分数的基本性质教案范文集合六篇
作为一名优秀的教育工作者,很有必要精心设计一份教案,编写教案助于积累教学经验,不断提高教学质量。写教案需要注意哪些格式呢?以下是小编收集整理的分数的基本性质教案6篇,欢迎大家分享。
分数的基本性质教案 篇1
教学内容:省编义务教材第十册第91—93页例1、例2。
教学目标:
1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。
2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。
3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。
课前准备:
课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张
教学过程:
1.创设情境,作好铺垫
出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)
为什么你会猜是一道除法算式?(分数与除法有密切的关系)
除法与分数有什么样的关系?
(黑板上出示:被除数÷除数=)
根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)
为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)
什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)
2、迁移猜想,引疑激思
分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?
交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
3、自主探究,验证猜想
也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。
(1)初步验证
①出示:探究报告单,让学生读要求:
a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。
b.选择合理的方法验证所前后两个分数是否相等。
c.填写好探究报告单。
选择探究的
分 数
分子和分母同时乘以或除以
一个相同的数
得到的
分 数
选择的分数与得到的分数是否相等
相等( ) 不相等( )
猜想是否成立
成立( ) 不成立( )
选择的分数与得到的分数是否相等相等()不相等()
猜想是否成立成立()不成立()
*:验证方法可用折纸、画线段图、计算、实物……
②学生合作进行探究。
③全班交流:
a、同桌一起上来,拿好探究报告单及验证材料等。
b、两人合作,一人讲解、一人验证演示。
c、得到结论:
(交流2-3组后)问全班同学:你们得到怎样的.结论?(一致通过)
刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)
4、议论争辩,顿悟创新
读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?
5、训练技能,激励发展
刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。
(1)练习明目的
根据分数的基本性质,填空。
1/2=()/8=5/()=()/6=7/()
采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。
(2)慧眼辩是非
(3)变式练思维
把下面每组中的异分母分数化成同分母分数。
A、3/4,4/7B、5/6,4/9C、3/5,5/8
分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。
(4)竞赛促智慧
①在1—9九个数字中任选一些数字组成大小相等的分数。
可以有:1/2=3/6=4/81/3=2/62/3=4/6这三组。
并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。
②出示:1/a=7/b(说明:a、b都不是0。)
抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。
连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)
讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?
6、回顾,掌握方法
今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?
学生可能会回答:
生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。
生2:我们是通过猜测的方法学的。
生3:我们还用验证的方法学习。
……
结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。
分数的基本性质教案 篇2
设计说明
1.注重情境创设,激发学生的学习兴趣。
伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。
2.突出学生的主体地位,在实践操作中掌握新知。
学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。
课前准备
教师准备 PPT课件
学生准备 若干张同样大小的圆形纸片 彩笔
教学过程
⊙故事引入
1.教师讲故事。
师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。
大毛、二毛、三毛都满意地笑了,妈妈也笑了。
设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。
2.探究验证。
(1)提出猜想。
师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?
生:同样多。
师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!
(2)验证猜想。
请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。
①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。
②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。
③剪一剪:把圆形纸片中的涂色部分剪下来。
④比一比:把剪下的涂色部分重叠,比一比。
师:通过比较,结果是怎样的?
生:同样大。
设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。
3.揭示课题。
师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的`呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)
⊙探究新知
1.观察比较,探究规律。
(1)请同学们观察,比较三个分数的大小。
师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)
师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。
(2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)
师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?
(课件出示:比较它们的分子和分母)
①从左往右看,是按照什么规律变化的?
②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。
师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)
师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]
师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]
师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)
(3)教师总结分数的基本性质。(板书)
分数的基本性质教案 篇3
教学目标 :
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、理解和掌握分数的基本性质。
3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN>
4、较好实现知识教育与思想教育的有效结合。
教学重点 :理解和掌握分数的基本性质。
教学难点 :能熟练、灵活地运用分数的基本性质。
教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。
教学过程:
一、巧设伏笔、导入新课。
1、出示课件:120÷30的商是多少?
被除数和除都扩大3倍,商是多少?
被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)
2、在下面□里填上合适的`数。
1÷2=(1×5)÷(2×□)
=(1÷□)÷(2÷4)
①想一想,你是根据什么填上面的数的?(生口答)
(课件:商不变的性质)
②商不变的性质是什么?(生口答)
③除法与分数之间有什么关系?
生答,师板书:被除数÷除数=被除数/除数
二、讨论探究,学习新知。
1、课件出示:1÷2= (怎么写)
①1/2与( )相等?你能想出哪些数?有办法怎么让它们相等吗?
让生合作探讨。
②生出示答案:1/2=2/4=4/8……
有选择填入上数。
2、引导学生证明它们相等。
①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。
(课件演示)
上述演示让学生感知后,问你发现了什么?(生讨论)
②再逆向思考,观察板书和课件。
问你又发现了什么?(生讨论)
得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。
3、验证、补充、强调
①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。
②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。
③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。
④归纳出上述板书为“分数的基本性质”(课题)。
4、信息反馈、纠正、巩固。
①判断(出示课件)
A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。
B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。
C、3/4的分子乘上3,分母除以3,分数的大小不变。
D、10/24=10÷2/24÷2=10×3/24×3 ( )
完成后,强调重点,加以巩固。
②完成课本108页例2(学生尝试练习)
强调运用了什么性质?课件:“分数的基本性质”醒目强调。
三、实践练习,信息综合
1、练一练
①3/5=3×( )/5×( )=9/( )
②7/8=( )/48
③4÷18=( )/( )=4×5/18×( )=2/( )
2、练习二十二1—3题。
四、课堂总结、整体感知。
(在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?
