用竞赛试题)

  思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点.

  【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC.

  (浙江省宁波市中考题)

  思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线.

  【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC).

  若(1)BD、CF分别是△ABC的内角平分线(如图2);

  (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.

  (20xx年黑龙江省中考题)

  思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础.

  注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

  【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE.

  (20xx年天津赛区试题)

  思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口.

  注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一.

  学历训练

  1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= .

  (20xx年广西中考题)

  2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数).

  (200l年山东省济南市中考题)

  3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 .

  4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm.

  (20xx年天津市中考题)

  5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( )

  A.40 B.48 C 50 D.56

  6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( )

  A.8cm D.7cm C. 6cm D.5cm

  7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( )

  A.不能确定 B.2 C. D. +1

  (20xx年浙江省宁波市中考题)

  8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题:

  ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形;

  ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形;

  ③若所得四边形MNPQ为矩形,则AC⊥BD;

  ④若所得四边形MNPQ为菱形,则AC=BD;

  ⑤若所得四边形MNPQ为矩形,则∠BAD=90°;

  ⑥若所得四边形MNPQ为菱形,则AB=AD.

  以上命题中,正确的是( )

  A.①② B.③④ C.③④⑤⑥ D.①②③④

  (20xx年江苏省苏州市中考题)

  9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE.

  (20xx年上海市中考题)

  10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点.

  11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F.

  (1)求证:EF=FB;

  (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系.

  12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 .

  (20xx年四川省竞赛题)

  13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= .

  (重庆市竞赛题)

  1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号)

  15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( )

  A. B. C. D.

  16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( )

  A.1 D.2 C.3 D.

  17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( )

  A. B. C. D.

  18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF.

  (20xx年全国初中数学联赛试题)

  19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.

  (山东省竞赛题)

  20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点.

  (1)求证:MB=MC;

  (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论.

  (江苏省竞赛题)

  21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1.

  (1)求证AA1+ CCl = BB1 +DDl;

  (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系?

平行四边形教案 篇3

  教学内容:

  教科书第79~81页

  教学目标:

  1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  教学过程:

  一、导入

  1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。

  2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

  3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

  板书课题:平行四边形的面积

  二、平行四边形面积计算

  1.用数方格的方法计算面积。

  (1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

  说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

  (2)同桌合作完成。

  (3)汇报结果,可用投影展示学生填好的表格。

  (4)观察表格的数据,你发现了什么?

  通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

  2.推导平行四边形面积计算公式。

  (1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

  学生讨论,鼓励学生大胆发表意见。

  (2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

  学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

  请学生演示剪拼的过程及结果。

  教师用课件或教具演示剪—平移—拼的过程。(如教材第81页的图示)

  (3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

  小组讨论。可以出示讨论题:

  ①拼出的长方形和原来的平行四边形比,面积变了没有?

  ②拼出的`长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

  小组汇报,教师归纳:

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

  这个长方形的长与平行四边形的底相等,

  这个长方形的宽与平行四边形的高相等,

  因为 长方形的面积=长×宽,

  所以 平行四边形的面积=底×高。

  3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

  三、巩固和应用

  1.出示例1。读题并理解题意。

  学生试做,交流作法和结果。

  2.讨论:下面两个平行四边形的面积相等吗?为什么?

平行四边形教案 篇4

  教学内容:

  义务教育课程标准实验教科书苏教版一年级下册19~21页。

  教材简析:

  1.紧密联系学生已有经验,通过丰富的学习活动,帮助学生直观认识常见的平面图形。教材通过折正方形纸,让学生直观认识三角形,把两个完全相同的三角形拼成一个平行四边形,直观地认识平行四边形。这样安排,既符合低年级学生的认知特点,也有利于他们主动地认识平面图形。

  2.把图形的变换,图形间的联系放在重要位置。教材只要求学生直观认识三角形、平行四边形,没有深入研究它们的特征。但是教材安排了许多折、剪、拼的活动,比较多地将一种图形变换成另一种图形。这些操作活动,能使学生感受图形之间的联系,有利于培养学生空间观念和解决问题的能力,有利于发展学生的数学思维。

  3.教材设计了一些开放性问题,如在钉子板上围三角形、平行四边形,围成的这些图形可以有大有小,有不同的位置,用一个长方形剪成两个完全一样的三角形拼一拼,可以拼成多种图形。这些题能激起学生独立探索的精神,相互合作的愿望,有利于改善教学方式,培养学生的创新意识。

  教学目标:

  1.通过把长方形成或正方形折、剪、拼等活动,直观认识三角形和平行四边形,知道三角形和平行四边形的名称,并能识别三角形、平行四边形,初步了解三角形、平行四边形在日常生活中的应用。

  2.在折图形、剪图形、摆图形、拼图形等活动中,使学生体会图形的变换,发展对图形的空间想像能力。

  3.使学生在学习活动中积累对数学的兴趣,增强与同学的交往、合作的意识。

  教学重点与难点:从三角形、平行四边形实物中抽象出平面图形,并让学生正确认识它们。

  教具准备:长方形、正方形纸各一张,不同形状的三角形、平行四边形若干个,剪刀一把,钉子板和20页上半页的图片。

  学具准备:长方形纸、正分形纸、直角三角形纸若干张、剪刀、学具盒。

  教学过程:

  一、游戏激趣,创设情境

  小朋友,你们喜欢折纸吗?你们想折吗?今天老师就和你们一起玩折纸游戏好吗?

