范文资料网>反思报告>教案大全>《五年级数学教案

五年级数学教案

时间:2023-04-01 10:38:06 教案大全 我要投稿

五年级数学教案(通用15篇)

  作为一位优秀的人民教师,很有必要精心设计一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么什么样的教案才是好的呢?下面是小编精心整理的五年级数学教案,欢迎阅读与收藏。

五年级数学教案(通用15篇)

五年级数学教案1

  教学目标

  整理和复习

  教学内容

  本单元教材主要包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。

  平行四边形、三角形和梯形面积计算是学生掌握了这些图形特征以及长方形、正方形面积计算的基础上学习的,它们是进一步学习圆面积和立体图形表面积的基础。学到这一单元结束,多边形面积的计算就基本学完。

  组合图形的面积在义务教育的教材中是选学内容。本单元安排在平行四边形、三角形和梯形面积计算之后学习,学生在进行组合图形面积计算中,要把一个组合图形分解成为已学过的平面图形并进行计算,可以巩固对各种平面图形特征的认识和面积公式的运用,有利于发展学生的空间观念。

  本单元具体的教学内容分析如下:

  1.平行四边形的面积。

  通过提出解决比较两个花坛(一个长方形,一个正方形)面积的问题,让学生带着问题自主探索计算平行四边形面积的基本方法,并能运用计算平行四边形面积的方法解决一些实际问题。

  2.三角形的面积。

  为让学生能自主地探索计算三角形面积的方法,教材除呈现了学生需要解决三角形面积的实际问题外,更重要的是提出了如何把三角形进行转化的要求,这也是学生寻求解决三角形面积计算方法的重要思路。根据不同学生的认知能力,在学生探索三角形面积的计算方法中,教材呈现了多种不同的计算方法以及面积公式推导的方法,目的是在课堂上让每个学生都能充分地参与到探索活动之中。

  3.梯形的面积。

  这部分教学内容是利用学生前两个基本图形面积计算公式推导的经验,探索梯形面积的'计算方法。同时,为了让每个学生都能参与探索活动,教材呈现了多种探索的方法,并说明了不同的探索过程。

  4.组合图形的面积。

  教材先通过呈现生活中具体物品使学生认识组合图形是由几个简单图形组合而成的。然后要求学生找一找生活中的组合图形,以巩固对组合图形的认识。接着,引导学生学习组合图形面积的计算。所安排的例题及练习除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。

  5.整理和复习

  这部分内容先把本单元学过的知识进行系统整理,用图示帮助学生回忆本单元所学习的图形面积计算公式的推导过程,沟通各种面积公式及其推导过程的内在联系,再通过不同层次的练习,巩固已学的各种多边形的面积公式,提高应用公式解决简单实际问题的能力。

五年级数学教案2

  教学目标:

  知识与技能:会用量具测量不规则物体的体积。

  过程与方法:通过对不规则物体体积计算方法的探讨,拓展学生的思维。

  情感与态度:促使学生在活动中积极探索,和谐配合,进一步激发学生对周围事物规律的探究。

  教学重点:探索不规则物体体积的测量方法。

  教学难点:知道不规则物体的体积就是排开水的体积。

  教学准备:量杯、水、沙子、橡皮泥、不规则物体(石块、石块)、乒乓球。

  教学过程:

一、导入阶段

  师:大家最近都在求物体的体积。这些物体,我们一起来看一看。(有各类形状的盒子(长方体和正方体),水)。

  师:小胖想问问你们这些物体的体积你们会求吗?怎么求?

  1、长方体和正方体形状的物体,我们会求,先测量出它们的长、宽、高各是多少,然后利用长方体和正方体的体积公式就能计算出来。

  2、a、可以把水倒入长方体容器内,水的长、宽与容器内部的长、宽相等,再测量一下水的高度,根据这三个条件,水的体积就可以求出来了。

  b、把容器内的水倒在量杯内,就能测出水的体积。

  师:那现在有一块石头,那么这块石头的体积怎么求呢?今天,我们就要研究这个问题。

  (出示课题:用量具测体积)

  二、新授

  师:我们首先来观看大屏幕。(视频)

  师:请大家交流一下,你看到了什么?

  生:将石块放入一个装满水的容器内时,容器内的水面高度会上升。

  师:大家再看一下……

  师:大家想一下,为什么将石块放入一个装满水的容器内时,容器内的水面高度会上升?

  师:因为石块本身是有体积的,将石块放入一个装满水的容器内时,原本下面容器内的水就会被石块所“排开”了,这样就导致了容器内的水面高度会上升。

  师:那想一下,如果现在我把这石块从容器内取出的话,容器内水面高度又会发生怎样的变化?

  生:容器内水面高度会下降。

  师:再将石块放入容器内呢?容器内的水面高度又会XXXX?

