关于分数除法教案汇编十篇
作为一名默默奉献的教育工作者,总不可避免地需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。来参考自己需要的教案吧!以下是小编为大家整理的分数除法教案10篇,欢迎大家分享。
分数除法教案 篇1
【学习目标】
1、能利用计算法则,正确、迅速地进行分数除法的计算。
2、培养自己的语言表达能力和抽象概括能力。
3、养成良好的计算习惯。
【学习重难点】
1、重点是抽象概括出分数除法的计算法则。
2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。
【学习过程】
一、复习
1、列式,说清数量关系。
小明2小时走了6 km,平均每小时走多少千米?____________________________
速度=路程÷时间
2、计算:151×4 ×3 ×2 ×6 971215
8352÷4 ÷3 ÷2 ÷6 9765
二、探索新知
1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?
2、探究2÷
(1)“2的算法 32小时走了2 km,估一估1小时走多少千米? 3
(2) 动手画线段图表示已知条件与问题的关系。
1小时走的路程,再将线段平均分成3份,其中2份
表示的就是2小时走的'路程。 3
(3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?
2要怎样计算?它把除法转化成什么?怎样转化? 3
55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷
4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的规律吗?
______________________________________________________________
三、知识应用:独立完成P31“做一做”的第1、2题。(组长检查核对,提出质疑。)
四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)
分数除法教案 篇2
【学习目标】
1、知道分数除法的意义,掌握分数除以整数的计算法则。
2、动手操作,通过直观认识理解整数除以分数,总结法则,正确计算。
3、培养观察、比较、分析的能力和语言表达能力,提高计算能力。
【学习重难点】
1、重点是理解算理,正确总结、应用计算法则。
2、难点是理解整数除以分数的算理。
【学习过程】
一、复习
1、复习整数除法的意义是什么?_______________________________________________
2、根据已知的'乘法算式:5×6=30,写出相关的两个除法算式。___________________
2、口算下面各题:
1323843151×3 × × × ×6 × 543839412115
二、探索新知
1、认真阅读,仔细观察例1,想一想左右两边的题组有什么不同?_________________
右边的题组是怎样得来的?_________________________________________________
2、讨论:右边的两个分数除法算式是怎样求出得数的?___________________________
思考:分数除法的意义是什么?_____________________________________________
数,求另个一个因数。(都是乘法的逆运算。)
3、巩固分数除法意义的练习:P28“做一做”
4、阅读例2题目,自己拿出一张纸试着折一折,涂一涂,看你能够想到几种不同的折法?
对照不同的折法,列式计算,注意它们的计算过程以及算理。
5、比较例2出现的两种计算方法的异同?你觉得哪种算法的适用范围更广?为什么? _________________________________________________________________
6、阅读例2的第二个问题,独立列式计算,并用折纸来验证自己算对了没有? _________________________________________________________________
7、根据自己的折纸实验和算式,说一说分数除以整数要如何计算?
________________________________________________________________
分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、知识应用:独立完成下面各题,组长检查核对,提出质疑。
6115559÷3 ÷3 ÷20 ÷5 ÷10 ÷6 72168313
四、层级训练:1、巩固训练:P32练习八第1、2题;2、拓展提高:P32练习八第3题
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)
分数除法教案 篇3
教学内容:
分数除法的意义和分数除以整数(教科书第25页——26页的例1,练习七第1——7题)。
教学目标:
使用学生理解分数除法的意义,掌握分数除以整数的计算方则,并正确计算分数除以整数。
教学重点:
分数除以整数的计算方法 。
教学难点:
除转化为乘和道理。
教学过程:
一、 复习
1.口答下面各题的倒数。
2 、1、0.4
2.根据一个乘法算式写出两个除法算式。
3×15=45 125×8=1000
二、 新授
揭示课题:分数除法
1.分数除法的意义和计算法则
(1) 出示25页的月饼图。
(2) 引导学生回答问题
1)每人吃半块月饼。4个人一共吃多少块?怎样列式?得多少?
板书:×4=2 (块)
2)再看把两块月饼平均分给4个人,每人分得几块?怎样列式?得多少?
板书:2÷4=(块)
3) 如果把两块月饼平均分给每个人半块,可以分给几人?怎样列式?得多少?
