鸡兔同笼教案

时间:2023-05-12 18:07:44 教案大全 我要投稿

鸡兔同笼教案范文汇编十篇

  作为一名教学工作者,通常需要准备好一份教案,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?下面是小编帮大家整理的鸡兔同笼教案10篇,希望能够帮助到大家。

鸡兔同笼教案范文汇编十篇

鸡兔同笼教案 篇1

  [教学目标]

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

  [教学重、难点]

  通过列表举例、作图分析等方法,解决鸡与兔的数量问题。

  [教学过程]

  一、呈现鸡兔同笼问题。组织学生探索解决问题的方法。

  1、小组活动

  2、交流方法

  3、

  二、做一做

  独立完成第1—3题,并交流解决的方法。

  第4题的答案有多种,启发学生找出不同的'答案。

  讨论第4题与前3题所给条件的不同,从而让学生知道哪些题的答案是唯一的,哪些题是有多种答案的。

  [板书设计]

  鸡兔同笼问题

  方法1方法2方法3方法4

鸡兔同笼教案 篇2

  教学目标:

  1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

  2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

  3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

  教学重点:会用假设法和方程法解答“鸡兔同笼”问题。

  教学难点:明白用假设法解决“鸡兔同笼”问题的算理。

  教学用具:

  多媒体课件。

  教学过程:

  一、创设情境,引入新课。

  1、引入:

  同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

  这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

  为便于研究,我们先从简单的生活问题入手,请看下面问题。

  ●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

  【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

  二、自主学习、小组探究

  对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

  温馨提示:

  ①用列举法怎样解决问题?

  ②你能用画图的方法解答吗?

  ③如果把这些票都看成学生票或都看成成人票如何解答?

  ④回顾列方程解决问题的经验,怎样用方程解决问题?

  学生自己根据提示用自己喜欢的方法解决问题。

  先把自己的想法在小组内说一说,再共同协商解决。

  教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

  三、汇报交流,评价质疑

  对于解决这个问题,同学们一定有自己的好的方法,请把你的.好办法同大家交流吧。

  1.列举法。

  可以有目的的先展示这种方法。(多媒体展示。)

  学生票数(张)成人票数(张)钱数(元)

  2525250

  2426252

  2327254

  2228256

  2129258

  2030260

  质疑:有50张票,是否有必要一一列举,你是如何列举的?

  (引导学生通常先从总数的中间数列举。)

  质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

  (引导学生根据数据特点确定调整方向、调整幅度。)

  师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。(板书:枚举法)

  2.假设法

  (1)假设全是成人票:

  ①为了便于学生理解,展示假设为成人票,学生试画的分析图。(图略)

  ②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

  (学生试着列算式,请两个学生到黑板上去板演。)

  预设板演:

  50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

  50-20=30(张)

  ③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?

  预设回答:

  假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

  而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

  (2)假设全是学生票:

  如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。)

  总结方法归纳抽象出这类问题的模型。

  学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).

  成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).

  3、方程法:

  除了以上两种方法,还有别的计算方法了吗?

  学生汇报列方程的方法。

  (1)找出相等的数量关系。

  (学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260

  元)

  (2)根据等量关系列式:

  设成人票有x张,则学生票有(50-x)张。

  列方程为:6x+4(50-x)=260

  (解略)

  4.学生比较以上几种方法解题方法。

  四、抽象概括,总结提升。

  让学生结合自己解决问题的经验,用自己的语言进行总结。

  列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

  画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

  假设法:适合所有的这类问题,但比较抽象,不好理解。

  方程法:适用面广,便捷,容易理解。

  师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

  【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

  五、巩固应用,拓展提高

  1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。)

  温馨提示:

  A.先让学生认真读题,(同桌讨论)。

  B.然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

  2.王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

  处理方法:

  ①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。

  ②小组内交流算法。

  ③全班交流。

  【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。

  3、巩固练习:回应解决例题,引导学生用合适的方法计算。然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)

  【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。

  3、全课小结:

  回顾总结,引发思考

  本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。

  师总结:

