关于可能性教案模板汇总六篇
在教学工作者开展教学活动前,通常会被要求编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么教案应该怎么写才合适呢?以下是小编为大家整理的可能性教案6篇,希望能够帮助到大家。
可能性教案 篇1
在听完“可能性”、“认识更大的数”、“观察物体”这三节课,特别是最后这节“观察物体”之后,我有些话想跟大家说一说。刚才的这节课引发了我的回忆,因为两年前,我也上过这样一节课:观察物体。我的那节课设计得没有刚才这节课这么饱满,这么丰富。当时,学生也是分成四人小组坐在桌子周围,中间放着一些物体让学生画,听课的人也很多。下了课以后,听课的老师对这一节课产生了较大的反响或者说是冲突,有一位说了这样两句话:你这节课是数学课还是美术课?你的课乱糟糟的,像什么?
把当时的情形与今天的课作一个比较,我的感触很深。我们应该给学生一个什么样的数学?过去,我们常常把数学描述成为计算加证明,好像公式、计算、法则就是数学。其实,数学是非常饱满丰富的,像“观察物体”就是很好地培养学生空间观念的课例,但是,有人认为它不是数学。我们这套新教材有很多课,像观察物体、设计图形等,与美术有很密切的联系,但这些课是教学生们用数学的眼光重新去看待世界,与纯粹的美术要求,运用一定的艺术手法表现世界是不一样的。我们的数学就是要让学生有这样一个丰富的数学学习经历,使他们对世界的认识更加全面、更加完整。数学可以给学生丰富多彩的知识,不像过去,只是单一的计算加证明。《标准》对原来的数学知识删减了很多,也增加了很多内容来扩大学生的视野,给他们更多接受数学,尤其是现代数学的机会。我欣喜地看到,今天的这节“观察物体”课,学生离开了座位,在课堂上有了更大的活动空间。而传统的课堂上,学生是规规矩矩坐在座位上的,老师是绝对的权威,老师可以背着手到处巡视,但是学生是不可以动的,甚至有的学校还要求学生上课时小手背在后面。这应该引发我们的思考,在课堂中,我们究竟应该关注学生什么?哪些是非本质的东西,我们应当把它淡化?《标准》颁布之后,随着大家的讨论、交流,给我们带来了许多观念上的变革,尤其体现在教学方式、教学方法上。我们在座的每一位老师,都有一个共同的心愿:通过我们的努力,为学生一个幸福的学习数学的环境。这也是每一位数学教育工作者共同追求的目标。
今天这三节课,由于三位老师的辛勤劳动,使我们觉得有所感悟。这些课都是研究课,不是评优课。既然是研究课,有一个片断也好,有一个话题也好,或者积极的地方也好,不足的地方也好,只要我们因此有所感悟,就说明我们老师的劳动是非常有价值的,非常有创造性的。应该看到,现在学生的发展不应该再沿用我们那时的模式了。老师讲,学生听;老师讲例题,学生模仿、练习,这是过去的.一个最基本的学习方式。但是在信息时代,再沿用这样的学习方式已经不能适应社会的发展了。所以,《标准》中非常强调通过变革教师的教学方式来改变学生的学习方式和观念。也就是说,让学生在学习的过程当中,更加具有主动性、创造性、探索性,更加具有合作与交流的意识。过去我们将学生获得知识的多少作为教学质量的一个重要标准,而今天我们更强调学生在课堂中的一种社会化的发展,这也是当今社会更加关注的一个方面。
我们要处理好教师、学生与教材之间的关系。这三个要素之间相互依托的关系如何处理呢?不同的教育观念带来了不同的处理方法。我们首先应该思考一个问题:教师是什么?新大纲写得非常清楚:教师是合作者、鼓励者、指导者等等,定位很多,这些话说起来容易,在实际操作中却非常困难。这三节课都较好地体现了教师的这种角色转变。正是由于这种转变,我们的课堂开始变得生动有趣,学生在课堂上表现活跃,这说明他们喜欢上数学课了。首先喜欢上课,才能喜欢学数学。这三节课都非常贴近学生的生活,这体现了我们一再强调的现实性,这个现实不是我们成人眼中的现实,而是学生眼中的现实,这个现实既有与我们成人相同的,也有学生所处的特定年龄阶段的,如童话故事、游戏等等。在“可能性”这节课中,学生做了很多游戏;“观察物体”中,让学生用手势表示自己看到了茶壶的哪个方位。这些游戏都会吸引孩子的注意力,引起他们的兴趣,学生会觉得学习数学并不是高深莫测的,有时就像玩耍似的。有人提出这样的观点:不要老是谈课堂教学,应该把课堂教学规范为一个词,叫课堂生活。如果我们用课堂生活的观点来看待课堂教学的话,传递给学生的东西就会更贴近他们的现实心理。