  师:那你能否来判断一下,容器内的水面高度的上升与下降和石块的体积,两者之间究竟有怎样的联系?(大家小组讨论一下)

  生:水面升高的那部分水的体积就是石块的体积

  师:接下来,大家再来看一段视频,你试试看能否用刚才我们所学的这个知识来计算出罐头的体积?

  实验告诉我们是如何测量罐头的体积?罐头的体积是多少?

  (原来水的体积是200ml,现在把罐头放入量杯全部浸没在水中,水面就升高了,现在的体积是400ml,升高部分水的体积就是200ml,水面升高的那部分水的体积就是罐头的体积。)

  师:通过实验,我们知道:水面升高的那部分水的体积就是罐头的体积

  师:刚才我们交流了很多,谁能简单概括一下测量石块体积的方法?

  1、观察原来水的体积。

  2、放入石块。

  3、观察变化后的体积。

  4、求两个体积的差。

  师:a、现在老师想用你们刚才的方法测量这个石块的体积(将石块放入水中),观察一下,你有什么想说的?(石块没有被浸没)

  师:石块没有被完全浸没,但是水面却升高了,那么石块的体积是否就是水面升高的这部分水的体积?

  (不是,水面升高的这部分水的体积其实是石块浸在水里的这部分的体积,而不是整个石块的体积。)

  师:只有将石块整个都浸在水里面,水面升高那部分的水的体积就是石块的体积。

  师:通过两次实验,我们可以确定:物体排开水的体积就是物体的体积。(板书)

  师:通过刚才一系列的实验讨论,我们得出了这个结论,你们真聪明,有一只乌鸦也非常聪明,相信大家都学过“乌鸦喝水”的故事,我们一起来回顾一下。

  师:请同学们说一说乌鸦为什么会喝到水?

  (把石块投入到杯子中,石块就把水排开了,水面就升高了。石块投的越多,水面升高的越快,当水面升高到杯口时,乌鸦就能喝到水了。)

  师:乌鸦用这种方法喝到了水,非常聪明,希望同学们在生活中,如果遇到困难,也应该多角度,多方位的`去思考,找到解决问题的好方法。

  师:接下去请同学们把书翻到67页,独立完成书上的第二题。

  师:谁能说说这幅图你看懂了什么,这个苹果的体积又是多少?

  (原来量杯中水的体积是600ml,把苹果完全浸没在水中后,水面上升到了800ml。

  上升部分水的体积就是苹果的体积:800-600=200ml=200cm3

  师:一起来看第三题,两只形状、大小相同的量杯盛有同样多的水,放入两块形状不同的石头后,如果水面升到一样高,那么这两块石头的体积相同吗?

  (相同,因为两个量杯的形状、大小是相同的,水面上升的又是一样高,虽然它们的形状不同,但是它们的体积是相同的。)

  A

  一个长方体水缸,长是7分米,宽是5分米,水深3分米,把一个钢球浸没在水里,水面上升0。2分米,这个钢球的体积是多少立方分米?(水缸的厚度不计)

  B

  一只长方体的玻璃缸,长6分米,宽4分米,水深5分米,如果将一块体积是14。4立方分米的石块全部放入水中,水面会上升多少分米?

  讨论题:

  有一只长方体水箱,长20分米,宽5分米,水箱里放入一个长方体钢块后,水面上升了0。6分米,已知钢块的长和宽都是4分米,求钢块的高是多少分米?(水箱的厚度不计)

  判断题

  1。把一个铁球沉没在长1。5分米,宽1。2分米的长方体容器里,水面由4。5分米上升到6分米,你能求出这个铁球的体积吗?

  (容器的厚度不计)

  A、

  1.5×1。2×4。5

  B、

  1.5×1.2×6

  C、

  1.5×1.2×(6—4.5)

  D、

  1.5×1.2×(4.5+6)

  2。有一只长方体玻璃水缸,长10分米,宽4分米,水箱里放入一个长方体铜块后,水面上升了0。5分米,已知铜块的长是3分米,高是4分米,求铜块的宽是多少分米?(水缸的厚度不计)

  A、

  10×4÷(3×4)

  B、

  10×4×0.5÷4

  C、

  3×4×0.5÷(10×4)

  D、

  10×4×0.5÷(3×4)

  深化练习:

  从里面量长、宽均为2分米,向容器中倒入4.4升水,再把一个苹果放入水中。这时量得容器内的水深是1.5分米,这个苹果的体积是多少?(玻璃容器的厚度不计)

  H独立练习:

  1、水倒入一个棱长为10厘米的正方体容器内,水高3厘米,然后放入许多小石子,这时水升高到5厘米,求这些小石子的体积。(容器的厚度不计)

  2、一个底面积为16平方分米长方体鱼缸,蓄水深20cm,现将一块小假山完全放入水中,此时水面上升了2cm,求这个小假山的体积。(鱼缸的厚度不计)

  三、小结

  师:通过今天的学习,你有什么收获?

