范文资料网>反思报告>教案大全>《平行四边形教案

平行四边形教案

时间:2023-05-19 12:36:33 教案大全 我要投稿

精选平行四边形教案模板集合5篇

  作为一名教学工作者,通常需要用到教案来辅助教学,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们应该怎么写教案呢?以下是小编帮大家整理的平行四边形教案5篇,仅供参考,欢迎大家阅读。

精选平行四边形教案模板集合5篇

平行四边形教案 篇1

  【学习目标】:1.掌握平行四边形的有关概念及性质(对边平行且相等,对角相等)

  【回顾与思考】:

  活动一:

  准备两个全等的三角形,将它们相等的一组边重合,得到一个四边形.

  (1)你得到了怎样的四边形?与同伴交流一下

  (2)观察拼出的这样一个四边形,这个四边形的对边有怎样的位置关系?为什么?

  (3)平行四边形的定义: 的四边形叫做平行四边形.

  平行四边形 连成的线段叫做对角线

  如图,四边形ABCD是平行四边形,

  记作” ”

  活动二:(1)观察你所拼的平行四边形中,有哪些相等的线段、相等的角?为什么?

  (2)平行四边形的性质:平行四边形的对边

  平行四边形的对角

  几何语言:

  ∵四边形ABCD是平行四边形(已知)

  ∴AB= ,BC= ( )

  ∠A = ,∠B = ( )

  【知识应用】:

  1. □ABCD中,AB=3,BC=5,则AD= CD= 。

  2. □ABCD中,∠B=60°,则∠A= ,∠C= ,∠D= 。

  3. 如图:四边形ABCD是平行四边形。

  (1)边AB、BC的长度

  (2)求∠D、∠C度数。

  【当堂反馈(小测)】:

  1.已知□ABCD中,∠B=70°,则∠A=______,∠C=______,∠D=______.

  2.在□ABCD中,∠A +∠C =270°,则∠B=______,∠C=______.;

  3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.

  4.平行四边形的周长等于56 cm,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.

  5.已知,如图,□ABCD中,∠A=70°,AD=5 cm,求∠B,∠C,∠D的度数及BC的长度。

  6.已知,如图,□ABCD中,∠CAD=20°,∠D=50°,求∠B,∠BCD的`度数

  【巩固提升】:

  1、已知□ABCD中,∠B=70°,则∠A =______,∠D =______。

  2、在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______。

  3、在□ABCD中,已知BC=8,周长等于24, 则CD=_______。

  4、 在□ABCD中,∠A=65°,则∠D的度数是 ( )

  A. 105° B. 115° C. 125° D. 65°

  5、在□ABCD中,∠B比∠A大20°,则∠D的度数是 ( )

  A. 80° B. 90° C. 100° D. 110°

  6、一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )

  A、88°,108°,88°B、88°,104°,108°

  C、88°,92°,88° D、88°,92°,92°

  7、□ABCD中,∠A:∠B:∠C:∠D的值可以是( )

  A、1:2:3:4 B 、1:2:2:1 C、2:2:1:1 D、 2:1:2:1

  8、已知,如图,□ABCD中,∠A=65°,AD=6 cm,求∠B,∠C,∠D的度数及BC的长度。

  9、如图,□ABCD中,∠ABC的平分线交AD于E,若∠AEB=20°,求∠D的度数

  10.四边形ABCD是平行四边形,它的四条边中哪些线段可以通过平移而互相得到?

平行四边形教案 篇2

  教学目的

  1.使学生掌握用平行四边形的定义判定一个四边形是 平行四边形;

  2.理解并掌握用二组对边分别相等的四边形是平行四 边形

  3.能运这两种方法来证明一个四边形是平行四边形。

  教学重点和难点

  重点:平行四边形的判定定理;

  难点:掌握平行四边形的性 质和判定的区别及熟练应用。

  教学过程

  (一)复习提问:

  1. 什么 叫平行四边形 ?平行四边形有什么性质?(学生口答,教师板书)

  2. 将 以上的性质定理,分别用命题形式 叙述出来。(如果……那么……)

  根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平 行四边形性质定理的逆命题是否成立?

  (二)新课

  一.平行四边形的判定:

  方法一(定义法):两组对边分别平行的四边形的`平边形。

  几何语言表达定义法:

  ∵AB∥C D,AD∥BC,∴四边形ABCD是平行四边形

  解析:一个四边形只要其两组对边 分别互相平行,

  则可判定这个四边形是一个平行四边形。

  活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。

  方法二:两组对边分别相等的四边形是平行四边形。

  设问:这个命题的前提和结论是什么?

