范文资料网>反思报告>教案大全>《平行四边形教案

平行四边形教案

时间:2023-05-17 14:15:38 教案大全 我要投稿

有关平行四边形教案汇总七篇

  作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。来参考自己需要的教案吧!以下是小编为大家整理的平行四边形教案7篇,希望对大家有所帮助。

有关平行四边形教案汇总七篇

平行四边形教案 篇1

  本单元教学平行四边形和梯形的特点以及它们的高。学生在第一学段直观认识了平行四边形,而梯形则是第一次学习。全单元的内容分成两部分编排: 先教学平行四边形,再教学梯形。编写的一篇你知道吗介绍了平行四边形容易变形的特性及其在日常生活中的应用。安排的一道思考题让学生体会应用图形的平移和旋转可以把平行四边形剪拼成长方形、把梯形剪拼成长方形、把长方形剪拼成三角形。

  1、 让学生通过做图形发现平行四边形和梯形的特点。

  《标准》要求学生通过观察、操作,认识平行四边形和梯形。短短一句话,指出了学生学习图形特征的方法和途径: 要以发现为主,而不是仅靠接受。

  (1) 第43页例题要求学生凭已有的直观认识想办法做一个平行四边形,他们做的方法一定很多,教材里呈现的只是其中的一部分,很可能还有别的做法。做图形的目的是体会平行四边形的特点,教学时要注意四点:

  ① 课前要有充分的物质准备,如小棒、钉子板、方格纸这些材料可以是教师准备的,也可以是学生准备的。有些材料是预设的,有些材料是教学中即时想到的。

  ② 在做中发现特征,要让学生说说做的体会。做图形的目的是感受图形的形状特征,所以,要组织学生交流做法与思考。如用小棒摆平行四边形,上、下两根小棒一样长,左、右两根小棒也一样长。在方格纸上画平行四边形,上、下两条边互相平行,左、右两条边也互相平行

  ③ 要抓住平行四边形的主要特征进行教学。平行四边形有许多特点,如对角相等、邻角和是180等。例题的教学目的是使学生建立平行四边形的概念,所以要抓主要特点两组对边分别平行,两组对边长度分别相等。至于其他特点,不必提出过多的要求。

  两组对边分别平行是平行四边形的本质特征,必须使学生充分体会。不仅凭眼睛看,还要用画平行线的工具和方法进行验证。两组对边长度分别相等是平行四边形的重要特点,在以后计算面积时经常用到。也要让学生通过度量发现或验证。

  ④ 要促进学生在交流中集思广益、互补共享。每个学生的发现往往是点滴的,用小棒摆容易发现对边相等,不注意对边平行;用直尺画容易体会对边平行,不注意长度相等。因此,相互倾听、相互评价、相互吸收、共享发现成果尤为必要。听听别人的发现,看看自己做的平行四边形是不是也这样,就能做到互补共享。教师参与学生一起交流,要帮助学生提高语言水平,如把上、下两条边互相平行,左、右两条边互相平行概括地说成两组对边分别平行。

  (2) 在活动中体会长方形和平行四边形的关系,进一步认识这两种图形。想想做做第3、4题都是把一个平行四边形通过分移拼的活动变成一个长方形,让学生一方面体会到平行四边形和长方形的形状不相同,另一方面体会到变化前后的两个图形的面积相同。这些都为以后探索平行四边形面积的计算方法作了准备。第6题把4根饮料管先串成一个长方形,再拉成一个平行四边形。这些操作活动帮助学生发现长方形和平行四边形都是四边形,两组对边都互相平行且长度相等。它们的不同点主要表现在四个角上。

  (3) 第一次教学梯形,先让学生观察屋顶的一个面、梯子、清洁箱的抛物口、足球门的侧面,形成对梯形的直观感知。然后通过做梯形体会它的特点。教学线索和主要活动与平行四边形基本相同,仅有两点变化: 一是白菜卡通的提问方式变了,不是问梯形有什么特点,而是问梯形与平行四边形比较,有什么区别;二是多了辣椒卡通在回答问题。这些变化是引导学生寻找梯形的本质特征,帮助他们建立准确的梯形概念。

