可能性教案

时间:2023-05-08 18:05:00 教案大全 我要投稿

有关可能性教案范文汇编8篇

  作为一名默默奉献的教育工作者,总不可避免地需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么应当如何写教案呢?以下是小编为大家整理的可能性教案8篇,仅供参考,欢迎大家阅读。

有关可能性教案范文汇编8篇

可能性教案 篇1

  教学目的:

  1、经历和体验收集、整理、分析数据的过程,学会用画“正字”的方法记录整理数据

  2、会运用规律结实生活现象

  教学重点、难点:

  发现规律

  教具:8个布口袋。红球、绿球各48个。

  教学过程:

  一、 复习“一定”与“不可能”

  师:老师这里有一个口袋,放5个红球进去,我请同学来摸一摸的话,你能摸出什么颜色的球?一定吗?为什么?可能摸出黄球吗?为什么?

  师:那我放一个黄球进口袋。现在,如果你在口袋中摸一个球,会摸出什么颜色的球?为什么?

  总结:是啊,现在我们不能肯定摸到的一定是红球还是黄球。只能说可能摸到红球,可能摸到黄球。具有“可能性”

  板书:可能性

  二、 学习可能性

  师:这只口袋了有5个红球,1个黄球。你能猜一猜摸到红球的可能性大还是摸到黄球的可能性大?为什么?

  那5个黄球,1 个红球呢?摸到红球的可能性大还是摸到黄球的可能性大?为什么?

  师:哦。可这毕竟是我们的猜测啊,得想个办法严验证一下,怎么验证呢?

  师:是啊,多摸几次我们才可以发现规律啊!同学们,你们真了不起,不光提出了自己的猜想,而且想到做摸球的实验来验证自己的猜想。很有科学家的意识啊!

  师:那我们来验证一下这个猜想吧!但在实验前老师有个要求。我请1-4组做5个红球1个环球的实验。5-8组做5个黄球1个红球的实验。我们6人一组。由课前选好的正副组长负责记录和监督。其他人每人摸10次。总共40次。

  师:为了让实验更科学,大家说说要注意些什么?

  师:那记录的方法有哪些呢?(没有正字就说老师这里介绍一种新的方法:正字法)

  师:那谁给大家介绍一下正字法!如果有其他方法,就个正字法比较一下(可以根据合计比较)

  师:你觉得正字法有什么好处?

  师:我们就规定实验的时候,同一用正字法记录。同学们,实验的时候一定要像科学家研究科学一样,认真对待,实事求是。让我们比一比,哪个小组实验的最认真,活动最规范。明确了吗?小科学家们,开始实验吧!

  三、 汇报

  师:刚才同学们都猜测摸到红球的可能性大,那实验结果到底是这样的呢?请各小组汇报数据,其他同学注意边听边思考问题。

  板书:5个红球 1个黄球 5个黄球 1个红球

  师:观察这2组数据,比较一下,你发现了什么?思考一下然后在小组中交流。

  师:为什么1-4组摸到红球多,而5-8组摸到黄球的次数多呢?这说明了什么?

  师:这跟我们原来的`猜想一样吗?刚才,我们提出了自己的想法,又用实验验证了自己的想法。高兴吗?表扬表扬自己!

  四、 实验

  师:如果在这个口袋中放3个红球3个黄球,在这个袋子中,猜猜摸带红球、黄球的可能性又会怎样呢?为什么?

  师:要知道我们的猜想是否正确,只要怎样?大家都知道,那我们来验证一下吧!还是跟刚刚一样。大家要认真负责啊!好了,开始吧!让老师来看看哪个同学像小科学家。

  五、 汇报

  师:好了。我们来看一下实验结果。看看我们的猜想对不对。

  板书:3个红球 3个黄球

  师:观察一下这组数据,比较一下,你发现了什么?

  总结:同学们,摸到红球黄球个数相等,所以摸到红球。黄球的可能性就相等。

  师:这跟我们的猜想一样吗?