  二、动手操作,探索新知

  1.折一折,认识三角形

  (1)教师手中拿的是什么图形的纸?(正方形纸)请小朋友们拿出和老师手中一样的正方形纸,你能把这张正方形的纸对折成完全一样的两部分吗?(教师巡视,如有学生对对折不理解要及时指导。)

  (2)展示成果。

  哪位小朋友愿意上来说一说你是怎样折的?

  ①对折成两个完全一样的长方形。(这是我们已经认识的)

  ②对折两个完全一样的三角形。(贴出图形)问:这是什么图形?(板书:三角形)

  ③让所有小朋友用正方形纸折出两个完全一样的三角形。用小手摸一摸折出的三角形的面,再沿着这个三角形的边画一画,然后拿走折纸剩下△,让学生闭上眼睛想一想三角形的样子,并用手书空画出来。

  [评析:让学生建立图形表象是教学的重点,教者通过折、摸、画、想、手书空画等系列活动,使学生对三角形有了初步的空间表象,可谓水到渠成。]

  (3)认识不同形状的三角形。

  分别出示锐角三角形、直角三角形、钝角三角形、等腰三角形、等边三角形,让学生认一认,说明这些都叫三角形,让学生记住它们的样子。

  (4)认识生活中的三角形。

  在我们的生活中有哪些物体的面是三角形的?

  同桌互相说一说,然后在全班交流。当学生说到红领巾、三角尺等身边有的物体时,让学生摸着红领巾、三角尺的面说:红领巾的面是三角形的,三角尺的面是三角形的。

  (5)在钉字板上围三角形。

  你们知道了身边有许多物体的面是三角形的,你们能在钉字板上围出一个三角形吗?各自围一围,同桌相互展示(如有困难,相互帮助)。然后在全班展示出不同形状的三角形。

  (6)摆三角形。

  你们能用6根同样长的小棒摆出一个三角形吗?摆好后小组相互评一评,推选出优秀代表展示。

  (7)我们能用正方形纸对折成两个一样的三角形,一张长方形的纸,你也能折成的两个完全一样的三角形吗?拿出长方形纸折一折,比一比谁最聪明。

  [评析:学生初步认识三角形后,让学生了解生活中也有三角形的'存在,激发学生学习三角形的兴趣,再让学生在钉子板上围三角形、用小棒摆三角形、用长方形纸折三角形,既体现了具体到抽象的认知规律,又能循序渐进、层层深入地让学生认知三角形,了解三角形。]

  2.剪一剪、拼一拼,认识平行四边形

  (1)请小朋友们用剪刀把折成两个完全一样的三角形剪下来(师生同剪)。

  你能用剪下来的两个完全一样的三角形拼出不一样的图形吗?

  动手拼一拼,把拼成的不同图形贴在黑板上(可能拼出长方形、三角形、平行四边形)。

  教师指着平行四边形问:你们认识它吗?它叫什么图形?让所有的小朋友都来拼一个平行四边形。

  (2)出示各种平行四边形,让学生认一认,并沿着它们的边画在黑板上,让学生认一认,记一记它们的样子。

  (3)找平行四边形。

  出示楼梯图片,让学生找一找图中的平行四边形,并用小手指一指,再让全班小朋友打开课本22页,同桌互相找一找篱笆、扶手图片中的平行四边形,比一比看谁找得多。

  (4)围平行四边形。

  在钉子板上你们能围出平行四边形吗?动手围一围,同桌相互检查,相互帮助,再指名上台来围给大家看一看。

  (5)摆平行四边形。

  小朋友们围得真好,你们会用6根同样长的小棒摆出一个平行四边形吗?在书上第44页方格纸上画一画,选择几幅展示。

  [评析:用学习三角形的方法学习平行四边形,有利于学生的知识迁移,起着潜移默化的作用,让学生主动探索新知,发展学生的思维能力。]

  三、游戏巩固,拓展提高

  1.想想做做第4题

  用两个完全一样的三角形能拼成几个不同形状的平行四边形?动手拼一拼,展示不同形状的平行四边形。

  2.想想做做第5题

  先让学生自由拼一拼,也可以小组讨论,把不同拼法贴到黑板上,再让学生认一认,记一记。

  四、全课总结,课外延伸

  我们刚才拼出了许多形状的图形,下课后拼给同学看一看,回家后拼给爸爸妈妈看一看,好吗?

  [总评:本课始终以操作为主线,面向全体,全员参与,让学生通过操作思考,小组讨论,主动探索新知识,充分体现了以学生为本,教师为组织者、引导者和合作者,使学生在玩中学,学中玩。既活跃了学生的思维,又调动了他们学习的积极性和主动性。让学生动手、动脑、动口,多种感官参与,教师又以比比谁最聪明看谁找得多等激励性的语言,调动学生学习的兴趣,使每位学生在学习过程中都有不同程度的发展。]

【平行四边形教案】相关文章:

平行四边形教案04-01

平行四边形的面积教案11-27

平行四边形面积教案02-09

《平行四边形的面积》教案02-17

《平行四边形的判定》教案06-03

认识平行四边形教案03-05

《平行四边形的认识》教案03-15

数学《平行四边形的面积》教案02-14

平行四边形和梯形教案03-11

数学平行四边形的面积教案02-28