五年级数学教案3

  教学内容

  质数和合数

  教材第14页的内容及练习四第1~3题。

  教学目标

  1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

  2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

  3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

  重点难点

  重点:初步学会准确判断一个数是质数还是合数。

  难点:区分奇数、质数、偶数、合数。

  教具学具

  投影仪。

  教学过程

  一、创设情境,激趣导入

  师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

  师:密码是一个三位数,它既是一个偶数,又是5的倍数;最高位上的数是9的最大因数;十位上的数是最小的质数。你能打开密码锁吗?

  学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

  二、探究体验,经历过程

  1.认识质数与合数。

  师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

  学生分组进行,找出之后进行分类。

  生:老师,我发现这些数的因数有的'只有1个,有的有2个,有的有3个,还有的有4个或更多。

  师:很好,我们可以把它们分类,大家把分类结果填在表中。

  投影展示学生的分类结果。

  【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

  师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

  师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

  想一想:最小的质数(合数)是几?最大的呢?

  师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

  课件出示:可以把非0自然数分为质数和合数以及1,共三类。

  2.制作质数表。

  投影出示例1。

  师:怎样找出100以内的质数呢?

  生1:可以把每个数都验证一下,看哪些是质数。

  生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

  【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

  三、课末总结,梳理提升

  这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

  板书设计

  教学反思

  1.学生是数学学习的主人,是数学课堂上主动求知、主动探索的主体。教师是数学学习的组织者、引导者和合作者。课堂上,我尽一切所能为学生创设可观察、可探索、可发现的问题情境,让学生以科学探究的方法学习数学,促进每一位学生的发展。

  2.学生是知识建构过程的主体。自主探究要让学生根据自己的生活经验或已有的知识背景去探索知识,从某种意义上说,自主探究的目的不单纯在于数学知识的掌握,而在于数学方法的掌握和情感体验的获得,通过自己探索获得“再创造”的体验。

五年级数学教案4

  一、教学目标

  1、能直接在方格图上,数出相关图形的面积。

  2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

  3、在解决问题的过程中,体会策略、方法的多样性。

  二、重点难点

  整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。

  难点:学生能灵活运用。

  三、教学过程

  (一)直接揭示课题

  1、今天我们来学习《地毯上的图形面积》。请同学们把书P18页,请同学们认真观察这幅地毯图,看看它有什么特征。

  2、小组讨论。

  3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。

  4、看这副地毯图,请你提出一些数学问题。

  (二)自主探索、学习新知

  1、如果每个小方格的面积表示1平方米,,那么地毯上的'图形面积是多少呢?

  2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。

  3、小组内交流、讨论。

  4、全班汇报。

  a)直接一个一个地数,为了不重复,在图上编号。(数方格法)

  b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)

  c)用总正方形面积减去白色部分的面积。(大减小法)

  d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)

  5、师总结求蓝色部分面积的方法。

  (三)巩固练习

  1、第一题。

  (1)学生独立思考,求图1的面积。

  (2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。

  2、第二题。独立解决后班内反馈。

  3、第三题。

  (1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。

  (2)学生观察结果,说发现。

  第(1)题的4个图形面积分别为1、2、3、4的平方数。

  第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。

  (四)总结

  对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。

  四、板书设计

  地毯上的图形面积

  一个一个地数(数方格法)

  平均分成4份,再乘4。(化整为零法)

  总面积减去白色面积。(大减小法)

  五、教学反思

  本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。

五年级数学教案5

  教学内容:数学第九册教材P27页例7和例8

  教学要求:认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。

  教学重点:循环小数的特点

  教学难点:理解循环小数的意义

  教学过程:

  一、导入并板书课题:循环小数

  二、出示学习目标

  认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。

  三、呈现自学指导(1):

  1、认真看课本27页,观察400÷75的竖式计算,说说你的发现。

  2、思考:这个竖式如果继续除下去,会是怎样的情况。你怎样表示出它们的商?

  五分钟后,比一比看谁能做出类似的题目,并能说出自己的发现。

  四、学生自学

  1、学生看书,教师巡视,注意帮助学困生。

  2、统计了解学生自学情况。

  3、学情检测

  (1)出示检测题:

  计算后观察商的特点:

  28÷18=78.6÷11=

  5.7÷9=20÷3.7=

  (2)请四名同学板演,其他同学自己做,做好后与板演的同学对比,找出不同。

  五、后教

  1、更正板演题

  评思路、评方法、评步骤、评结果、评规范

  2、讨论

  (1)循环小数的特点:

  (2)循环小数的意义:

  3、训练:指出下列哪些是循环小数?

  1.55…5.314162…

  1.53533530.19292…

  0.547754…16666

  1.5353…0.6333…

  5.405405…1.2108108…

  六、出示自学指导(2):

  认真看课本28页的“你知道吗?”