  六、 巩固

  师:如果要使1号口袋中摸到红黄球的可能性相等,怎么办?

  师:那为什么可能性星相等了呢?是啊,球数相等,可能性就相等。

  七、 总结

  今天我们在玩的过程中一起研究了统计与可能性,你学会了什么?知道了什么?

可能性教案 篇2

  一、教学内容

  人教版《义务教育课程标准实验教科书数学》三年级上册P104页“可能性”。

  二、教学准备

  教具准备:一个装着黄球的盒子,一个贴着红、绿贴纸的骰子,若干投影片投影仪。

  学具准备:六个装有红、黄、白三种颜色小球的盒子,六个骰子,若干红、绿贴纸,水彩笔若干。

  全班分6个学习小组,每组6人。

  三、教学目标与策略选择

  1、目标确定:

  “可能性”是新教材的内容,学生在生活中或多或少也接触过,但作为数学中的概率知识来学习还是第一次,对他们而言还是有一定难度的,根据教材内容和学生实际情况,我重组教材,制定了以下几个教学目标。

  ⑴知识目标、;通过具体的操作活动,学生能初步体验事件发生的确定性和不确定性。经历猜测和简单的试验初步了解可能性的大小。能用“一定”“可能”“不可能”等词语来描述生活中一些事情发生的可能性。

  ⑵技能目标:结合具体情境,能对某些事件进行推理,概括其结果。对一些简单事件的可能性进行描述,并和同伴交流想法。

  ⑶情感目标:在游戏中学习数学,感受数学学习带来的快乐,并获得一些初步的数学实践活动经验;在和伙伴交流的过程中获得良好的情感体验。

  ⑷教材的重点难点:有关概率知识对学生而言还是一个全新的概念,设计各种活动丰富学生的感性经验升华为理性认识尤为重要,所以我把体验、描述生活中的确定和不确定事件为教学重点。通过实验领悟可能性大小与其可能出现的不同结果所占总数数量多少的密切关系为本节课的难点。

  2、教学策略选择:

  根据学生的'心里特征和教材实际,本节课选择了演示、观察、操作、启发、和情境性等教学策略,改变以往的学习方式,采用小组合作、探究学习,自主学习、重视体验等多种学习策略,力求培养学生的猜想意识,表达能力以及初步的判断和推理能力,激发学习数学的兴趣和养成良好的合作学习态度。整堂课把学习的主动权交给学生,放手让学生通过操作实践、自主探索、合作交流等有效学习方式,推出可能性的几种情况与“可能性”是有大小的。学生学的积极主动,老师教得轻松自然。整个教学过程教师的作用从传统的传递知识的权威变成学生学习的辅导者,成为学生学习的高效伙伴或合作者。学生在“猜球”、“摸球”、“涂色”、“小小裁判”、“选词填空”、“设计骰子”等充满情趣的情境中玩数学、学数学,亲身体验知识的形成过程,体会到运用知识解决实际问题的乐趣。

  四、教学流程及设计意图

  教学流程

  设计意图

  一、引入

  小朋友们,我想知道你们喜欢做游戏吗?好,这节课我们大家就一起来做游戏。老师带来了几种不同颜色的球,悄悄装在盒子里。每小组的同学轮流来摸球,猜猜看你摸到的会是什么颜色的球?

  二、展开

  (一)认识“可能”、“一定”、“不可能”

  1、初步感知(猜球)

  学生们轮流摸球,前几个小朋友摸了以后,下面开始有“黄球”、“红球”、“白球”的叫声。

  师:谁愿意说一说你们摸球的情况?

  学生各抒己见

  师:“大家说得很好那谁能把这些情况用一句话既清楚又简单地表达出来呢?”