板书:2÷=4(人)
(3) 让学生观察比较(板书的)3个式子的已知数和得数。
明确:第一个算式是已知两个因数(和4)求它们的积(2),用乘法计算。
第二算式是已知两个因数的积2与其中一个因数4,求一个因数,用除法计算。 第三算式是已知两个因数的积2与其中一个因数,求一因数4,用除法计算。
小结:分数除法的`意义。
强调:分数除法的意义和整数除法的意义相同。
(4) 练习:教科书第25页"做一做。
2.分数除以整数的计算方法。
(1)出示例子:把米铁丝平均分成2段,每段长多少米?
(2)启发学生分析数量关系。(画线段图表示)
米是1米的,把1米平均分成7份,表示其中的6份。6份是,再加上米米里面有6个米,要把米平均分成2段实质就是把6个米平均分成2份,每份是3个米,就是米。
板书 解法1:÷2==(米)
使学生明白。
1)分数除以整数,可以把分数的分子除以整数作分子,分母不变。
2)这种计算方法有限制条件的,分子必须能被整数整除。
还有其它的解法吗?
引导学生结合图形在学过知识的基础上理解到,把米平均分成2段,每段长多少米实际上就是求米的是多少,所以用×来计算。
板书 解法2:÷2=×=(米)
(3) 小结:分数除以整数的计算方法。
板书:分数除以整数(0除外),等于分数乘以这个娄的倒数。
强调。
1)被除数不变;
2)在“÷”转化为“×”的同时,除数的分子、分母调换位置;
3)0不能做除数,0没有倒数;
4)这种计算方法在一般情况下都可以进行,应用普遍。
5)练习:教科书第26页“做一做”。3、看教科书第25——26页,注意解决学生提出的问题。
三、 巩固练习
练习七第1、3题。
四、 作业
练习七第2、4、5、6题
五、 课外思考
练习七第7题。
分数除法教案 篇4
教学目标
1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位1,找出等量关系.
教学难点
能正确的分析数量关系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位1
1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量关系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位1?
(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1.找出已知条件和问题
2.画图并分析数量关系
3.列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1: (棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1.教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位1?
2.引导学生说出线段图应怎样画?上衣价格的
3.分析:上衣价格的 就是谁的'价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)
4.让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5.怎样直接用算术方法求出上衣的单价?
(元)
6.比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的关系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?
提问:谁是单位1?数量间相等的关系式是什么?怎样列式?
(米)
(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?
(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?
1.课件演示:
2.列式解答
四、课堂小结
这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?
五、课后作业
(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?
(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?
(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?
六、板书设计
分数除法教案 篇5
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:弄清单位1的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
教学过程:
一、复习
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位1?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。解:设买来大米X千克。x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的.人数占航模组的
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。解:设航模小组有人。
三、小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
教学追记:
本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。
分数除法教案 篇6
分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:
一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。
从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的`倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。
二、渗透数学建模思想,强化用方程解答分数除法问题。
从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。
三、借助线段图分析数量关系,发挥其工具性。
线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。
本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。
本单元的教育目标是:
1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。
2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。
3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。
4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。
●分数除法,安排4课时。
第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。
第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。
第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。
第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。
分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。
分数除法教案 篇7
教学目标:
能力目标:
培养学生动手动脑能力,以及解决实际问题的能力。
知识目标:
提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的.欢乐。
教学重点:解决实际问题。
教学策略:在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:小黑板
教学过程:
一、导入新课。
同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。板书课题:分数除法(三)
二、实施目标。
1、出示题目:
跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?
2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?
3、先让学生试着做一做。
4、交流作法。(根据学生做题情况导入方程的方法)
5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。
6、渗透用算术法解答此题。
7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。
三、巩固目标
1、试一试第一题。
指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。
指导学生分清两问的不同,认清乘法和除法的区别。
2、试一试第二题。
独立解答,全班订正。
四、课堂,教师和学生自评。
板书设计:
分数除法(三)
解:设操场上有x人参加活动。
X×=6
X×÷=6÷
X=6×
X=27
教学反思:
分数除法教案 篇8
一、复习
1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)
如果已知265×362=95930,你能说出答案吗?为什么?
(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)
二、教学分数除法的意义
1、2/7 ×( )=1,括号内填几分之几?为什么?
2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?
(引导说出分数除法的意义)
3、完成p25做一做
三、分数除以整数的计算法则
1、这节课我们学习分数除法
2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?
3、事实上,有一些分数除法同学们是会计算的。下面口算几题:
3/8÷3/8 0÷4/9 1÷2/5 3/4÷1
你是根据什么知识口算这几道题的?
4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。
出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)
怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )
根据学生的回答板书:
3/4÷3 = 3÷34 = 1/4
你能归纳这种分数除以整数的计算方法吗?