  已知:四边形ABCD中,AB=CD,AD=BC

  求 证:四边ABCD是平行四边形。

  分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易 证三角形全等。(见图1)

  板书证明过程。

  小结:用几何语言 表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:

  判定一:二组对边分别相等的四边形是平行四边形

  ∵AB=CD,AD=BC, ∴四边形A BCD是平行四边形

  练习:课本P103练习题第1题。

  例题讲解:

  例1 已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。

  求证:

  分析:由我们学过平行四边形的性质中,对角相 等,得若证明四边形EBFD为平行四边形,便可得到 ,哪么如何证明该四边形为平行边形呢?可通过证 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分别为AD和BC的中点得ED=FB。

  练习:2. 已知如 图7, E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。

  求证:四边 形EFGH是平行四边形。

平行四边形教案 篇3

  一、教学内容:P72

  二、教学目标:

  1、引导学生直观地认识平行四边形。

  2、培养学生动手操作和实践能力。

  三、教学准备:

  长方形框架、七巧板

  四、教学过程:

  (一)复习导入

  (二)探索新知

  1、做一做

  (1)教师演示:出示长方形框架

  这是什么图形,然后拉动,变成新形状。提示学生认真观察。

  (2)学生动手操作,做一做。

  (3)认识平行四边形

  A、认识平行四边形实物(观察新图形)

  B、认识平行四边形平面图

  2、想一想

  平行四边形与长方形的联系:对边相等,四个角不是直角,有的`是锐角,有的是直角。

  3、说一说

  说一说平时见到的平行四边形

  4、画一画

  5、拼一拼(用七巧板)

  (三)全课

  今天我们学习了什么知识,用什么方法认识平行四边形。

  (四)作业

  在现实中寻找平行四边形

平行四边形教案 篇4

  一、 教学目标:

  1.掌握用一组对边平行且相等来判定平行四边形的方法.

  2.会综合运用平行四边形的四种判定方法和性质来证明问题.

  3.通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力.

  二、 重点、难点

  1.重点:平行四边形各种判定方法及其应用,尤其是根据不同条件能正确地选择判定方法.

  2.难点:平行四边形的`判定定理与性质定理的综合应用.

  三、例题的意图分析

  本节课的两个例题都是补充的题目,目的是让学生能掌握平行四边形的第三种判定方法和会综合运用平行四边形的判定方法和性质来解决问题.学生程度好一些的学校,可以适当地自己再补充一些题目,使同学们会应用这些方法进行几何的推理证明,通过学习,培养学生分析问题、寻找最佳解题途径的能力.

  四、课堂引入

  1. 平行四边形的性质;

  2. 平行四边形的判定方法;

  3. 【探究】 取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?

  结论:一组对边平行且相等的四边形是平行四边形.

  五、例习题分析

  例1(补充)已知:如图, ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.

  分析:证明BE=DF,可以证明两个三角形全等,也可以证明

  四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.

  证明:∵ 四边形ABCD是平行四边形,

  AD∥CB,AD=CD.

  ∵ E、F分别是AD、BC的中点,

  DE∥BF,且DE= AD,BF= BC.

  DE=BF.

  四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).

  BE=DF.

  此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路.

  例2(补充)已知:如图, ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F.求证:四边形BEDF是平行四边形.

  分析:因为BEAC于E,DFAC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.

  证明:∵ 四边形ABCD是平行四边形,

  AB=CD,且AB∥CD.

  BAE=DCF.

平行四边形教案 篇5

  教材分析:

  平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的'空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。

  几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

  教学目标:

  1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。

  2、掌握平行四边形面积计算公式并能解决实际问题。

  3、培养学生初步的空间观念。

  4、培养学生积极参与、团结合作、主动探索的精神。

  教学重点:平行四边形面积的计算。

  教学难点:平行四边形面积公式的推导过程。

  教学准备:学具。

  教学过程:

  一、质疑引新

  1、显示长方形图

  长方形的面积怎样求?

  2、电脑展示长方形变形为平行四边形。

  原来的长方形变成了什么图形?它的面积怎样求呢?

  二、引导探究

  (一)、铺垫导引

  出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。

  小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?

  实验、操作(小组合作):把后两幅图转化成长方形

  电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。

  集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)

  讨论:

  剪拼前后,图形的形状变了没有?面积有没有变?

  做了这个实验你想到了什么?

  (二)、实验探索

  刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?

  学生实验操作

  1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。

  2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。

  3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。

  结合学生发言提问:

  你在平行四边形上沿哪条线段剪开的?

  这条线段实际上是平行四边形的什么?

  在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。

  (三)总结归纳

  问:

  1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?

  2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)

  得出:平行四边形面积=底×高

  追问:要求平行四边形的面积,必须知道哪两个条件?

  用字母表示公式

  学生自学P44~P45有关内容

  集体交流:S=a×h

  S=a·h

  S=ah

  教师强调乘号的简写与略写的方法

  三、深化认识

  1、验证公式

  学生利用公式计算P43表格平行四边形的面积,看结果是否和实验结果一样。

  2、应用公式

  a) 例题

  学生列式解答,并说出列式的根据。

  b) 做练一练

  四、巩固练习

  1、求下列图形的面积是多少?

  底5厘米,高3。5厘米 底6厘米,高2厘米

  2、计算下面图形的面积哪个算式正确?(单位:米)

  3×8 3×6 4×8 6×8 3×4 4×6

  3、求平行四边形的高是多少?

  面积:56平方厘米

  底:8厘米

  4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

  以小组为单位探讨多种想法

  五、总结全课(电脑显示、学生口答)

  把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。

【平行四边形教案】相关文章:

平行四边形教案04-01

《平行四边形的判定》教案06-03

《平行四边形的认识》教案03-15

认识平行四边形教案03-05

平行四边形面积教案02-09

平行四边形的面积教案11-27

《平行四边形的面积》教案02-17

平行四边形教案4篇05-12

平行四边形和梯形教案03-11

平行四边形面积的计算教案03-03