  引导学生说:在摸球的时候有可能摸到白球,有可能摸到黄球,也有可能摸到红球,摸到球的颜色不能肯定。

  小结:象这样当答案不确定的时候,我们可以用“可能”这个词来表达。(板书)

  师:如果继续摸的话,你会摸到什么颜色的球?用黑板上这个词来说一句话。

  2、再次感知(摸球)

  师:看大家玩得那么开心,我也想玩,老师这也有一个盒子,里面装的也是小球,看看能摸出什么颜色的球。

  教师第一个摸出是黄球。接着走到学生中,学生参与摸球。

  随着每个学生摸出的都是黄球,学生喊“黄球”的声音越来越大。

  轮到最后一个学生摸球了,老师问:“你们能不能马上说出他摸的球的颜色?”

  如果学生猜测是黄球,说说为什么?(学生猜测里面全是黄球)

  师:一定吗?

  【备选】当学生回答不一定时,打开盒子验证一下。

  小结:当我们知道结果只有一种情况时,可以用“一定”这个词来表示。(板书一定)

  如果在这个装着黄球的盒子里摸出一个白球,你认为可能吗?

  根据学生回答板书(不可能)

  (二)、初步了解可能性的大小

  1、有什么办法在这个盒子里可能摸到白球呢?

  2、放几个可以容易摸到?

  根据学生回答师生共同进行验证。小组合作,把数量比例不同的黄球、白球放到盒子里进行实验,验证结论对错。

  3、如果要求盒子里摸出的一定是白球该怎么办?

  4、概括

  通过刚才的摸球游戏,你们发现了什么?

  让学生各抒己见

  师:一般事情都有“一定可能不可能三种情况”,当然,可能性是有大有小的,有时候可能性也会发生变化。

  5、揭题(板书课题――“可能性”)

  (三)生活中的“可能性”

  1、小小裁判(出示书P105插图)

  生活中的很多事情都具有可能性,你看,这里有几件和生活紧密联系的事情,请你运用“一定”、“可能”、“不可能”对这几件事进行判断。同意说法的打√,不同意的打×。

  ⑴地球每天都在转动。

  ⑵我从出生到现在没吃过一点东西。

  ⑶三天后下雨。

  ⑷世界上每天都有孩子出生。

  ⑸太阳从西边升起。

  ⑹吃饭时,人用左手拿筷子。

  (实物投影出示插图)学生进行判断。有争议的让学生说说为什么。

  2、选词填空

  同学们在语文课上我们都做过选词填空。今天数学课也要来做选词填空,看谁填得又对又快。

  人()会老。明天的数学测试小明()得满分。

  冬天()会下雪。在除法中,余数()比除数小。

  鱼离开水()会死。在地球上,石狮子()在天上飞。

  三、巩固

  1、涂一涂

  你看,这里有三个盒子。盒子里分别装着不同形状的物体,可是他们都忘了穿衣服,要同学们根据要求给他们涂上颜色,穿上衣服。

  根据要求涂

  ⑴○一定是黄色的

  ⑵☆可能是蓝色的

  ⑶△不可能是红色的

  2、造句

  把今天学到的知识与实际生活联系起来,找个实例,选择“一定”、“可能”、“不可能”造一个句子。

  师示范:星期三过后一定是星期四。

  让学生说给自己的同桌听,小组交流。

  “太阳不可能从西边升起。”

  “地震可能会发生。”

  “其它星球上可能有外星人。”

  “人一定会死的。”

  “三十岁的爸爸妈妈不可能变成一岁的小宝宝。”

  四、拓展

  设计骰子

  师:前几天老师到温州乐园玩,参加一个玩骰子的游戏,规则是骰子上面有两种颜色,甩到红色的一面就可以得到一个奖品。你们想玩吗?

  1、师出示一个一面是红色,其余五面都是绿色的骰子和学生一起游戏,在游戏的过程中体会到得奖可能性大小和骰子颜色设计有关。

  2、动手设计骰子,根据学生希望中奖率的高低来设计骰子。

  3、学生反馈,展示自己的作品。

  五、总结

  这节课大家玩得开心吗?让你觉得最成功的是什么?