  思考:

  1、循环小数中,依次不断重复出现的.数字叫什么?

  2、数字上面的小圆点叫什么?

  3、像5.3…可以简写成多少?

  4、7.14545…也可以简写成多少?

  五分钟后,看谁说得准确,写得漂亮。

  七、学生自学

  1、学生看书,教师督促学生专心看书。

  2、了解学习情况。

  3、出示检测题:

  用循环节表示出下列循环小数:

  1.55…=0.19292…=

  1.5353…=0.6333…=

  5.405405…=1.2108108…=

  指名板演,其他同学仔细观察,为评价作好准备。

  八、评价板演题

  看写得是否准确规范,学生评,师生评。

  九、小结本节课内容,学生质疑

  十、当堂训练:

  1、必做题:

  计算下面各题,除不尽的用循环小数的简写表示商,再保留两位小数写出它们的近似值。

  (1)6.64÷3.3(2)2.29÷1.1

  (3)4÷37(4)38.2÷2.7

  2、选做题:

  循环小数0.48536536……的小数部分第60位上的数是几?第100位上的数呢?

五年级数学教案6

  课题一:两个数的

  教学要求 ①使学生理解公倍数、的概念。②使学生初步掌握求两个数的的方法。③培养学生抽象概括的能力和实际操作的能力。

  教学重点 理解公倍数、的概念。

  教学难点 求两个数的的方法。

  教学用具 投影仪

  教学过程

  一、创设情境

  1、口答:求下面每组数的最大公约数。

  3和8 6和11 13和26 17和51

  2、求30和42的最大公约数。

  二、揭示课题。

  前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

  三、探索研究

  1.教学例1。

  投影出示例1 及画好的数轴。

  (1)学生口述4和6的倍数,投影显示在数轴上。

  (2)观察并回答。

  ①4和6公有的倍数是哪几个?

  ②其中最小的一个是多少?有无最大的?为什么?

  (3)归纳并板书。

  ①4 和6公有的倍数有:12、24、36

  其中最小的一个是12。

  ②也可以用图来表示。

  4的倍数 6的倍数

  4 8 16 20 12 24 6 8 30

  4 和6 的公倍数

  (4)抽象、概括。

  ①什么是公倍数、?(让学生说)

  ②指导学生看教材第71页有关公倍数、的概念。

  (5)尝试练习。

  做教材第73页的做一做,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

  2.教学例2。

  (1)出示例2并说明:我们通常用分解质因数的方法来求几个数的。

  (2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

  2 18 2 30

  3 9 3 15

  3 5

  18=233

  30=235

  (3)观察、分析。

  ①18(或30)的倍数必须包含哪些质因数?

  ②如果233(或235)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

  ③18和30的公倍数必须包含哪些质因数?(2335)

  (4)归纳:18 和30 的.里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18 和30 的是:

  2335=90

  (5)教学求的一般方法。

  为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求,如: 18 30 并让学生分组讨论写成这种形式后该怎样做。

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出了?

  (6)尝试练习。

  做教材第74页上面的做一做,学生解答后,点几名学生说说是怎样做的,然后集体订正。

  (7)抽象、概括求的方法。

  ①谁能说说求的方法。

  ②指导学生看第74页求两个数的的方法。

  四、课堂实践

  1.做练习十五的第1题,让学生讲讲为什么?

  2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

  五、课堂小结

  学生小结今天学习的内容及方法。

  六、课堂作业

  做练习十五的第2、3题。

五年级数学教案7

  教学内容:

  教科书第18页例4和做一做

  教学目标:

  1、会归纳总结除数是小数的小数除法的计算方法,能比较熟练地计算除数是整数的小数除法;

  2、能根据乘除法之间的关系进行验算,提高计算的正确率;

  3、养成良好的计算、验算习惯。

  教学重点:

  掌握小数除以整数的计算方法,你能正确计算

  教学难点:

  特殊情况的小数除以整数的算法

  教学过程:

  一、复习引入

  1、口算

  2。4÷2 4。8÷6 9。09÷9

  8。24÷8 6÷5 1÷5

  2、填空,并说出为什么?

  (复习乘除法之间的关系,为下面学习验算做好准备)

  3、列竖式计算(生板演)

  (1)7。44÷4(2)7。44÷8

  (3)102÷24(4)4。551÷5

  四道逐渐变难

  二、探究新知

  1、在评价学生的计算结果中帮助学生学会归纳和总结。

  师:通过刚才的解题,你能说出小数除以整数是怎么除的吗?

  学情预设:学生有的会把步骤在说一遍,有的会讲出前面“被除数的整数部分不够除”和“除到被除数的小数末尾还有余数”两种特殊情况的小数除以整数的算法,教师一一给与肯定。

  师:做小数除以整数还有什么要提醒大家的`?