  学生有想办法做出一个平行四边形的活动体验,现在做一个梯形,教学可以放得更开一些。如做的材料自己寻找、做的方法自己设计,并要求学生通过做了解梯形的特点。在交流梯形的特点时,要紧扣教材中的问题进行,突出梯形只有一组对边平行。

  2、 精心设计高的教学。

  四年级(上册)教学平行的时候,曾经让学生在两条互相平行的直线中间画几条与两条直线都垂直的线段,通过度量还发现了画出的所有垂直线段长度都相等。那时候让学生做这道题的目的`是体会平行与垂直是不同的位置关系。并通过平行线之间的垂直线段长度相等,体会两条平行的直线永远不会相交。这道题又可以成为本单元教学平行四边形和梯形的高的起点。

  (1) 平行四边形有两组互相平行的对边,有两条长度不等的高。教材把两条高分两步教学,先讲平行四边形上、下一组对边间的高,再讲左、右一组对边间的高。

  第44页例题要求学生量出平行四边形上、下一组对边间的距离。这两条边之间的距离是它们之间垂直线段的长度,量距离要先画出垂直线段。画垂直线段的方法一般是在一条边上确定一点,从这一点向对边作垂线。学生经过这样的过程,理解教材中关于平行四边形高的描述式定义就有了感性认识。所以,教学时要引导学生思考什么是两条红线间的距离,并画一画两条红线间的垂直线段。

  试一试的左边一题仍然是上、下两条边之间的高,通过这题巩固对平行四边形高的初步认识。同时看到,画高的时候要在上面一条边上任意确定一点,这任意一点也可以是上面一条边的一个端点,即平行四边形的一个顶点。右边两题是左、右两条边之间的高,要让学生想一想: 图中的红线是平行四边形的高吗,为什么?抓住高的本质特征思考,从而进一步理解平行四边形的高。

  (2) 第47页教学梯形的高,教材的编写线索和安排的教学活动与教学平行四边形的高基本相同,有利于学生利用已有经验学习新知识。不同的地方有两处: 一是结合教学梯形的高讲了梯形的上底、下底和腰。二是例题里的梯形的底是上、下两条互相平行的边,试一试里出现底是左、右两条互相平行的边的梯形,还有直角梯形。直角梯形的高是垂直于底的那条腰。与画平行四边形的高相同,画梯形的高要在一条底上任意选一点。如果选的点是梯形的顶点,那么这条高把梯形分成一个三角形和一个梯形;如果选的点不是梯形的顶点,那么这条高把梯形分成两个较小的梯形。第48页第3题就为此而设计。

平行四边形教案 篇2

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:

  理解公式并正确计算平行四边形的面积.

  教学难点:

  理解平行四边形面积公式的推导过程.

  学具准备:

  每个学生准备一个平行四边形。

  教学过程:

  一、导入新课。

  1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?

  2.好,下面谁来说一说你找到了哪些学过的图形?

  3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、民主导学

  (一)、数方格法

  用展示台出示方格图

  1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2.这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的`底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

平行四边形教案 篇3

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  3.培养同学们分析问题、解决问题的能力。

  教学重点:

  运用所学知识解答有关平行四边形面积的应用题。

  教具准备:

  卡片

  教学过程:

  一、基本练习

  1.口算。

  2.平行四边形的.面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积。

  (1)底12米,高7米;

  (2)高13分米,底6分米;

  (3)底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  (1)生独立列式解答,集体订正。

  (2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:25078010000=1.95公顷,

  再求共收小麦多少千克:70001.95=13650千克

  (3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

  与(2)比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500(250781000)

  (4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  (1)你能找出图中的两个平行四边形吗?

  (2)他们的面积相等吗?为什么?

  (3)生计算每个平行四边形的面积。

  (4)你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.练习第10题:已知一个平行四边形的面积和底,求高。

  分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  第7题。

  四、小结

  本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?