  设计猜球游戏的情境引入,既直接又富有情趣,还贴近学生的生活实际。

  第一次小组合作“猜球”游戏让学生在良好的学习氛围里初步感知“可能性”。第二次师生互动“摸球”游戏,再次让学生在愉悦中真切的感受到:有些事件的发生是确定的,有些事件的发生是不确定的,因而产生对事件发生的可能性的初步认识。自然而然理解“一定”、“可能”、“不可能”

  这三个数学用语。

  先进行大胆猜想,再进行实验验证。

  实验是一个重要的数学思想方法。通过实验,让学生根据结果验证猜想结论对错,领悟“可能性”大小与其可能出现的不同结果所占总数数量多少有密切关系,既丰富了感性经验,又有了实际依据。也突破了教学的难点。

  通过判断和选词填空,使学生了解身边的一些现象,进一步体验生活中确定和不确定的事件,体会概率知识和生活的密切关系。同时规范学生的数学语言。

  让学生找生活中的实例,体会生活中处处有数学,进一步提高学生的口头表达能力。在这一环节中要注意培养学生相互倾听、汲取经验和相互交流的能力。

  第一个层次巩固了新知,第二个层次“设计骰子”不仅激发了学生的创造欲望,让学生学以致用、大显身手,而且发散了学生的思维,使他们在在获得成功的喜悦中学会深入地思考问题、解决问题。

可能性教案 篇3

  复习目标

  1、 经历猜测、试验、收集与分析试验结果等活动过程。

  2、 初步体验有些事件的发生是确定的,有些则是不确定的,能区分确定事件与不确定事件。

  3、 知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,能列举出简单试验所有可能发生的结果,并和同伴交换想法。

  复习内容

  一、基础知识填空

  1.在一定条件下,肯定会发生的事情称为 必然事件 ;在一定条件下,一定不会发生的事情称为 不可能事件 ;必然 事件与 不可能 事件都是确定 的;在一定条件下,可能会发生,也可能不会发生的事件称为 不确定 事件。

  2.在“转盘游戏”中,哪个区域的面积大,则指针落到该区域的 可能性 大。

  二、典型例题

  例题1:下列事件中,哪些是必然事件?哪些是不可能事件,哪些是不确定事件?

  (1)一年有12个月; (2)掷一枚一元硬币,停止后国徽朝上;

  (3)明天要下雪; (4)1/4周角=1直角;

  (5)任意买一张电影票座位号是奇数;(6)小明的生日是2月30日;

  (7)一条鱼在白云中飞翔。

  分析与解:(1)、(4)是必然事件;(6)、(7)是不可能事件;

  (2)、(3)、(5)是不确定事件。因为(6)中2月只有28天,不可能有30日,所以是不可能事件。

  注意:在判别事件是确定还是不确定,关键是根据一定的条件弄清它是一定会发生或一定不会发生,还是无法肯定它会不会发生。

  例题2:医院的护士给病人注射青霉素类药水时,要先做皮试。但根据有关数据显示,只有大约千分之一的人对青霉素过敏,但护士为什么每次都这样做呢?这样做是不是多此一举?

  分析与解:青霉素过敏的可能性只有千分之一,但它总是有可能发生的,我们不能确定每一个注射的病人都不会过敏,因此“青霉素过敏”这一事件是可能事件。为了每位病人的生命安全,一定要先做皮试,此种做法不是多此 一举。

  注意:“不太可能事件”虽然可能性很小,但它仍有可能发生。

  例题3:一只蚂蚁在如图所示的一块地板上爬行,这块地板由黑白两种不同颜色外其它完全相同的地砖铺成,爬行一段时间后,蚂蚁停在哪种颜色地砖上的可能性大,为什么?