  这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。

鸡兔同笼教案 篇3

  鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:

  一、关注每位孩子的成长是成功的前提

  鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。

  二、关注课堂的互动、生成是取得良好效果的基础

  课堂是师生双边的交换活动,是教师与学生交流的活动。课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。因此,在评价方面我采取学生回答精彩时,及时有效的正面评价;学生回答不上来或回答不够具体时,友好的提醒先想一想或听听同学们的意见,再交流……点滴的心语交流,让孩子们没有负担的学习,同时发展性的'评价,更促使孩子们高度关注学习的内容,做到了良性的情绪循环,促进了教学的有效性展开。正是如此,自然形成了融洽的课堂,达到良好的教学效果。

  三、关注数学思想的传承是达成目标的保障

  解决鸡兔同笼问题的过程中蕴含丰富的数学思想,有绘图的数形结合思想、有算术计算的假设思想,有方程代数的数学建模思想等。本人思考如果一节课把所有的思想内涵都包容进去,平均分配学习时间和关注度,必定导致课堂内容学习的拥堵和孩子们学习的不知所措。因此,我选取了适合孩子们认知的方式的,首先用一个诙谐幽默的鸡兔玩游戏的故事引入,让学生弄清鸡兔各有什么特点?4只鸡和3只兔一共有多少条腿?鸡学兔走路,地上有几条腿?多的几条腿是谁的?兔学鸡走路,地上有几条腿?少的几条腿是谁的?根据学生已获得的知识,注意引导学生围绕自己的发现,进行深层次地思考,重点渗透以列表的一一对应思想和算术解决的假设模型等数学思想,并通过猜想、验证,使学生应用所发现的数学知识进行判断,很快掌握了用假设法解鸡兔同笼问题的方法,并在学习方法的过程中,体会数学思想。

  本课虽然没有华丽的修饰,但已引起学生的共鸣、激发了他们的学习愿望,完全吃透所学内容,思维得到锻炼。

鸡兔同笼教案 篇4

  时间:20xx年12月3日

  地点:大会议室

  主备人:崔xx

  参加人员:六年级全体数学教师

  教研内容:“鸡兔同笼”问题

  教学目标:

  1.初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。

  2.结合图解法理解假设的方法解决鸡兔同笼问题。

  3.在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

  教学重点:能用列表法和画图法解决相关的实际问题。

  教学难点:结合图解法理解假设的方法解决鸡兔同笼问题。

  重难点突破:借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。

  模式方法:提出问题——列举尝试——观察发现——讨论交流——寻找解法。

  作业设计:有浅入深“鸡兔同笼”的基本题型多练。

  组内教师讨论要点:

  1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。

  2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的`基础,是重要教学内容之一,从中体会数量的变化规律。

  3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。

  4、列方程解时要借助实例,体会设X的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为X的道理,方法是设出一部分,根据总数列出方程(易列难解)

  活动总结:

  全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。

鸡兔同笼教案 篇5

  教学目标:

  1、知识与技能

  让学生学会“列举法”,并运用“列举法”解决问题。

  2、过程与方法

  让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

  让学生养成“尝试”的数学思维与方法。

  3、情感态度与价值观

  利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。

  了解中国数学历史,渗透数学文化的思想。

  教学重点:

  让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。

  教学难点:

  让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。

  教学关键:

  让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。

  教具准备:

  三个表格,卡片。

  教学过程:

  一、导入

  1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)

  2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)

  3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)

  二、授新课

  1、师:老师想考考你们,你们看

  (师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?

  师:请你赶快猜一猜吧!生:独立思考后全班交流。

  (此时,学生很容易猜出,师首先肯定学生的各种想法,再说:我把

  这题的数字变大一些,你能猜出鸡、兔各有多少只吗?

  2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?

