关于可能性教案模板合集八篇
作为一位不辞辛劳的人民教师,很有必要精心设计一份教案,教案是备课向课堂教学转化的关节点。那么问题来了,教案应该怎么写?下面是小编收集整理的可能性教案8篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
可能性教案 篇1
教学内容:
教材P107—109
教学目的:
4、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
5、通过实际操作活动,培养学生的动手实践能力。
6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。
教学重、难点:
知道事件发生的可能性是有大小的。
教学过程:
一、引入
出示小盒子,展出其中的小球色彩、数量,
如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?
二、探究新知
1、教学例5
(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。
记录次数
黄
红
活动汇报、小结
(2)袋子里的红球多还是黄球多?为什么这样猜?
小组内说一说
总数量有10个球,你估计有几个红,几个黄?
(3)开袋子验证
让学生初步感受到实验结果与理论概率之间的关系。
2、练习
P107“做一做”
3、小结
三、巩固练习
P1096
学生说说掷出后可能出现的'结果有哪些
猜测实验后结果会有什么特点
实践、记录、统计
[4]说说从统计数据中发现什么?
[5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。
P1097
学生讨论完成
教学反思:
可能性教案 篇2
教材分析
从选择的素材看,准备部分是十分简单的随机事件,事件的可能性是1/2;例2的情境复杂一些,要用其他分数表示可能性的大小。从研究的可能性看,两道例题都是等可能性,可以用相同的分数表示;“试一试”和练习出现可能性不相等的现象,要用不同的分数分别表示。从问题的难度看,先是摸到某只球、某张牌的可能性,然后是摸到某种花色的牌、某种颜色的球的可能性。
学情分析
是让学生初步认识确定性事件和不确定现象。在此基础上,继续教学可能性,用分数表示事件发生的可能性有多大。从感性描述可能性到定量刻画可能性,对可能性的体验深入了一步。
教学目标
1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。
2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。
3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。
4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。
教学重点和难点
重点:理解并掌握用分数表示可能性的大小的基本思考方法。
难点:是在认识事件发生的不确定现象中感受统计概率的数学思想。
教学过程
一、复习旧知,唤起经验。
同学们一定玩过抛硬币游戏,其实抛硬币在生活中有很多的应用(足球、排球),我们一起来看看它在足球比赛中的运用吧。
板书:可能性
这一环节的设计是从学生感兴趣的事出发,带领学生用数学的.眼光来研究生活现象,增强学生学习的欲望,提高学生学习兴趣。
二、创设情境、引导发现
1、教学例1
(1)课件出示例1场景图 ,提出问题。
足球比赛中是用抛硬币决定谁先发球的,乒乓球比赛中时是怎么决定谁先发球的?
提问:用猜左右的方法决定由谁先发球公平吗?为什么?
2、同步体验:试一试
这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。
三、迁移和提升。
教学例2
1、 课件出示例2中的实物图(逐一出示,学生说出各是什么牌)
2、提问迁移。
3、对比提升。
这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。
四、实践与应用。
1、生活中的数学问题。(一边说一边出示“转一转”课件)
2、出示练一练
这一环节的设计是借助转盘创设了转盘的游戏情境,让学生自主探索事件发生的可能性是几分之几,帮助学生进一步巩固用几分之几表示可能性大小的方法。
五、巩固练习
六、课堂小结
这两个环节的设计是通过总结、游戏和释疑,既呼应了开头,解开了学生心中的疑团,培养了学生小组合作的精神和动手操作的能力,也使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。进一步感受数学思考的严谨性。
可能性教案 篇3
教学目标:
1. 经历对生活中某些现象进行推理、判断的过程。
2. 能对生活中的某些现象按一定的方法进行逻辑推理,判断其结果。
3. 把自己推理的过程和结果与同伴进行交流。
教学重点:
经历对生活中某些现象进行推理、判断的过程。
教学难点:
能对生活中的某些现象按一定的方法进行逻辑推理,判断其结果。
教具准备:
多媒体课件
教学过程:
一、组织开展游戏活动
首先,建立四人小组,其中三人分别扮演淘气、笑笑、小明,约定他们三人分别参加了足球、航模、电脑兴趣小组中的一项。扮演淘气的同学说;我喜欢航模。扮演笑笑的同学说:我不喜欢踢足球。扮演小明的`同学说:我不是电脑兴趣小组的。让四个同学猜猜,他们可能是哪个小组的,并说说理由。
二、引导学生利用表格。
把知道的信息记录在表格中,进行推理判断。
因为三个人分别参加其中一项,而淘气已经在航模小组,所以笑笑只能在足球小组或在电脑小组,可是笑笑不喜欢足球,所以笑笑肯定在电脑小组。剩下的小明只能在足球小组。
教师可以引导学生根据表格,把推理过程说一说。
三、巩固应用
1. 自主练习第2题
这是一道实验题。实验过程中,教师指导学生作好统计。实验后,组织学生交流实验的结果。
2. 自主练习第4题
练习时,教师要把该题变成一个操作性的实践活动。先指导学生制作转盘,再提出要求,组织学生活动。
四、课堂总结
同学们,这节课我们通过实践能对生活中的一些现象进行逻辑推理,你还有什么问题吗?