  四人小组讨论并归纳

  学情预设:生根据小数乘法经验说出转化乘整数除法去除;商的小数点要和被除数的小数点对齐;哪一位不够商1就商0,然后继续除。如果除到被除数的末尾仍然有余数,要添0后再除。

  课件出示补充。

  2、在暴露计算错误的过程中引导学生学会验算。

  (1)师:为了保证我们的计算正确,怎么办?——验算

  验算是一种很好的学习方法和习惯,怎样验算黑板上面的小数除法呢?

  学情预设:生根据整数除法经验能说出用乘法验算除法,或估算一下,或用被除数除以商等。

  师:四人小组,一人选一道进行验算,算完在组内说说你是怎么想的?

  (2)门诊台

  课件出示。

  小结:用估算能知道计算有没有错;用乘法或再除一遍的方法能保证计算正确

  三、巩固练习

  1、小马虎也做了两道题,请同学们看看他做对了吗?如果不对应该怎么订正?

  37。8÷6=63 7。4÷5=1。4……4

  2、计算并验算

  43。5÷29 18。9÷27

  1。35÷15 207÷45

  3、书第20页:7、8题

  四、课堂小结

  说说小数除以整数的计算法则,有什么要提醒大家的?

五年级数学教案8

  单元教学目标:

  1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。

  2、使学生会用“四舍五人法”截取积、商是小数的近似值。

  3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。

  教学内容

  小数乘以整数 课型 新授课

  教学目标

  1、使学生理解小数乘以整数的计算方法及算理。

  2、培养学生的迁移类推能力。

  3、引导学生探索知识间的练习,渗透转化思想。

  教学重点

  小数乘以整数的算理及计算方法。

  教学难点

  确定小数乘以整数的积的小数点位置的`方法。

  教具准备

  放大的复习题表格一张(投影)。

  教学过程

  一、引入尝试:

  孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。

  1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:

  ⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)

  (2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)

  用加法计算:3.5+3.5+3.5=10.5元 3.5元=3元5角

  3元×3=9元 5角×3=15角 9元+15角=10.5元

  用乘法计算:3.5×3=10.5元 理解3种方法,重点研究第三种算法及算理。

  ⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?

  (3个3.5或3.5的3倍.)

  (4)初步理解算理。怎样算的? 把3.5元看作35角

  3.5元 扩大10倍 3 5角

  × 3 × 3

  1 0. 5 元 1 0 5角

  缩小到它的1/10

  105角就等于10.5元

  (5)买5个要多少元呢?会用这种方法算吗?

  2、小数乘以整数的计算方法。

  象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)

  ⑴生算完后,小组讨论计算过程。

  板书: 0.7 2

  × 5

  3. 6 0

  (2)强调依照整数乘法用竖式计算。

  (3) 示范:0. 7 2 扩大100倍 7 2

  × 5 × 5

  3. 6 0 3 6 0

  缩小到它的1/100

  (4) 回顾对于0.72×5,刚才是怎样进行计算的?

  使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)

  (5)专项练习

  ①下面各数去掉小数点有什么变化?

  0.34 3.5 0.201 5.02

  ②把353缩小10倍是多少?缩小100倍呢?1000倍呢?

  ③判断

  1 3.5

  × 2

  2.7 0

  (6)小结小数乘整数计算方法

  计算 7 ×4 0.7×4 25×7 2.5×7

  观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?

  ① 先把小数扩大成整数;② 按整数乘法的法则算出积;

  ③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

五年级数学教案9

  设计说明

  本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

  1、把新知融入到有趣的情境中,激发学生的学习兴趣。

  在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

  2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

  在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

  设计意图:

  在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。

  课前准备

  教师准备PPT课件长方形纸

  教学过程

  (1)复习巩固,情境导入,激发兴趣

  1、求下面每组数的公因数。

  42和50 15和5 8和21 18和12

  2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

  (2)认识约分

  1、尝试“变分数”。

  课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

  让学生了解“变化”的`要求:

  ①这个分数要与的大小相等。

  ②这个分数的分子、分母要比的分子、分母小。

  2、了解约分的概念。

  ①所变出的分数与原分数有什么关系?

  ②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  ③请学生说一说所变的分数是怎样得来的。

  观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

  3、认识最简分数。

  ①约分后的分子、分母能否再变小了?为什么?

  ②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

  4、说出几个最简分数,强化最简分数的概念。

  (3)合作交流,总结方法

  1、讨论:你能根据我们化简的过程找到约分的方法吗?

  2、小结。

  教师板书约分时一般采用的两种方法:

  ①逐步约分法。

  如约分时,依次用12,18的公因数2和3去除,最后约分成。

  ②一次约分法。

  如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

  3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

五年级数学教案10

  教学内容:分数与除法

  教学目标:

  1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。

  2、运用分数与除法的关系,探索假分数与带分数的互化方法。

  3、培养学生动手操作、观察、比较和归纳的能力。

  4、培养学生团结合作、关心他人、先人后己等优良品质。

  教学重点:理解、掌握分数与除法的关系。

  教学难点:理解分数商a/b(b≠0)的意义。

  教学具准备:教学课件及3张完全相同的圆和剪刀。

  教学过程:

  一、设置疑问,揭示课题

  1、请同学们计算下面各题,你能把商分为哪几类?