  (1)a、让生齐读题目

  b、师让生独立思考后再与同桌交流。

  c、指名汇报(当学生猜不出答案时,师:我给大家带来了一位好朋友,它可以帮助我们解决这个问题,你看)师边说边出示表格)当学生猜出正确答案时,师追问:说说你是怎样想的?根据生的回答完成表格

  d、 此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)

  e、 观察这个表格,你发现了什么?(指名生说)

  (2) 小结:对于发现的同学及时给予表扬,你真是个善于发现的孩

  子。

  a、我们再来观察一下这个表格,我们从1开始假设时就有78

  条腿和答案的54条腿相比,怎么样?我们能不能让列举的`次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)

  b、根据生的回答,师板书:

  c、 师小结:你真是个爱动脑筋的孩子,真聪明!那我们也给

  这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)

  (3) 师:还有别的列举法?

  a、 学生可能会说出取中列举法,师就问让其说清楚,明白。

  学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。

  b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)

  3、 观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)

  4、师:在我们的实际生活中,还有很多类似鸡兔同笼的问题,

  大家有信心运用所学问题解决实际问题吗?

  三、

  1、试一试

  完成81页练一练第2、3题。(先独立完成再集体订正。)

  2、 深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)

  四、课堂小结:

  通过这节课的学习,你学会了什么?(先请生说,师再总结。)

鸡兔同笼教案 篇6

  第1课时 鸡兔同笼

  教学内容:P116页的练习二十五的第20题。

  教学目标

  知识与技能:通过复习“鸡兔同笼”问题,感受中国古代数学问题的趣味性。

  过程与方法:能熟练用列表、假设等不同的方法解决“鸡兔同笼”问题,体验解决问题的方法的多样性,提高解决实际问题的能力。

  情感态度价值观:通过复习,培养学生的合作意识和逻辑推理能力,在解决问题的过程中,提高迁移思维的能力,进而体会数学的价值。

  教学重点:熟练理解和掌握解决问题的不同思路和方法,让学生再一次亲历列表法、假设法等解题的过程,深刻体会解决问题的一般性策略。

  教学难点:建构解决“鸡兔同笼”问题的数学模型,运用学到的解题策略熟练解决生活中的实际问题。教具学具:多媒体

  教学过程

  一、情境导入

  师:“鸡兔同笼”是一道有名的中国古算题。最早出现在《孙子算经》中。许多小数数学问题都可以转化成这类问题。

  师:你知道解决“鸡兔同笼”问题有几种方法吗?通过比较发现它们有什么特点?

  生1:列表法,适合数据较小的问题。

  生2:假设法,一般情况都适合,数量关系比较容易理解。

  师:今天我们复习“鸡兔同笼”问题。

  二、自主探究

  师:摆三角形和正方形一共用了19根小棒。(任意两个图形之间没有公共边)你能算出分别摆了多少个三角形和多少个正方形吗?(学生回答)

  师:星期日,小英一家八口人到博物馆参观,博物馆的'票价是成人每人30元,儿童每人15元,买门票共花去210元钱,其中儿童有几人?(学生回答)

  师:三年级(4)班48人去北海公园划船,租了大船和小船共10条,每6人克坐满一条大船,每4人可坐满一条小船,且每条船都没有空位,他们租大船和小船各几条?(学生回答)

  三、探究结果汇报

  师:通过复习“鸡兔同笼”问题,你有哪些收获?

  生1:借助列表的方法,解决简单的实际问题。

  生2:我学会了化繁为简的学习方法。

  生3:用“假设”法解决问题的一般性。

  四、师生总结收获

  师:通过本课的学习,你有哪些收获?

  师生总结得出:解决数学问题时,可以先提出假设,如果假设后的情况与实际不符,这时就需要进行调整。我们可以借助画图、列表等方法帮助我们进行调整,从而推算出正确结果,最后还要对结果进行检验。(逐一板书:假设、调整、检验)

  板书设计

  鸡兔同笼假设→调整(列表、画图)→检验

鸡兔同笼教案 篇7

  教学目标:

  1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。

  3、在解决问题的过程中培养学生的逻辑推理能力。

  教学重点:

  理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。

  教学难点:

  理解用假设法的算理并能运用不同的方法解决实际问题。

  教学方法:

  1、采取直观形象的方式,让学生探讨不同的方法。

  2、适当把握教学要求。

  一、历史激趣,导入新课

  今天老师想给同学们介绍一部1500年前的数学名著《孙子算经》,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(出示以下情境图)

  师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。(板书课题)

  结合谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

  二、探究交流,尝试解决问题。

  1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”出示)

  2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?