平行四边形教案 篇4

  教学目的:

  1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。

  2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

  3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  4、培养学生自主学习的能力。

  教学重点:掌握平行四边形面积公式。

  教学难点:平行四边形面积公式的推导过程。

  教具、学具准备:1、多媒体计算机及课件;2、投影仪;3、硬纸板做成的可拉动的长方形框架;4、每个学生5张平行四边形硬纸片及剪刀一把。

  教学过程():

  一、复习导入:

  1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

  2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

  3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

  二、质疑引新:

  1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

  2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

  3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

  4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

  三、引导探求:

  (一)、复习铺垫:

  1、什么图形是平行四边形呢?

  2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

  3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

  (二)、推导公式:

  1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

  2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的`割补法将平行四边形转化为长方形。

  4、学生实验操作,教师巡视指导。

  5、学生交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、微机演示各种转化方法。

  6、归纳总结规律:

  沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶、剪样成的图形面积怎样计算?得出:

  因为:平行四边形的面积=长方形的面积=长×宽=底×高

  所以:平行四边形的面积=底×高

  (板书平行四边形面积推导过程)

  7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

  四、巩固练习:

  1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

  2、练习:

  (1)、(微机显示例一)求平行四边形的面积

  (2)、判断题(微机显示,强调高是底边上的高)

  (3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

  (4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

  五、问答总结:

  1、通过这节课的学习,你学到了哪些知识?

  2、平行四边形面积的计算公式是什么?

  3、平行四边形面积公式是如何推导得出的?

  六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

平行四边形教案 篇5

  一、教学目标:

  1、让学生知道平行四边形面积公式的推导过程,以平行四边形与长方形关系为基础,引导学生通过动手操作和观察、比较,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积或是解决一些简单的实际问题。

  2、培养学生想象力、创造力,及用转化的方法解决新的问题的能力。

  3、培养学生自主学习的能力。

  4、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  二、教学重点:

  平行四边形面积的计算公式的推导及计算。

  三、教学难点:

  平行四边形面积计算公式的推导过程。

  四、教学用具:

  长方形、平行四边形硬纸片、剪刀、直尺

  教学过程:

  一、引出主题:

  师:大家知不知道我们学校正在将操场隔壁的地方改造为校园一角,专门留出两个空地作为我们同学们的学农小基地(在黑板上贴出两个图案,一块是长方形——甲地,一块是平行四边形——乙地)。下面我们就看一下这两块空地是什么形状的?学校啊,又决定将甲地分给四年级,乙地分给五年级负责除草,那么大家知道哪一个年级负责地方要大一点呢?

  师:现在我们先看一下甲地。我们要求这块长方形地的面积,只要量出什么啊?

  生:长方形的.长和宽(点出长、宽)。

  师:现在老师已经量出来长15米、宽10米,那么它的面积是什么?

  生:(计算)150平方米。(要求学生回忆起长方形的面积公式,并运用公式计算出这个长方形的面积。)(板书:长方形面积公式)

  师:同学们现在都能很熟练地计算出长方形的面积啦!那么,这块平行四边形地的面积是多少啊?我们该怎样计算呢?这就是今天我们要一起探讨的问题啦!(板书:平行四边形的面积)

  二、动手操作(得出公式):

  师:以前我们是用面积器量数出长方形有多少个小格子或是得出长方形的长和宽来用面积公式来算出了长方形的面积。那我们可不可以运用以前的知识或是我们的经验,想出计算这个平行四边形的面积的方法呢?有哪位同学已经想到办法来?

  生:用剪刀沿着平行四边形的高剪,再拼成长方形,再用尺子量出底(长)18厘米,高(宽)10厘米。面积是180平方厘米。(让学生把操作展示给全班同学看)

  师:这位同学很聪明,他是沿着高来剪,再拼成一个长方形。那老师现在再问你一个问题,你为什么要剪拼成长方形?

  生:因为长方形的长和宽与原来平行四边形的底和高相等,而长方形面积我们会求。

  三、得出结论:

  师:沿着这条垂线把平行四边形剪成了一个三角形和一个梯形,把三角形移到梯形的一边,就变成了长方形。拼成的长方形的长与平行四边形的底相等,宽与平行四边形的高相等。因为长方形面积=长×宽(板书),所以我们推导出平行四边形面积=底×高(板书)。我们称这种方法为“割补法”(板书)。如果我们用s来表示平行四边形的面积,a来表示平行四边形的底,h来表示平行四边形的高,你能自己写出平行四边形的字母公式吗?