  分析与解:

  因为白色的块数是10,黑色的块数是6,白色区域的面积大,所以蚂蚁停在白颜色地砖上的可能性大。

  注意:有关可能性问题,有时可通过比较各种区域所占面积的大小来确定。

  例题4:袋中有4只红球、2只白球、1只黄球,这些球除了颜色以外完全相同,小华认为袋中共有三种不同颜色的球,所以从袋中任意摸出一球,摸到红球、 白球、黄球的可能性一样大,小强认为三种球的数量不同,摸到红球、白球、黄球的'可能性肯定也不同,你认为谁说的正确,并说明理由。

  分析与解:

  注意:此题中摸到各种颜色球的可能性大小只与该球的颜色有关,与该球的大小、形状等其它因素无关。

  三、课时

  1、能举例说明生活中的不确定事件,并能用“不可能”、“有可能”、“几乎不可能” 等词语描述它们发生的可能性大小。

  2、了解事件发生的可能性是有大小的,并初步学会求不确定事件的可能性大小。

  3、能养成独立思考的习惯,学会与同伴充分交流的良好学习方式。

  四、课外作业

可能性教案 篇4

  教材说明

  本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。

  1.事件发生的可能性以及游戏规则的公平性。

  关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。

  根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。

  等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。

  2.中位数的统计意义及计算方法。

  学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。

  在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。

  教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。

  教学建议

  1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。

  在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的'培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。

  在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。

  2.加强学生对中位数在统计学意义上的理解。

  中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。

  在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。

  另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。

可能性教案 篇5

  [教学目标]

  1、在摸球活动中经历收集、整理、分析数据的过程,会选用合适的方法记录实验结果,认识条形图,初步感受条形图在表达数据中的作用。

  2、通过实验,从中体会某些事件发生的可能性有大有小,能对某些事件发生的可能性的大小做出简单判断,并做出适当的解释。

  3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效方法,发展与他人合作交流的意识与能力。

  [教学准备]

  教师:红球、黄球若干个,透明和不透明口袋,课件。

  学生:质地一样的红球、黄球各3个,四个面上写有“1”、一个面上写有“2”、一个面上写有“3”的小正方体一个,4枝红铅笔和4枝蓝铅笔(也可用小棒替代)。

  [教学过程]

  一、创设情境,提出活动要求

  师:同学们,在很多游戏之中也会藏着许多的数学奥妙,谁来介绍一下?

  (设计意图:谈游戏引入课题,激发学生学习数学的兴趣,使学生感受到数学与生活的紧密联系,引导学生用数学的眼光关注生活,并引导学生回忆上节课的游戏活动中体验到的等可能性。)

  师:今天我们继续来玩摸球游戏好吗?请同学们再袋子里装1个红球,3个黄球。如果我们闭上眼睛,任意摸一个球,可能是什么颜色的球?

  生:可能摸出红球,有可能摸出黄球,一共有这两种可能。

  二、实验操作,初步感受可能性有大有小

  1、预测

  师:在摸球之前,我们先估计一下,在这种袋子里每次任意摸一个球,摸出后把球再放回口袋里,一共摸10次。摸到哪种球的次数可能多一些呢?

  学生猜测,并与同桌交流

  2、实验

  师:你估计的有没有道理呢,我们一起把这个实验做完。

  ⑴提出实验要求:袋子里放3个黄球和1个红球,坐在左边的同学负责摸球,先搅动一下再闭上眼睛摸1个;坐右边的同学从书上第92页选一种方法作好实验记录,一共摸10次。完成后,再依照刚才的实验,同桌互换角色,选择另一种记录方法作好记录。

  ⑵学生操作,并用不同的记录方法作记录。

  ⑶四人一小组交流摸球情况。

  3、分析

  在四人一小组里讨论以下问题:

  ⑴统计的结果和你的猜测差不多吗?

  ⑵你发现了什么?