  36÷6 = 6 4÷5=0.8 80÷5=16

  3÷7= 5÷10=0.5 4÷9=

  然后引导学生归纳分类:

  36÷6 = 6和80÷5=16的商为整数;

  4÷5=0.8和5÷10=0.5的商为有限小数;

  3÷7=和4÷9=的商为循环小数。

  2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)

  二、创设情境,引导探索

  1、创设情境,引入关系

  师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,大家愿意和老师一起做一下详细的计划吗?

  生:愿意!

  师:好!那我们大家就一起来吧!

  师:请看我们班级为这次活动准备的食品:

  食品名称食品数量班级人数平均每人分的数量

  苹果40个47 40÷47

  饮料39瓶47 39÷47

  花生8千克47 8÷47

  上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。

  2.层层深入,感知关系

  师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

  师:同学们愿意帮xxx同学分一分蛋糕吗?

  生:愿意!

  师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?

  要把蛋糕平均分成几份?

  怎样列式?(指名口述算式)

  1÷3=

  师:大家拿出练习本来计算这个商是多少?(用小数表示)

  生:0.333…或

  课件显示:1÷3=0.333…或

  师:这个商用小数表示太麻烦了,能不能用分数来表示呢?

  请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?

  生:

  师:对了!那么上面的算式1÷3的商可以用分数表示了,即:1÷3=(个)

  (2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?

  (3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:被除数÷除数=

  (4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?

  生:会!

  师出示:40÷47=?39÷47=?8÷47=?

  3.,巩固关系

  师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

  生:想!

  师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

  ①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)

  ②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。

  ③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?

  ④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?

  ⑤算一算:师指一名同学板演算式:3÷4=(张)

  答:每人分得张。

  请板演的同学说一说自己是根据什么这样写的?

  ⑥如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

  学生回答,师板书:a÷b= (b≠0)

  师:大家考虑:这里的'a和b是否可以是任何自然数?为什么?

  生:不可以,因为这里的b≠0

  师:左侧b≠0,那么右侧的b是否可以是0?为什么?

  师:讨论完后,教师用红色粉笔标上:b≠0

  (引导学生懂得:在除法中,除数不能为零,所以在分数中,分母不能为零)

  三、总结提升,归纳关系(师生共同完成)

  1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。

  2、判断:“分数就是除法,除法就是分数”这句话对不对?

  (最后教师总结:分数与除法既有联系,又有区别,除法是一种运算,而分数是一个数)

  四、拓展延伸,发展能力

  1、填空:7÷13= =()÷()

  ()÷9= ()÷26=

  2、用分数表示下面各式的商。

  3÷4= 7÷12= 16÷49= 25÷24= 12÷25= 36÷57= 30÷37= 33÷78=

  7÷13= 74÷14= 77÷13= 78÷97

  3、一个4平方米的圆形花坛分成大小相同的5块,每块是多少平方米?(用分数表示)

  4、“六一”联欢的时候,大家都会带好多自己爱吃的食品,你们愿意与同学们共同品尝吗?如果愿意的话,请说说你的打算,并编一道符合这节课学习内容的题目说给大家听听好吗?

  五、情感教育,教书育人

  同学们,我刚才听了大家的各种打算,感到很欣慰,同学们都打算把自己的好吃的分给大家一起享用,我都盼望着过“六一”儿童节了,到那时,我也会准备一些好吃的礼物与大家一起分享好吗?但愿我们同学在共同的学习和生活中,能互相关心,团结友爱,亲如兄妹,让我们的班级成为一个温暖的班级体!

  板书设计:

  分数与除法

  a÷b= (b≠0)

  3÷4=(张)

  答:每人分得张饼。

五年级数学教案11

  教学内容:

  书第54——55页,有趣的测量及试一试第1、2题。

  教学目标:

  1.知识与技能:结合具体活动情境,经历测量石头的试验过程,探索不规则物体体积的测量方法。

  2.过程与方法:在实践与探究过程中,尝试用多种方法解决实际问题。

  3.情感、态度与价值观:在观察、操作中,发展学生空间观念。

  教学重点:

  用多种方法解决实际问题。

  教学难点:

  探索不规则物体体积的测量方法。

  教学准备:

  不规则石头、长方体或正方体透明容器、水。

  教学过程:

  一、导入新课

  师:同学们,我们已经学会了如何计算长、正方体的体积。现在老师这里也有一个东西,你能帮我测量出它的体积吗?

  老师出示准备好的不规则石快。

  师:这个石块是什么形状的?(不规则)

  什么是石块的体积?