5、用这种方法口算:
3/4÷3 4/9÷4 10/9÷5 6/7÷2
6、质疑
你认为这种计算方法适用于所有的.分数除以整数吗?能举例说明吗?
7、小组讨论,自主学习分数除以整数
用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:
(1)分数除以整数,用分子除以整数的商作分子,分母不变。
(2) 1除以一个分数,结果是该分数的倒数。
(3)一个分数除以1,结果是原分数。
你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。
8、小组汇报
(1)1/5 ÷3=3/15 ÷3=1/15
(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=
(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
(4) ……
你能归纳自己小组讨论的分数除以整数的计算方法吗?
(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。
(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。
(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。
(4)……
9、观察第三种方法:
1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
这个计算过程还可以更简洁些,你能看出来吗?
化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15
观察 1/5÷3== 1/5×1/3 ,你能说一说吗?
(引导学生说出分数除以整数,等于分数乘整数的倒数)
10、计算方法的优化
刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?
学生计算后提问:你喜欢那种方法?为什么?
总结分数除以整数的计算法则:
分数除以整数(零除外),等于分数乘整数的倒数。
11、对其他的方法,你又有什么要说的吗?
(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)
四、课堂练习
1、计算下列各题
2/3÷3 2/11÷2 3/8÷6 5/4÷2
2、练习七第1题
3、讨论题
1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?
分数除法教案 篇9
教学内容:
苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。
教学目标:
使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个
数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
教学重点:
列方程解答“已知一个数的几分之几是多少,求这个数”的'简单实际问题。
教学难点:
理解列方程解决简单分数实际问题的思路。
教学过程:
一、导入
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?
出示:小瓶的果汁是大瓶的。
这句话表示什么?你能说出等量关系式吗?
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?
2、揭示课题:简单的分数除法应用题
二、教学例5
1、出示例5,学生读题。
提问:你想怎么解决这个问题?
2、讨论交流:你是怎么想、怎么算的?
(1)用除法计算。
引导讨论:为什么可以用除法计算?依据是什么?
(2)用方程解答。
讨论:用方程解答是怎么想的,依据是什么?
让学生在教材中完成解方程的过程,并指名板演。
3、引导检验:900是不是原方程的解呢,怎么检验?
交流检验的方法。
4、教学“试一试”
(1)出示题目,让学生读题理解题目意思。
(2)讨论:这里中的两个分数分别表示什么意思?
这题中的数量关系式是什么?
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
4、小结。
三、练习
1、做“练一练”。
各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。
2、做练习十二第1题。
(1)读题,画出题目中的关键句。
(2)学生说题意
(3)引导学生说出并在书上写出数量关系式。
(4)独立解答,并指名板演。
(5)集体评议并校正。
3、做练一练第2题。
启发:你是怎样分析数量关系的?为什么要列方程解答?
3、小结解题策略。
四、作业:练习十二第1、3、4题。
板书设计:(略)
分数除法教案 篇10
学习目标:
1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2 .掌握一个数除以分数的计算方法,并能正确进行计算。
学习重点:理解一个数除以分数的意义和基本算理。
学习难点:运用分数除法的计算方法解决实际问题。
学习内容:
一、分一分
有4张同样的圆形纸片。
(1)每2张一份,可以分成多少份?
画一画:
列示:
(2)每1张一份,可以分成多少份?
画一画:
列示:
(3)每1/2张一份,可以分成多少份?
画一画:
列示:
(4)每1/3张一份,可以分成多少份?
画一画:
列示:
(5)每1/4张一份,可以分成多少份?
画一画:
列示:
二、画一画
1.有1根2米长的绳子。
(1)截成每段长1/3米,可以截成几段?
画一画:
列示:
(2)截成每段长2/3米,可以截成几段?
画一画:
列示:
2.3/4里面有几个1/8?
画一画:
列示:
三、填一填,想一想
在〇里填上“>”“<”或“=”。
4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4
2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8
你发现了什么?( )
四、试一试
8÷6/7 5/12÷3
你能把“除以一个整数(零除外),等于乘这个整数的`倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?
( )
【分数除法教案】相关文章:
分数除法教案10-27
分数与除法教案12-15
《分数除法》教案02-23
分数与除法的教案03-05
《分数与除法 》教案03-08
《分数除法练习》教案09-09
人教版分数除法教案10-27
有关分数除法教案01-01
分数除法二教案03-29
《分数与除法的关系》教案03-03