  生:s=a×h

  师:我们还可以将这条公式缩写为:s=a·h或者是s=ah。

  四、巩固提高:

  练习:一块平行四边形钢板,底为4.8厘米,高为3.5厘米。

  它的面积是多少?(结果保留整数。)

  解答:4.8×3.5=16.8(平方厘米)≈17(平方厘米)

  五、小结:

  面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。

平行四边形教案 篇6

  学习目标:

  1.能运用综合法证明正方形性质定理。

  2.体会证明过程中所运用的归纳概括以及转化等 数学思想方法

  课前热身:

  矩形、菱形有哪些性质和判别方法?

  正方形有哪些性质?你能证明吗?

  自主学习

  1.证明有一个角是直角的菱形是正方形

  2.证明对角线相等的菱形是正方形

  4.议一议

  ①依次连接菱形或矩形四边的中点能得到一个什么图形?先猜一猜,再证明。

  ②依次连接特殊平行四边形 四边中点呢?

  课堂小结

  1、顺次连接任意四边形各边的中点得到的四边形是

  2、顺次连接矩形各边的中点得到的四边形是

  3、顺次连接菱形各边的中点得到的四边形是

  4、顺次连接正 方形各边的中点得到的四边形是

  反馈检测:

  1.正方形的边长为 ,则它的'对角线长 ,若正方形的对角线长为 ,它的边长为 。

  2.边长为 的正方形,在一个角 剪掉一 个边长为的 正方形,则所剩余 图形的周长为 。

  3.已知:如图 Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F。

  求证:四边形CEDF是正方形。

  布 置作业:

  A组:习题 4、2 创新设计 B 组 习题4.、2 C 组 背定义

平行四边形教案 篇7

  教学目标:

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点:理解公式并正确计算平行四边形的面积.

  教学难点:理解平行四边形面积公式的推导过程.

  学具准备:每个学生准备一个平行四边形。

  教学过程:

  一、导入新课

  1、什么是面积?

  2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。

  二、民主导学

  (一)、数方格法

  用展示台出示方格图

  1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)

  2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?

  请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。

  2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?

  小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。

  (二)引入割补法

  以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。

  (三)割补法

  1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?

  2、然后指名到前边演示。

  3、教师示范平行四边形转化成长方形的过程。

  刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

  ①先沿着平行四边形的高剪下左边的直角三角形。

  ②左手按住剩下的.梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  ③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

  4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)

  您现在正在阅读的五年级上册《平行四边形的面积》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!五年级上册《平行四边形的面积》教学设计①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

  ②这个长方形的长与平行四边形的底有什么样的关系?

  ③这个长方形的宽与平行四边形的高有什么样的关系?

  教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。

  5、引导学生总结平行四边形面积计算公式。

  这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)

  那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)

  6、教学用字母表示平行四边形的面积公式。

  板书:S=ah

  说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。

  (6)完成第81页中间的填空。

  7、验证公式

  学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。

  条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)

  三、检测导结

  1、学生自学例1后,教师根据学生提出的问题讲解。

  2、判断,并说明理由。

  (1)两个平行四边形的高相等,它们的面积就相等()

  (2)平行四边形底越长,它的面积就越大()

  3、做书上82页2题。

  4、小结

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  5、作业

  练习十五第1题。

  附:板书设计

  平行四边形面积的计算

  长方形的面积=长宽 平行四边形的面积=底高

  S=ah S=ah或S=ah

【平行四边形教案】相关文章:

平行四边形教案04-01

《平行四边形的判定》教案06-03

《平行四边形的认识》教案03-15

认识平行四边形教案03-05

平行四边形面积教案02-09

平行四边形的面积教案11-27

《平行四边形的面积》教案02-17

平行四边形教案4篇05-12

平行四边形和梯形教案03-11

平行四边形面积的计算教案03-03