这三节课,老师都注意在课堂上给学生留下更多的探索空间。在传统的教学中,万以内数的认识讲完以后,再讲多位数的读写,老师就会觉得没有什么讲头,学生跟着老师学,跟着老师读就行了。从“认识更大的数”这节课可以看出,郭老师在设计上很动了一番脑筋,让学生去读数,去分级;在感受大数时她也创设了很多让学生积极参与学习和探索的机会,如,想一想,你是怎么读的?怎么能读得更快?“可能性”、“观察物体”两节课在这方面做得也很好:你去想一想,他是站在哪个方位上看到的?再想一想,如果要求一个黄球也摸不到,应该怎么设计?在低年级时就给学生这么多主动探索的空间,为学生今后的发展打下了一个非常好的基础。
可能性教案 篇2
教学目标:
进一步体会事情发生的不确定性,体会可能性的大小。并能用“一定”、“可能”、“不可能”等词来描述事情发生的可能性,获得初步的概率思想。
能力目标:
发展学生的语言表达能力和简单的推理、分析、判断能力,并能用所学知识解决生活中的实际问题。
情感目标:
培养学生的学习兴趣和良好的合作学习态度。在合作交流中培养学生团队精神,在自主探索中树立学生自信,在游戏活动中培养学生学习兴趣。
教学重点:
通过活动体验可能性并初步感受并判断可能性的大小。
教学难点:
通过活动体验可能性并初步感受并判断可能性的大小。
教学过程:
一、游戏引入,感受“一定、可能、不可能”。
老师这里有两张红桃,看看,一会我们玩游戏。我任意抽一张会是什么?谁来猜一猜?再看看。说说为什么?(都是红桃)
1、用两张红桃,感受抽出来的一定是红桃。不可能是黑桃
2、两张牌红桃及黑桃,得出可能是红桃也可能都是黑桃。为什么?板书:一定 不可能 可能
二、自主探究,初步感受可能性有大小
1、自己实验探索可能性的大小
同学们手里都有一个转盘, 小组合作,动手做转盘游戏。游戏规则:每人转一次,组长记录,红黄的次数。一种黄颜色多,一种红颜色少。说一说,哪种颜色的可能性大?看各组结果。如果有失误就加全班。得出结论黄颜色的可能性大。让学生说说原因。
总结理由:占的面积多的可能性大,面积少的可能性小。
教师总结:看来,可能性是有大,有小的。板书:大小
三、 通过各种练习进一步体会可能性的大小
1、初步感受可能性的大小及原因。
现在老师这里有一个同学们玩的游戏转盘,帮助老师猜猜他们最有可能玩的.是哪一个。(1)判断:根据占的面积大小来判断,最有可能玩的是1号,因为面积大。
老师连线(2)看课件连线,1个。(1)从笼子里跑出兔子。看看会出来什么颜色的。一定不是白的、一定是白的、可能性大、一样。让孩子们先自己判断。然后交流。
重点是说理由。
2、探索有几种可能性,可能性大小。联系实际4个课件
(1)掷骰子、参观门票、摸球、圆珠笔、扑克牌与生活联系紧密的事情体会可能性的大小。
教师:(1)色子是六个面,每个面是表示数字的点。想想有几种可能?.指名回答。(2)关于门票联系实际,说说几种可能?(3)摸球题,自己先看清楚每个盒子里有几个什么颜色的球?然后判断,填空。说明理由:什么颜色的多?可能性就大。(4)笔筒类似,比较简单。(5)审题:花色?红桃、黑桃、梅花都有可能,所以三种。红桃张数多,所以可能性大,梅花张数少,所以可能性小。
四、深化学习,联系生活,并且试着改变大小。
老师这里有一个特别有意思的动画,想看看吗?那就要认真看,还要认真思考,回答问题,能做到吗?