可能性教案 篇4
教学目标:
1、使学生经历和体验收集、整理、分析数据的过程,学会用画正字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。
2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。
3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的`积极性,进一步发展与他人合作交流的意识与能力。
教学重点:
通过活动认识一些事件发生的等可能性。
教学难点:
理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的***会是相等的。
教学准备:
多媒体,红球3个 黄球3个
教学过程:
一、创设情境,激趣导入。
1.出示装有3个红球的袋子
(1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)
(2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)
2.揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)
二、活动体验,探索新知。
1.摸球。
(1)猜测。
(出示上述装有3个红球和3个黄球的透明口袋)
谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?
学生自由猜测
(2)验证。
谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)
①明确活动要求。
谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。
②明确统计方法。
提问:怎样能记住每次摸球的结果呢?
以前我们用过哪些方法来记录?(画、涂方块)
可能性教案 篇5
教学目标:1、通过具体的活动让学生体验事件发生的等可能性,会判断游戏规则的公平性,学会用简单的分数几分之一表示事件发生的可能性,《等可能性》教案。2、让学生亲身经历比赛公平性的探究过程,实验、分析的学习方法,培养学生的观察分析、逻辑推理能力和合作学习的意识。3、在学习探究活动中,感受探究数学活动的乐趣,体验游戏与比赛的公平原则,体验数学与生活间的密切联系,感受数学知识的使用价值,激发学习数学的乐趣。教学重点:通过实验活动让学生进一步体会等可能性。
教学难点:使学生学会有根据的思考问题,有条理的说明问题。教具学具准备: 硬币、多媒体课件等。
教学过程:
一、创设情境,引出问题:谈话:你们看过足球比赛吗?你们知道在足球比赛时我们用什么方式决定谁先开球吗?我们一起来看一下。(播放课件)你认为我们用抛硬币的方式决定谁先开球公平吗?为什么?因为抛硬币的结果是无法人为控制的,所以抛硬币的事件是一种可能性事件。这节课我们继续学习可能性。(板书:可能性)
二、探索研究,解决问题:谈话:刚才大家对老师提出的用抛硬币的方法决定哪个队先开球是否公平这个问题(板书:问题)进行了猜测,(板书:猜测)要想验证我们的猜测是否正确怎么办?(板书:实验)老师给每个同学都准备了一枚硬币,一会儿我们就利用这枚硬币进行实验。1、实验前:我们先来规定一下,币值这面我们叫它正面,国徽这面我们叫它反面。实验的时候为了实验结果的准确性,我们一定要竖着拿着硬币,抛的时候先向上。提问:我们实验几次呢?(如果实验一次,看不出正面朝上的'次数和反面朝上的次数是否相等,所以最少实验2次)。2、学生实验2次。试验后找一组汇报数据。通过实验我们的得出的数据,(板书:数据)观察数据,看一看正面朝上的次数和反面朝上的次数是否相等。根据我们刚才实验的数据,你们能说着正面朝上的可能性和反面朝上的可能性相等吗?如果数据不能证明我们的猜测是错误的?不是猜测有问题,那是哪儿有问题?3、实验10次学生实验。(把结果统计在表格中)汇报次数。观察数据正面朝上的次数和反面朝上的次数怎样?