  你有什么困难?

  二、教学新知

  1.测量石块的体积

  (1)小组讨论方案

  师:我们不能直接用公式计算出石块的体积,可以怎么办呢?你有什么好的方法吗?

  (2)小组制定方案

  (3)实际测量

  方案一:找一个长方体形状的容器,里面放一定的水,量出水面的高度后把石头沉入水中再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的体积。也可以分别计算放入石头前的体积与放入石头之后的总体积之差。

  师:为什么升高的那部分水的体积就是石块的体积?

  方案二:将石头放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出的水的体积,就是石头的体积。

  师:为什么会有水溢出来?

  这两种方案实际上都是把不规则的'石头的体积转化成了可测量计算的水的体积。让学生说出“石块所占空间的大小就是石块的体积”。

  1.实际应用

  一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后水面上升了0.2分米,这个土豆的体积是多少?

  (1)读题,理解题意。

  (2)分析:你是怎么想的?

  (3)学生尝试独立解答。

  (4)集体反馈,订正。

  让学生运用在探索活动中得到测量的方法,即“升高的水的体积等于土豆的体积”,然后用“底面积×高”的方法计算。2×1.5×0.2=0.6(立方分米)

  三、课堂小结

  学习了这节课,同学们有什么感受和体会?有什么提高?

  作业设计:

  1.书第55页第2题。

  本题引导学生开展测量不规则物体体积的活动。一粒黄豆比较,先测量100粒黄豆的体积,再计算出一粒黄豆的体积。

  2.学生再找一些实物,测量出体积。

  板书设计:

  有趣的测量

  方案一:

  方案二:

  “底面积×高”的方法计算。

  2×1.5×0.2=0.6(立方分米)

五年级数学教案12

  教学目标:

  1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

  2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

  3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

  4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

  教学重点:

  初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

  教学难点:

  通过探索,自主推算出相邻体积单位间的进率。

  教学准备:

  多媒体课件、体积单位模型、彩泥、魔方等。

  教学过程:

  一、创设情境,引发思考

  师:上一节课,我们认识了体积,什么是物体的体积?

  问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

  师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

  二、合作学习,探究新知

  (一)探寻学生已有知识:

  问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

  (预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

  【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】

  (二)建立1cm3、1dm3、1m3的空间观念

  1、建立1立方厘米的空间观念:

  (1)初步感知1cm3有多大:

  问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

  【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

  <<<123>>>

  (2)触类旁通,定义1 cm3的大小:

  师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

  【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

  (3)进一步感知1cm3的大小:

  做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

  (4)想一想,填一填:

  师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

  2、建立1立方分米、1立方米的空间观念:

  (1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

  【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

  (2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

  【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

  (3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

  【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

  3、练习(用合适的体积单位表示下面物体):

  一块橡皮的体积约是8( )。

  一台录音机的体积约是10( )。

  运货集装箱的体积约是40( )。

  一本新华字典的体积约是0.4( )。

  一个西瓜的体积约是5( )。

  一间教室的体积约是180( )。

  (三)继续类比,探究相邻体积单位间的进率:

  1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

  2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

  【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的'发现”(牛顿)。】

  3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

  【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

  4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

  5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

  【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

  三、动手操作,质疑反思:(机动,也可作为课后拓展)

  学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

  1、用4个小正方体可以摆成一个大正方体吗?

  2、最少要用多少个小正方体才可以摆成一个大正方体?

  3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

  【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

  四、总结全课,感悟学习方法:

  师:通过今天的学习,你有哪些新的收获?(生生互动)

  小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级数学教案13

  【教学目标】

  1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

  2.使学生通过自主探索,掌握2、5、3的倍数的特征。

  3.逐步培养学生的数学抽象思维能力。

  【重点难点】

  1.掌握因数、倍数、质数、合数等概念的联系及其区别。

  2.掌握2、5、3的倍数的特征。

  3.质数和奇数的区别。

  【教学指导】

  由于本单元内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度,所以教学应注意以下两点:

  1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的,倍数的个数是无限的等结论自然也就掌握了。对于后面的公因数、公倍数等概念的理解也就水到渠成了,要引导学生用联系的方法去掌握这些知识,而不是机械地记忆一堆支离破碎,毫无关联的概念和结论。

  2.由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但在过去的数学教学中,一些老师往往忽视概念的本质,而让学生死记硬背相关概念或结论,导致学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,而学生到了五年级,抽象能力已经有了进一步提高,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数的个数都是无限的结论,逐步形成从特殊到一般的归纳推理能力等等。

  【课时安排】

  建议共分7课时

  1.因数和倍数2课时

  2.2、5、3的倍数的特征3课时

  3.质数和合数2课时

  【知识结构】

  因数和倍数(1)