(1)动画:扑到那种可能性大?因为蓝蝴蝶很多,所以可能性大,黄蝴蝶只有一只,所以可能性小。演示。学生看,证实自己的答案。改变大小:怎样才能抓到更多的黄蝴蝶?多放几只。可能性就更大了。教师小结:想让谁的可能性大,就把谁多放进去一些。
现在同学们看看第四道题。你试着涂一涂。怎样才能符合要求。设计好了,再做。
(2)涂色;学生自己涂色,必须有三种颜色,而且红色必须最多。3个红色,2个黄色,2个绿色。4个红色,1个黄色,2个绿色,4个红色1个绿的,2个黄的。5个红色1个绿色,1个黄色。展示学生作品。
(3)设计转盘, 培养孩子思维能力。
五、这道题比较难,看看谁最聪明。
(1) 小组交流先说说怎样画,用铅笔把字写下了来,觉得合适了再画。看题目要求。
同学们,元旦快到了,班里准备搞一次抽奖活动分别设立一、二、三等奖。请同学们开动脑筋帮助老师设计一下转盘。
要求:三等奖最多,用黄颜色表示。
二等奖其次,用蓝颜色表示
一等奖最少,用红颜色表示。
(2)集体交流,展示 两种:1红2蓝5黄 1红3蓝4黄
六、总结归纳
今天我们知道了可能性有大有小,还简单的接触到可能性的大小是可以改变的。
可能性教案 篇3
教学内容:
国标本苏教版数学二年级上册《可能性》
教材简析:
在小学阶段,苏教版教材对“可能性”知识的教学共安排了四次(见下表)。本节课是苏教版教材第一次安排有关“可能性”内容。 二年级 用“一定”“可能”和“不可能”描述事件的可能性 三年级 用“经常”、“偶尔”、“差不多”描述一些事件发生可能性的大小 四年级 游戏规则的公平性 六年级 用分数表示可能性的大小 本节课将可能性和摸球等活动相结合,在活动中让学生体验可能性,借助活动的素材用语言描述可能性。“一定”和“不可能”是用来对确定事件发生结果的预测,“可能”则是对不确定事件发生结果的预测。但无论是确定事件还是不确定事件,都存在事件发生的随机性,这是教学中的难点,难在无法用语言描述,难在无法在一节课中用事实证明,难在学习对象是二年级孩子——他们的逻辑思维能力还很弱。对随机思想渗透的时机和程度是教学设计时的重要和难点问题。
教学目标:
1. 通过摸球,经历事件发生的过程,初步感受事件发生的随机性。
2. 会用不可能、可能和一定,描述摸球事件发生的结果。
3. 能根据摸球的结果设计事件,并进行解释。
4. 能用不可能、可能和一定描述抛硬币、转盘和掷骰子事件的结果。
5. 尝试用不可能、可能和一定描述已经掌握的简单数学知识。 教学重点: 学会用不可能、可能和一定,描述数学与生活。 教学难点: 理解不确定事件,感受随机性。 教学过程:
一、故事引入,定位起点
出示故事——“乌鸦喝水”的三幅图,请学生用“一定”“可能”和“不可能”分别说一说这三幅图上的故事。
【设计意图:“乌鸦喝水”是小学语文一年级课本中的一篇文章,是学生耳熟能详的故事。借助这个故事,让孩子们用“一定”“可能”和“不可能”进行描述,可以充分了解他们对一定”“可能”和“不可能”这三个词的理解,定位孩子们对可能性知识的已有认知水平。】
二、理解“一定”“可能”和“不可能”
(一)理解“一定”
1. 小组操作活动 在小组内开展摸球的活动(活动材料见图1),每人任意摸一个球,结果会 怎样?指导学生学会用比较规范的.语言描述:“从袋子里任意摸一个球,一定是红球。”
2. 独立思考 将如图1的两个袋子里的球倒入一个布袋(见图2),请学生独立思考:任 意摸一个球,结果会怎样?
3. 对比提升
(1)比较图1和图2两个袋子里的球,请学生思考为什么“任意摸一个球,都一定是红球。”通过讨论,学生能总结出:两个袋子里都是红球,所以任意摸一个一定是红球。
(2)教师追问:如果要往这个袋子里再放入一些球,任意摸一个还是红球,可以怎么放呢? 学生通过思考,提升对“一定”的认识:只要袋子里都是红球,没有其它颜色的球,不管多少个,任意摸一个就一定是红球。
(二)理解“可能”
1. 借助实物思考讨论
(1)教师将红球和黄球混入一个袋中(见图3),提问:如果从这个袋子里任意摸一个球,结果会怎样?为什么用“可能”呢? 教师从图3的袋中拿走一个黄球(见图4),追问:现在呢? 教师再从图4的袋中拿走一个黄球(见图5),追问:现在呢?