总结:通过试验次数的增多,正面朝上的次数和反面朝上的次数越来越相近了,那是不是就近似相等。我们做了十次实验,出现了相差2次,4次,甚至6次的情况。你觉得我们实验十次成不成,那我们实验多少次才成呢?4、统计全班数据正面朝上的次数和反面朝上的次数相差几次。你们觉得370次实验,相差10次不多?我们可不可以说正面朝上的可能性和反面朝上的可能性近似相等呢?5、出示科学家数据我们全班做了370次实验,那你知道我们的科学家为了验证这个猜测是否正确,做了多少次实验?(观看数据视频)6、得出结论通过科学家的试验,得到了大量数据根据这些数据我们可以得出一个什么结论?如果用一个分数表示,正面朝上的可能性是多少?如果抛1000次、10000次,会有多好次正面朝上?
三、巩固提高。其实不光在足球比赛中,在许多国际比赛中,例如:乒乓球、篮球比赛中,我们也都用到了抛硬币决定哪个队先开球,应为这种方式是公平的。生活中,我们同学也选取了一些身边的材料来进行游戏,我们来看看他们的游戏规则公平不公平?1、游戏棋:掷正方体的木块,木块的各面分别写着1,2,3,4,5,6。掷到数字几就走几步。你认为这个游戏规则公平吗?每个面朝上的可能性是多少?如果换成长方体的木块来做这个游戏,游戏规则公平吗?2、桌子上摆着9张卡片,分别写着1-9各数。如果摸到单数小明赢,如果摸到双数小芳赢。你认为这个游戏规则公平吗?如果不公平怎么办?3、(1)转动转盘,会有几种可能的情况?(2)指针停在这四种颜色区域的可能性相等吗?(3)指针停在这四种颜色区域的可能性各是多少?
四、小结:你有什么收获?板书设计:可能性相等问题→猜测→实验→数据→结论
可能性教案 篇6
学习目标:
1.使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。
2.进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性;
3.培养简单推理的能力,增强学习数学的兴趣。
教学重点:
用分数表示可能性的大小,理解分数表示可能性的实际意义。
教学难点:
灵活运用可能性的有关知识,解释并设计游戏活动。
教具准备:
多媒体课件
学习方法:
动手操作、实验法、观察思考
教学过程:
一、复习可能性的含义以及可能性的大小
1.出示下列四个图形:(投影出示)
2.提出问题:从( )号口袋中摸出的一定是红球;从( )号口袋中摸出的一定是绿球;从( )号口袋中摸出的可能是红球,也有可能是绿球。
追问:从上面哪两个口袋中摸球的结果是确定的,哪两个口袋中摸球的结果是不确定的?(确定 不确定)
小结:是呀,生活中有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的可能性。
揭题:今天我们就来一起复习可能性。(板书:可能性)
3.提出问题:从上面图3或图4的口袋中摸球,从哪个口袋中摸出红球的.可能性更大一些呢?
提问:你能用分数表示从③号和④号口袋中摸到红球的可能性的大小吗?
从③号口袋中摸到红球的可能性是( ), 从③号口袋中摸到绿球的可能性是( ), 从④号口袋中摸到红球的可能性是( ),从④号口袋中摸到绿球的可能性是( )。
二、指导练习。
1.做第1题。(投影出示)
指出:这里有4张圆盘,任意转动指针,指针停留的区域有以下几种情况,你能将它们连起来吗?
先让学生各自连一连,再指名说说思考过程。(多媒体演示)
2.做第2题。(将分别标有数字1、2、3、4、5的5个小球放在一个盒子里。
(1)任意摸1个球,下面几种情况是“不可能发生”,还是“一定发生”或“可能发生”?
①球上的数是奇数; ②球上的数小于6;
③球上的数大于5; ④球上的数不是5;
先让学生各自判断,再指名说说思考过程。
(2)任意摸1个球,球上的数是奇数的可能性大,还是偶数的可能性大?
同桌讨论并说说为什么?
追问:你能用分数分别表示摸到奇数和偶数的可能性大小吗?
3.现有标上“1”“2”“3”“4”“5”“6”同样的6张牌。
(1)任意摸1张,摸出数字“1”的可能性为几分之几?
(2)任意摸1张,摸出数字为偶数的可能性为几分之几?
(3)任意摸1张,摸出数字为素数的可能性为几分之几?
(4)照这样操作下去,如果要使摸出偶数的可能性为7/10,你有办法吗?