  让学生理解:①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。(出示)

  3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?

  学生猜测,老师板书

  4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)

  (一)、尝试列表法

  为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(出示:把一只兔当成一只鸡算,就少了两条腿。)

  (二)、假设法

  1、假设全是鸡

  8×2=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)

  26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)

  4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)

  10÷2=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

  8-5=3(只)鸡(用鸡兔的总只数减去兔的.只数就是鸡的只数,8-5=3只鸡)算出来后,我们还要检验算的对不对,谁愿意口头检验。

  2、假设全是兔

  我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(出示:把一只鸡当成一只兔算,就多了两条腿)

  先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。

  小结:

刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)

鸡兔同笼教案 篇8

  教学目标

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。

  3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的.熏陶和感染。

  教学过程

  一、故事引入

  教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

  出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

  二、探究新知

  1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

  让学生以两人为一组讨论。

  汇报讨论的结果。

  (1)、列表:

  鸡876543

  兔012345

  脚161820222426

  (2)、假设法:

  假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。

  因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。

  因此,鸡就有:8-5=3(只)

  (3)、用方程解:

  解:设鸡有x只,那么兔就有(8-x)只。

  根据鸡兔共有26只脚来列方程式

  2x+(8-x)4=26

  2x+84-4x=26

  32-26=4x-2x

  2x=6

  x=3

  8-3=5(只)

  2、小结解题方法:

  教师:以上三种解法,哪一种更方便?

  小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。

  3、独立解决书中的趣题。

  (1)、方程解:

  解:设鸡有x只,那么兔就有(35-x)只。

  根据鸡兔共有94只脚来列方程式

  2x+(35-x)4=94

  2x+354-4x=94

  140-94=4x-2x

  2x=46

  x=23

  35-23=12(只)

  答:鸡有23只,兔有12只。

  (2)、算术解:

  假设都是鸡。

  235=70(只)

  94-70=24(只)

  24(4-2)=12(只)

  35-12=23(只)

  答:鸡有23只,兔有12只。

  三、巩固与运用

  1、完成教科书第115页做一做的第1题。

  学生独立读题分析后,列式解答。鼓励用方程解。

  2、完成教科书第115页做一做的第2题。

  提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

  请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

  68=48(人)

  假设8条都是大船可坐48人。

  48-38=10(人)

  假设人数比实际的人数多10人。

  多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

  10(6-4)=5(条)

  8-5=3(条)

  这是表示有3条大船。

  四、作业

  练习二十六第一、二题。

鸡兔同笼教案 篇9

  预设:

  学生1:列表法能很清晰地解决这个问题。

  学生2:因为数字比较简单,所以列表法还可以用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

  教师:说得非常好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

  学生小组交流汇报。

  预设:

  学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

  学生2:兔的数量每减少1只,鸡的数量就增加1只,脚的数量反而减少2只。

  【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。

  4.数形结合理解假设法。

  教师:同学们的想法非常好,我们一起继续来看这张表格,通过分析表格来将同学们的想法表述得更加清晰。

  (1)假设全是鸡。

  教师:我们先看表格中左起的第一列,8和0是什么意思?

【鸡兔同笼教案】相关文章:

鸡兔同笼教案01-02

精选鸡兔同笼教案四篇08-09

鸡兔同笼教案(15篇)02-22

鸡兔同笼教案15篇02-13

鸡兔同笼教案6篇03-19

鸡兔同笼教案通用15篇02-22

有关鸡兔同笼教案四篇10-23

【精品】鸡兔同笼教案3篇10-24

鸡兔同笼教案模板6篇10-21

鸡兔同笼教案模板10篇10-27