(2)思考:为什么从这三个袋里任意摸一个球,都可能是红球?学生讨论后得出结论:袋中有3个红球,有3个黄球,任意摸一个就有可能摸到红球。
2. 摸球,想象推理。 请一生从图5的袋中任意摸一个球,摸3次。
摸球的结果可能会出现以下两种
(1)三次摸球的结果,可能会出现黄球,可能会出现红球。学生从摸球的结果中验证了刚才的预测结果。
(2)三次摸球的结果,都三次出现红球。这种情况是有可能出现的,比较袋中的红球占大多数。如果出现此种情况,立即引导学生思考:如果再摸一次,结果会怎样?
【设计意图:此处是渗透事件随机性的最好时机。通过实际的摸球并不能立即验证猜测,有时会出现摸球多次仍没有摸到红球,解决问题的关键是要通过让学生想象、推理,完成对随机性的感受。】
3. 回顾思考。
观察三袋子里球(见图3、4、5),为什么从这三个袋里任意摸一个球,都可能摸到红球? 学生得到结论:只要袋中有红球,有黄球,任意摸一个就有可能摸到红球。
4. 思考提升。
提问:如果从这个袋子再拿走一个球,任意摸一个还可能是红球,你准备拿什么球?学生通过思考,得出结论:只要袋子里有红球,不管有几个,还有黄球,就有可能摸到红球。
(三)理解“不可能”
1.教师出示一个空袋子(见图6)。
(1)根据要求“从这个袋子里任意摸一个球,不可能是红球”,往袋里装球,可以怎么装?教师提供一些红球和黄球,请学生示范装球。学生会装出如同图7的方法。
(2)追问:还有不同的装法吗?并在小组里交流。
2.思考:只要怎么装,就不可能摸出红球?学生得出结论:只要袋中没有红球,就不可能摸到红球。
(四)回顾与小结
1. 教师引导学生回顾:从这三个袋子里任意摸一个球,见(图2、3、7)第一个袋子一定摸到红球,第二个袋子可能摸到红球,第三个袋子不可能摸到红球。在数学上,就把小朋友们刚才用这三个词说的几句话,叫做摸到红球的可能性。教师板书课题:可能性。
2. 教师提问:你能看着这三个袋子,说一说摸到黄球的可能性吗? 生:从第一个袋子里任意摸一个球(图2),不可能摸到黄球。 从第二个袋子里任意摸一个球(图3),可能摸到黄球。
从第三个袋子里任意摸一个球(图7),一定能摸到黄球。
三、巩固练习设计
(一)装球活动练习
在小组内开展装球的活动,分层次巩固对不可能、可能和一定的理解,练习用这些词语描述摸球事件结果的可能性。 活动材料(见下图):三种不同颜色的球若干个,三个透明塑料袋。 任务一:每小组装3袋球,装完后要用“一定”来说一说,你准备怎么装? 生汇报后,师提问:观察这些袋子里的球,有什么发现?
生1:每袋中的球颜色一样。
生2:每袋中球的个数不同。
生3:不管有多少个,每个袋中只有一种颜色的球,任意摸一个,一定就是这个颜色。
任务二:每小组装3袋球,装完后要用“可能”在小组里说一说。 师提问:你有什么发现?
生1:袋中有绿球和紫球,任意摸一个,可能是绿球,也可能是紫球。
生2:袋子有绿球、蓝球和紫球,任意摸一个,可能是绿球,可能是蓝球,也可能是紫球。
生3:只要袋中的有不同的颜色的球,每种颜色都有摸到的可能。
任务三:如果就看着每人现在手里的这袋球,会用“不可能”来说一说吗?在小组里交流,并说说你的发现。
生:袋子里没有那种颜色的球,任意摸一个,就不可能摸到。
(二)拓展练习
摸球游戏中蕴含着“可能性”,其它的游戏中也蕴含了“可能性”。
1. 抛硬币。 师:任意抛一次硬币,结果会怎样?
2. 转盘。 师:任意转一次转盘,结果会怎样?
3. 掷骰子。
师:任意掷一次骰子呢? 追问:如果任意掷一次,一定是3,骰子上的数字可以怎么改?