五、发散巩固、自主选择。
想一想:(选择一道你喜欢的题做)
课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。
②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗
分数的基本性质教案 篇4
教学目的:
1、理解分数的基本性质;
2、初步掌握分数性质的应用;
3、培养学生观察——探索——抽象——概括的能力;
4、渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学重点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:
形成对分数的基本性质的统一认知。
教学准备:多媒体,自制演示教具。
教学过程:
一、激趣引新:
1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。
2、在下面的()中填上合适的数。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同学们现在已经能用分数的知识来解决问题了。
二、启发引导,探索新知。
1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?
通过图形的平移、旋转等方法看出三个班种植面积一样大。
2.引导观察得出结论。
(1)通过拼图得到1/2=2/4=4/8
(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?
(3)引导思考探索变化规律:
从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同讨论,引导学生抽象概括出分数的基本性质:
(1)怎么做能使分数的`分子和分母发生变化,而分数的大小都不变呢?
(2)变化时同时乘或除以小数可以吗?
(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)
归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)
(1)练习在□中填上合适的数
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
(2)你能把1÷2这个除法算式改写成分数形式?
你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)
5.组织练习
(1)判断:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0.5/4÷0.5()
分数的分子和分母都乘或除以相同的数,分数的大小不变。()
(2)画一画、填一填
(3)填空
1/2=1×()/2×()=6/()
10/24=10○()/24○()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少种填法)
6.通过练习在此性质中哪些是关键词?
7.巩固练习(选择你喜欢的一题来做)
(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
三、课堂总结
今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。
四、课堂作业:练习十四第1——3题。
板书设计:
分数的基本性质
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分数的分子和分母同时乘以一个不为0的数分数的大小不变
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分数的分子和分母同时除以一个不为0的数分数的大小不变
综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数的基本性质教案 篇5
教学目标
1、进一步理解分数基本性质的意义,掌握约分的方法。
2、促进学生初步形成约分的一般技能技巧,约分(约成最简分数)的正确率90%。
教学重难点约成最简分数
教学准备:分数卡片口算卡片
教学过程
一、自主回顾
回顾一下对约分的理解情况
突出三点:用分子分母的公因数同时去除;约分的形式;约成最简分数。
师:什么是最简分数?
说一说。
二、巩固练习
师分数卡片判断
1、找朋友:找出和相等的分数。(七个小矮人身上的分数分别是下列分数)
你是怎样寻到的?说说自己的理由好么?
2、能用不同的.分数表示下面各题的商吗?
练习十一第8题
师:我们在刚刚学习分数和除法的关系时,只会用表示2÷8,现在我们还可以用来表示。看,我们的进步啊,这就是学习的魅力。
师:你能写出不同的除法算式吗?
=()÷()=()÷()
你能说出几个除法的算式?
这些算式之间有什么联系?
3、快乐学习超市
超市画面快乐套餐1快乐套餐2
快乐套餐1:比一比○○0.4
计算并化简+=-=
在()填上最简分数20分=()时
快乐套餐2、3同上。
(分组练习小组代表汇报整合了练习十一10至14题)
4、集中练习
把0.5化成分数问问自己这个分数是最简分数吗?你会把它化成最简分数吗?
分母是10的最简分数有几个?
请你提出一个类似的问题。
课堂作业
练习十一第9题,12、13、14题各自选2个
课后练习:完成练习册上的相应练习。
分数的基本性质教案 篇6
教学目的
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.
2.培养学生观察、分析、思考和抽象、概括的能力.
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.
教学过程
一、谈话.
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.
二、导入新课.
(一)教学例1.
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.
1.分别出示每一个圆,让学生说出表示阴影部分的分数.
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).
4.观察、分析相等的分数之间有什么关系?
(1)观察 转化成 , 的分子、分母发生了什么变化?
( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)
(2)观察
(二)教学例2.
出示例2:比较 的大小.
1.出示图:我们在三条同样的数轴上分别表示这三个分数.
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.
(1)这三个分数从形式上看不同,但是它们实质上又都相等.
(教师板书: )
(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?
三、抽象概括出分数的基本性质.
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
(板书:“基本性质”)
4.谁再说一遍什么叫分数的基本性质?
教师板书字母公式:
四、应用分数基本性质解决实际问题.
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)
(1)商不变的.性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.
2.分数基本性质的应用:
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解
决一些有关分数的问题.
3.教学例3.
例3 把 和 化成分母是12而大小不变的分数.
板书:
教师提问:
(1) ?为什么?依据什么道理?
( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )
(2)这个“6”是怎么想出来的?
(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)
(3) ?为什么?依据的什么道理?
( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )
(4)这个“2”是怎么想出来的?
(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)
五、课堂练习.
1.把下面各分数化成分母是60,而大小不变的分数.
2.把下面的分数化成分子是1,而大小不变的分数.
3.在( )里填上适当的数.
4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
5.请同学们想出与 相等的分数.
规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.
六、课堂总结.
今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.
七、课后作业.
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
【分数的基本性质教案】相关文章:
分数的基本性质的教案02-26
分数的基本性质教案03-21
《分数的基本性质》教案09-10
人教版《分数基本性质》教案02-27
分数的基本性质教案3篇07-10
分数的基本性质教案模板九篇10-18
分数的基本性质教案汇编7篇10-18
【必备】分数的基本性质教案四篇10-27
分数的基本性质教案模板9篇10-16
【精品】分数的基本性质教案三篇10-22