  ⑶你喜欢用哪种方法记录?并说说理由。

  讨论得出:

  ⑴涂一个方块作记录后数一数,而涂成条形图不用数,只要看旁边的数就好了,因此涂成条形图的记录方法比较好。

  ⑵因为袋中黄球有3个,红球只有1个,所以每次摸到黄球的可能性大,而摸到红球的可能性小。所以摸到黄球的次数多一些,摸到红球的次数少一些。说明在这种情况下,事件发生的.可能性有大有小。

  (设计意图:让学生经历“猜测——实验——记录数据——分析数据——作出判断” 的过程,给学生提供自主探索、合作交流的空间,使学生在活动中学习,在游戏中获得愉快的数学体验,促进学生学习能力的发展。)

  三、再次实践,加深理解

  1、做“想想做做”第1题

  ⑴认真读题,明确题目要求。

  ⑵进行抛小正方体的实验,同桌作好记录,然后角色互换。

  ⑶讨论交流:在条形图里你发现了什么?你能解释一下为什么会出现这种情况吗?

  (设计意图:在多样的游戏活动中使学生再次体验可能性的大小。)

  2、做“想想做做”第2题。

  ⑴认真读题,明确题目要求。

  ⑵同桌讨论;根据题目中两个不同的要求,各应该怎样装铅笔。

  ⑶在班内交流先后不同的装法,并说说为什么这样装。

  四、返回生活,内化提高

  1、师:苏果超市,发了1000张奖券,其中设:

  一等奖:1名

  二等奖:10名

  三等奖:50名

  如果我们班的同学去抽奖,大家预测一下得奖的可能性大不大?如果得奖,得到哪种奖项的可能性大?哪种奖项的可能性小?为什么?

  2、问:联系身边的生活想一想,哪些地方要用到可能性大小的预测?

  (设计意图:联系现实生活交流,进一步培养学生用数学的思想方法看生活的意识和能力,同时深化对可能性的认识。)

  五、全课总结

  师:回家后把今天所学的知识讲给爸爸妈妈听,看看生活中还有哪些事情发生的可能性大一些,哪些事情发生的可能性小一些,下节课我们继续交流,比比谁讲得多,讲得好!

  (设计意图:让学生把今天学习的知识说给爸爸妈妈听,不仅给学生提供表现自我的机会,也较好地巩固新知识。让学生调查预测可能性大小的运用,能使学生再一次体会数学源于生活,生活中处处有数学,让学生真正做到学以致用。)

  六、布置作业

  1、把今天所学的知识讲给爸爸妈妈听。

  2、找一找,生活中还有哪些事情发生的可能性大一些,哪些事情发生的可能性小一些。

可能性教案 篇6

  教学目标:

  1.使学生结合具体的实例,初步感受简单的随机现象,能列举出简单随机事件中所有可能出现的结果,能正确判断简单随机事件发生的可能性的大小。

  2.使学生在观察、操作和交流等具体活动中,初步感受简单随机现象在日常生活中的广泛应用,能应用有关可能性的知识解决一些简单的实际问题或解释一些简单的生活现象,形成初步的随机意识。

  3.使学生在参与学习活动的过程中,获得学习成功的体验,感受与他人合作交流的乐趣,培养对数学学习的兴趣。

  课时安排:

  教学本单元用2课时

  第1课时

  重点难点:

  感受简单随机现象的特点,能列举出简单随机现象中所有可能发生的结果,能对简单随机现象发生的.可能性大小作出定性描述。

  教学准备:

  师:红、黄、绿球各2个、扑克牌、投影仪等;生:红桃A—4、黑桃4扑克牌

  教学过程:

  一、揭题

  谈话:同学们喜欢玩游戏吗?今天这节课我们主要通过玩一些游戏,来研究游戏中隐藏着的数学知识。(揭示课题)

  二、探究

  1.教学例1。

  谈话:先请看,这是一个不透明的空口袋,这里还有2个球,1个是红球,1个是黄球。把这2个球放入口袋里,想一想,如果从口袋里任意摸出1个球,你认为摸出的会是哪个球?相机板书:可能谈话:可能是红球,也可能是黄球,到底能摸到哪个球并不确定(板书:不确定)。情况是不是这样呢?我们可以通过摸球游戏来检验,先看老师怎样摸球,(示范)像这样每次在摸球前先用手在口袋里把2个球搅一搅,再任意摸出1个球,看一看是什么颜色,并把摸出的结果记录在这张表里,然后把球放回口袋里,搅一搅,再摸。会做这样的游戏了吗?请小组长拿出课前准备好的口袋,在口袋里放1个红球和1个黄球。小组合作,轮流摸球,摸10次,并按顺序记录每次摸出球的颜色。