【设计意图:抛硬币、转盘和掷骰子是苏教版教材第一学段概率与统计领域常用的活动素材类型,也是学生十分熟悉的游戏。只有当学生有了充分的活动经验支撑时,才能更好地将今天所学习的可能性的知识提升、升华,内化为个体的经验,为后继的学习铺垫。】
四、全课总结。
设问:回顾今天的学习,你对“可能性”有什么新的认识? 生1结合具体的摸球活动解释“一定”“可能”和“不可能”。 生2能适当抽象出“一定”“可能”和“不可能”的含义。
五、拓展练习。
用可能性的知识我们还可以用来描述已经学过的数学知识。 出示1+花<5 设问:“花”的后面藏着几呢,用今天学习的可能性知识,你能说一说吗?
生1:方框里的数一定小于4。
生2:方框里的数不可能大于4。
【设计意图:可能性是逻辑十分严密的概率领域的知识,用数学的知识进行解释,符合其“严密性”的特征,不会让学生产生歧义。选择学生已经掌握的数学知识则更加易于学生理解,能更好地运用可能性的知识进行解释。】
师作全课总结:只要小朋友们留心观察,我们的身边处处都有数学。
可能性教案 篇4
教材说明
本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。
1.事件发生的可能性以及游戏规则的公平性。
关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。
根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。
等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。
2.中位数的统计意义及计算方法。
学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的`一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。
在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。
教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。
教学建议
1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。
在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。
在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。
2.加强学生对中位数在统计学意义上的理解。
中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。
在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。
另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。
可能性教案 篇5
教学目标:
1.使学生结合具体的实例,初步感受简单的随机现象,能列举出简单随机事件中所有可能出现的结果,能正确判断简单随机事件发生的可能性的大小。
2.使学生在观察、操作和交流等具体活动中,初步感受简单随机现象在日常生活中的广泛应用,能应用有关可能性的知识解决一些简单的实际问题或解释一些简单的生活现象,形成初步的随机意识。
3.使学生在参与学习活动的过程中,获得学习成功的体验,感受与他人合作交流的乐趣,培养对数学学习的兴趣。
课时安排:
教学本单元用2课时
第1课时
重点难点:
感受简单随机现象的特点,能列举出简单随机现象中所有可能发生的结果,能对简单随机现象发生的可能性大小作出定性描述。
教学准备:
师:红、黄、绿球各2个、扑克牌、投影仪等;生:红桃A—4、黑桃4扑克牌
教学过程:
一、揭题
谈话:同学们喜欢玩游戏吗?今天这节课我们主要通过玩一些游戏,来研究游戏中隐藏着的数学知识。(揭示课题)
二、探究
1.教学例1。
谈话:先请看,这是一个不透明的空口袋,这里还有2个球,1个是红球,1个是黄球。把这2个球放入口袋里,想一想,如果从口袋里任意摸出1个球,你认为摸出的会是哪个球?相机板书:可能谈话:可能是红球,也可能是黄球,到底能摸到哪个球并不确定(板书:不确定)。情况是不是这样呢?我们可以通过摸球游戏来检验,先看老师怎样摸球,(示范)像这样每次在摸球前先用手在口袋里把2个球搅一搅,再任意摸出1个球,看一看是什么颜色,并把摸出的结果记录在这张表里,然后把球放回口袋里,搅一搅,再摸。会做这样的游戏了吗?请小组长拿出课前准备好的口袋,在口袋里放1个红球和1个黄球。小组合作,轮流摸球,摸10次,并按顺序记录每次摸出球的颜色。
学生按要求活动,教师巡视。反馈摸球结果:请各小组选派一名代表到投影仪前展示你们组摸球的结果,并说说摸出红球和黄球各多少次。展示后,把各小组的.记录单对应着排列起来。
讨论:比较各小组的摸球结果,你能发现什么?学生讨论,明确:各小组摸出红球、黄球次数不完全相同;每次摸出的球的颜色也不完全相同;但每个小组既摸出了红球,也摸出了黄球。提问:通过摸球游戏,你有什么体会?
2.教学“试一试”。
出示口袋,并在口袋里放2个红球。提问:现在口袋里有几个球?是什么颜色的?如果从这个口袋里任意摸出1个球,结果会怎样?(板书:一定)提问:如果口袋里只放了2个黄球,从中任意摸出1个球,可能摸出红球吗?为什么?(板书:不可能)追问:如果口袋里放1个黄球和一个绿球,从中任意摸出1个球,能摸出红球吗?比较:请同学们回顾一下例1和“试一试”的学习过程,想一想,同样在口袋里摸球,例1和“试一试”有什么不同?