  学习内容认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。第1课时课型新授

  学习目标1.从操作活动中理解因数和倍数的意义,会

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情

  教学重点理解因数和倍数的含义

  教学难点判断一个数是不是另一个数的因数或倍数。

  教具运用课件

  教学方法二次备课

  教学过程

  【复习导入】

  1.教师用课件出示口算题。

  10÷5=16÷2=12÷3=100÷25=150×4=

  220÷4=18×4=25×4=24×3=20×86=

  学生口算

  2.导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的`倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:m÷N=P,m、N、P都是非0自然数,那么N和P是m的因数,m是N和P的倍数。

  A×B=c,A、B、c、都是非0自然数,那么A和B是c的因数,c是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  板书设计因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  教学反思

  【作业设计】

五年级数学教案14

  教学内容:p53第10-13题

  教学目标:

  1、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题

  2、能沟通知识之间的相互联系,提高解决问题的能力

  教学重点:熟练解决求一个数是另一个数几分之几的.实际问题

  教学流程

  一、练习与应用

  1第52页第10题

  先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?

  (1)先让学生联系分数的意义口头分析:把全班人数看作单位“1”,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。

  (2)再让学生根据分数与除法的关系列出算式,并写出得数。

  (3)独立做下面两题

  (4)交流

  2做第11题

  (1)学生先独立练习

  (2)引导比较A三道题目计算方法有什么相同?

  B算式中选择的除数有什么不同?

  C从中还能想到些什么?

  (3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。

  3做第12题练习后加强对比

  (1)计算方法有什么相同的地方?

  (2)算式中选择的被除数为什么不同?除数为什么相同?

  (3)商的表示方法有什么不同?

  4做第13题练习后加强对比

  要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。

  5思考题

  方法一:可以根据每个分数中分子与分母的大小关系来判断。

  方法二:通过画图帮助思考

  二、课堂

  完成补充习题上的练习。

五年级数学教案15

  教学目标

  1、使学生初步掌握的特征.

  2、使学生知道奇数、偶数的概念.

  教学重点

  掌握的特征及奇数、偶数的概念.

  教学难点

  灵活运用的特征及奇数、偶数的概念进行综合判断.

  教学步骤

  一、铺垫孕伏(课件演示:)

  1、我们已经掌握了约数、倍数的意义,谁能根据整除的意义判断这几个数能否被2或5整除?

  8267 6972 1867 5625

  2、导入 :你们通过笔算都能判断出哪个数能被2整除,哪个数能被5整除.想不想不用笔算就判断出一个数能否被2或5整除呢?这节课我们一起研究的特征.

  3、反馈练习:大家检验具有这种特征的数是不是能被5整除.

  4、判断:下面哪些数能被2整除?哪些能被5整除?

  60、75、106、130、521

  思考:哪些数既能被2整除又能被5整除呢?(60 130)

  说一说你是怎样判断的?

  能同时被2和5整除的数有什么特征?

  总结:个位上是0的数既能被2整除又能被5整除.

  三、全课小结

  这节课你学到了哪些知识?的特征是今后学习通分、约分、分数运算的重要基础,希望同学们掌握并能灵活运用.

  副标题#e#

  四、随堂练习

  1、下列数哪些是奇数,哪些是偶数?

  52、77、 124、501、3170、4296、6003

  2、按要求将下面的数分类.

  47、75、96、100、135、246、369、718、900

  (1)能被2整除的数:

  (2)能被5整除的数:

  (3)能同时被2和5整除的数:

  3、判断.

  (1)一个自然数不是奇数就是偶数.

  (2)能被2除尽的`数都是偶数.

  (3)能同时被2、5整除的数个位上的数字一定是0.

  4、填空.

  (1)能被2整除的最小的三位数是,最大的三位数是.

  (2)能被5整除的最小两位数是,最大的两位数是.

  5.选择题

  (1)的数是偶数.

  A.能被2除尽 B.能被2整除 C.个位上是0、2、4、6、8

  (2)任何奇数加1后.

  A.一定能被2整除 B.不能被2整除 C.无法判断

  (3)一个奇数相邻的两个数 .

  A.都是奇数 B. 都是偶数 C.一个是奇数,一个是偶数

  (4)任何一个自然数都能被5.

  A.整除 B.除尽 C.除不尽

  (5)三个偶数的和.

  A.一定是偶数 B.可能是偶数 C.可能是奇数

  五、课后作业

  用5、6、8排成一个三位数,使它是2的倍数;再排成一个三位数,使它是5的倍数.

  各有几种排法?

  六、板书设计

【五年级数学教案】相关文章:

五年级教案数学教案12-27

五年级数学教案08-20

五年级数学教案11-08

五年级数学教案【推荐】04-02

五年级上册人教版数学教案02-27

小学五年级数学教案12-15

苏教版五年级数学教案02-07

五年级下册数学教案11-10

五年级上册数学教案04-18

五年级数学教案15篇12-10