  学生按要求活动,教师巡视。反馈摸球结果:请各小组选派一名代表到投影仪前展示你们组摸球的结果,并说说摸出红球和黄球各多少次。展示后,把各小组的记录单对应着排列起来。

  讨论:比较各小组的摸球结果,你能发现什么?学生讨论,明确:各小组摸出红球、黄球次数不完全相同;每次摸出的球的颜色也不完全相同;但每个小组既摸出了红球,也摸出了黄球。提问:通过摸球游戏,你有什么体会?

  2.教学“试一试”。

  出示口袋,并在口袋里放2个红球。提问:现在口袋里有几个球?是什么颜色的?如果从这个口袋里任意摸出1个球,结果会怎样?(板书:一定)提问:如果口袋里只放了2个黄球,从中任意摸出1个球,可能摸出红球吗?为什么?(板书:不可能)追问:如果口袋里放1个黄球和一个绿球,从中任意摸出1个球,能摸出红球吗?比较:请同学们回顾一下例1和“试一试”的学习过程,想一想,同样在口袋里摸球,例1和“试一试”有什么不同?

  3.小结

  像这样,有些事件的发生与否是确定的,要么一定发生,要么不可能发生,这样的事件又称为确定事件;有些事件的发生与否是不确定的,可能发生,也可能不发生,这样的事件又称为不确定事件。(板书:确定性不确定性)4.教学例2。

  谈话:通过摸球游戏,我们知道了有些事件的发生是确定的,有些事件的发生是不确定的。接下来,我们来玩摸牌游戏。(出示例2中的4张扑克牌)如果把这4张牌打乱后反扣在桌上,从中任意摸出1这,可能摸出哪一张?摸之前能确定吗?提问:可能出现的结果一共有多少种?把“红桃4”换成“黑桃4”,提问:现在的4张牌中,既有红桃,又有黑桃。如果从这4张牌中任意摸出1张,可能出现的结果一共有多少种?学生在小组里讨论,交流。

  验证,各小组合作进行摸牌游戏。一共摸40次。

  展示摸牌结果。比较发现。

可能性教案 篇7

  (第一课时)

  教学目标:

  1、使同学了解有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性是有大小的,能用分数表示。

  2、结合生活实例,进一步让同学体验生活中存在的数学问题。

  教学重难点:使同学经历实验的具体过程,从中体验某些事情发生的可能性的大小。

  教学准备:白球1个、黄球3个、红绿两种颜色的铅笔等。

  教学过程:

  一、情境、引入

  1、师述、情境:庆“庆六一”联欢会,教师要求每人都要扮演节目,节目的形式有:唱歌、跳舞、相声、小品等。用抽签的方法决定。

  小华在抽签之前想:我是金嗓子,最好让我抽到唱歌……

  2、讨论:小华肯定能如愿以偿吗?为什么?

  [点评]:给同学发明机会留有空间,让同学开动脑筋,捕获生活中的现象,将所学的知识和同学的生活实际紧密结合,加深对数学知识的理解。这一情境,是同学经历过并且有体验,所以他们知道小华有可能抽不到唱歌,有可能抽得到,但抽到的'可能性不大,因为在这些签中只有一张签是唱歌,这就自然引出课题:可能性大小。

  3、小结:在我们的生活中,有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性有大有小。今天我们就学习(板书)可能性大小。

  二、实验探究

  1、摸球活动。

  活动规则:准备3个黄球,1个白球,球的大小一样,放进袋子里,搅拌一下。

  (1)同桌活动。每人摸10次,每次摸一个球,然后把摸出来的球放进去,搅拌后再摸第2次、第3次……填好摸20次的统计表(可用“正”字)。

  (2)同学分组活动。

  (3)观察:第一次实验结果与预测结果一样吗?