3.小结
像这样,有些事件的发生与否是确定的,要么一定发生,要么不可能发生,这样的事件又称为确定事件;有些事件的发生与否是不确定的,可能发生,也可能不发生,这样的事件又称为不确定事件。(板书:确定性不确定性)4.教学例2。
谈话:通过摸球游戏,我们知道了有些事件的发生是确定的,有些事件的发生是不确定的。接下来,我们来玩摸牌游戏。(出示例2中的4张扑克牌)如果把这4张牌打乱后反扣在桌上,从中任意摸出1这,可能摸出哪一张?摸之前能确定吗?提问:可能出现的结果一共有多少种?把“红桃4”换成“黑桃4”,提问:现在的4张牌中,既有红桃,又有黑桃。如果从这4张牌中任意摸出1张,可能出现的结果一共有多少种?学生在小组里讨论,交流。
验证,各小组合作进行摸牌游戏。一共摸40次。
展示摸牌结果。比较发现。
可能性教案 篇6
教学内容:新课标人教版三年级上册第104—105页。
教学目标:
1、使学生初步体验有些事情的发生是确定的,有些则是不确定的,初步能用“一定”“可能”“不可能”等词语描述生活中一些事情发生的可能性。
2、能够列出简单实验中所有可能发生的结果。
3、培养学生学习数学的兴趣,形成良好的合作学习的态度。
教学重、难点:
体验事件发生的确定性和不确定性。
教具准备:
课件、盒子、棋子等。
教学过程:
一、创设情境,生成问题
师:同学们,喜欢过元旦吗?
生:喜欢。
师:元旦你想为同学们表演什么节目?
生1:唱歌.
生2:跳舞。
……
师:(课件出示教科书104页图片)请同学们仔细观察图片,你知道了什么?谁能说一说?
生1:元旦联欢会上,同学们每人表演一个节目,并且是抽签决定自己表演什么节目。
……
师:如果我们也以这种方式表演节目,你还能表演你准备的节目吗?
生1:不一定。
生2:可能。
生3:不确定。
……
师:这就是今天我们要研究的新问题,可能性。(板书:可能性一)
(设计意图:通过学生熟悉的“新年联欢会上抽签表演节目”的`场景生成问题,目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的联系。)
二、探索交流,解决问题。
(一)教学例1
1、引领思考,探索方法
师:请同学们以小组为单位坐好,拿出准备好的2袋棋子和2个盒子,将1号袋的棋子倒入1号盒子,2号袋的棋子倒入2号盒子。
请小组长将两个盒子的棋子摇匀。(1号袋棋子为红色,2号袋棋子有红、黄、绿、蓝四种颜色,棋子除颜色外完全相同。)
师出示问题:几号盒子肯定能摸出红棋子呢?
师:谁来猜一下?
生1:1号盒子。
生2:2号盒子。
......
师:我们来试验一下。
教案《人教版三年级数学上册《可能性(一)》教案》,
注意,每个同学摸之前要先摇匀棋子,摸完后放回,并且不能偷看。
生在小组内试验并交流。
师:哪个小组说一下你们验证的结果?
生1:通过实验,我们小组知道1号盒子一定能摸出红棋子,2号盒子可能摸出红棋子。
生2:我们小组知道1号盒子装的都是红棋子,所以一定能摸出红棋子。
生3:通过实验,我们小组发现2号盒子里有红棋子,所以可能摸出红棋子,也可能摸出的是黄棋子、绿棋子或蓝棋子,不一定能摸出红棋子。
(要求学生列举出所有可能发生的结果。对发言积极、完整的学生及时表扬,激励学习。)
……
(设计意图:通过猜测验证,使学生初步体验,有些事件的发生是确定的,有些事件的发生是不确定的。)
(4)师小结:通过猜测、验证,我们知道1号盒子装的都是红棋子,所以一定能摸出红棋子;2号盒子里有红棋子,所以可能摸出红棋子,也可能摸出绿棋子、黄棋子、蓝棋子。
【可能性教案】相关文章:
《可能性》教案02-13
可能性教案06-14
认识可能性教案07-28
精选可能性教案3篇01-15
可能性教案15篇09-04
可能性教案(15篇)09-11
可能性教案(精选15篇)01-31
可能性教案精选15篇02-17
精选可能性教案四篇03-07
关于可能性教案三篇06-22