  (4)四人一小组活动,填好摸40次的统计表。

  (5)观察讨论:汇总后的结果与预测结果是否接近?

  (6)小结:摸的次数越多,结果与预测结果越接近。

  [点评]:这一活动体现了“动手实践、自主探索与合作交流”的学习方式,同学从实践中获取知识。

  2、练习教材89页中的1—4题。

  (1)同学独立考虑,进行练习。

  (2)集体交流,讨论学习情况,并说明你的理由。

  三、拓展、延伸

  1、在一个正方体中标出1、2、3三个数,符合下面要求:数字1和数字2的可能性都是1/6,数字3的可能性是2/3。

  2、摸奖活动。

  (1)盒子里有4红、2绿,两种颜色的铅笔,要求先说出你想摸一支什么颜色的铅笔?可能性是多少?然后到盒子里摸,假如说的和摸的颜色一致,就可以拿走这支铅笔。

  (2)盒子里有红色、蓝色、黑色三支一样的笔,假如随意拿出2支笔,可能出现多少种结果?

  [点评]:这是同学比较感兴趣的活动,富有情趣和挑战性,为同学提供充沛发展的空间。

  四、总结:这节课你有什么收获?

  [总评]

  本节课的关键在于关注了同学的学习过程,教师创设了一个有利于同学生动活泼主动发展的教育氛围,教师真正成为教学活动的组织者、引导者和合作者。从实际教学效果看,同学学得积极主动,时时闪烁着创新思维的火花。

可能性教案 篇8

  统计和可能性总备:

  本单元是在学生学习了简单的统计表,会求算术平均数、初步理解简单事件发生的可能性的基础上继续学习比较复杂的统计表、加权平均数、中位数、众数以及简单事件发生的可能性问题等知识。

  教学目标:

  (知识能力情感价值观)

  1、进一步学习统计表,会填写较复杂的统计表;了解统计表中的合计、总计的具体意义;会根据统计表中所提供的数据,回答一些简单的问题;能对统计表进行简单的分析。

  2、进一步理解统计中平均数的意义和作用;能根据所给数据求加权平均数,并能解释结果的实际意义。

  3、通过一些简单事件,理解中位数、众数的意义,会求数据的中位数、众数。

  4、通过生活中的实例,进一步体会事件发生的可能性,初步尝试根据给定的可能性设计一些简单的游戏。教学重点: 进一步学习统计表,会填写较复杂的统计表;了解统计表中的合计、总计的具体意义;会根据统计表中所提供的数据,回答一些简单的问题;能对统计表进行简单分析。

  教学难点:

  1、通过一些简单事件,理解中位数、众数的意义,会求数据的中位数、众数。

  2、通过生活中的实例,进一步体会事件发生的可能性,初步尝试根据给定的'可能性设计一些简单的游戏。

  突破重难点的方法与手段: 让学生深入生活去获取信息,学会整理和分析。教师重视安排好学生的社会实践活动。

  统计和可能性

  平均数

  教学目标:

  1、进一步理解统计中的平均数的意义和作用。

  2、能根据所给数据求加权平均数,并能解释结果的实际意义。

  教学重点:

  能根据所给数据求加权平均数。

  教学难点:

  能运用所学的知识解决实际问题。

  教学过程:

  一、复习求简单的平均数。

  1、引导学生思考

  ①从这个统计表中你能了解到哪些情况?

  ②还准备知道哪些情况?

  2、随着问题的提出、自然地进行解决。五年级平均每人得多少分?(用五年级学生的得分总数除以五年级学生的总人数)

【可能性教案】相关文章:

可能性教案06-14

《可能性》教案02-13

认识可能性教案07-28

可能性教案(精选15篇)01-31

可能性教案精选15篇02-17

可能性教案15篇09-04

可能性教案(15篇)09-11

精选可能性教案3篇01-15

精选可能性教案四篇03-07

关于可能性教案三篇06-22