三、材料分析。
在举行中国象棋决赛前夕,学校公布了参加决赛的两名棋手的有关资料。
李俊 张宁
双方交战记录 5胜6负 6胜5负
在校象棋队练习成绩 15胜3负 11胜5负
(1)你认为本次象棋决赛中,谁获胜的可能性大些?说说理由。
(2)如果学校要推荐一名棋手参加区里的比赛,你认为推荐谁比较合适?简要说明理由。
四、全课小结
五、课堂作业:设计销售方案。
超市有多种口味的果冻:有草莓味、柠檬味、苹果味。销售部接到了儿童乐园的一份订单,要求是:要在包装袋中装入若干个草莓、苹果、柠檬三种口味的果冻,要求从包装袋中摸到柠檬口味的果冻的可能性为。
可能性教案 篇7
本单元共安排了5个例题。主题图、例1、例2体验事件发生的确定性和不确定性。例3、例4、例5及相关内容能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
1.体验事件发生的确定性和不确定性。
对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。
教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的
(1)主题图的教学。
教科书第104页呈现了学生熟悉的“新年联欢会上抽签表演节目”的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在“抽签表演节目”时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,“表演某种节目”这样的事件的发生是不确定性的。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。
需要注意的是,只要学生能够结合具体的问题情境,用“可能”等词语来描述就可以了,如“我可能要表演唱歌”。不必要求学生一定要说出“我表演唱歌这件事情的发生是不确定的”。
(2)例1的教学。
教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。
教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。
①教学第一个问题“哪个盒子里肯定能摸出红棋子”。教师可以先提问“左边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,“在左边的盒子里摸出红棋子”这个事件的发生是确定的。教师再提问“在右边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,“在右边的盒子摸出红棋子”这个事件的发生是不确定的。
②②第二个问题“哪个盒子里不可能摸出绿棋子”和第三个问题“哪个盒子里可能摸出绿棋子”可一同教学。教师可以先引导学生猜测“左边的盒子里可能摸出绿棋子吗?”“右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?”,同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的盒子里没有绿棋子,所以不可能摸出绿棋子,“在左边的盒子里不能摸出绿棋子”这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,“在右边的盒子里摸出绿棋子”这个事件的发生是不确定的。
③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教
科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。
④另外,在汇报时只要学生能够结合具体的问题情境,用“在左边的盒子里一定能摸出红棋子”“在右边的盒子里可能摸出红棋子”等描述进行表达就可以了,不必要求学生一定要说出“在左边的盒子里摸出红棋子这个事件的发生是确定的”,“在右边的盒子摸出红棋子这个事件的发生是不确定的”。
⑤(3)例2的教学。
⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。
⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的'知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用“一定”“不可能”“可能”等词语来表述就可以了,如“地球一定每天都在转动”“三天后可能下雨”“太阳不可能从西边升起”等。不必要求学生一定要说出“我从出生到现在没吃过一点东西这件事的发生是确定的”“吃饭时,人用左手拿筷子这件事情的发生是不确定的”“每天都有人出生这件事情的发生是确定的”。
⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如“明天的拔河比赛我们班会赢”。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。
⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。
⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。
为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对“掷一枚硬币,出现正面”这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。
一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。
由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。
可能性教案 篇8
【教学目标】
1.通过让学生经历实际问题的情景,认识事件发生可能性大小的意义。
2.了解事件发生的可能性大小是由发生事件的条件来决定的。
3.会在简单情景下比较事件发生的可能性大小。
4.通过创设游戏情境,让学生感受到生活中处处有数学。主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。
【教学重点、难点】
教学重点:认识事件发生可能性大小的意义。
教学难点:在问题情景比较复杂的情况下,比较事件发生的可能性大小
【教学过程】
一、 创设情境引入新知
提出问题:在一个盒子里放有4个红棋,1个蓝棋,摸出一个棋子,可能是什么颜色?摸出红棋的可能性大还是摸出蓝棋的可能性大?
为了解决这个问题,可先让学生分小组进行摸球游戏:
1、每位同学轮流从盒子中摸球,记录所摸得棋子的颜色,并将球放回盒中。
2、做20次这样的活动,将最终结果填在表中。
3、全班将各小组活动进行汇总,摸到红棋的次数是多少?摸到蓝棋的次数是多少?
4、如果从盒中任意摸出一球,你认为摸到哪种颜色的棋子可能性大?
游戏的结论:
在上面的摸球活动中,每次摸到的球的颜色是不确定的。摸出红棋的可能性比摸出蓝棋的可能性大,原因是红棋的数量比蓝棋多。
一般地,不确定事件发生的可能性是有大小的。
说明:摸棋游戏教师首先要使学生明确试验的过程,“摸出一个棋子,记录下它的颜色,再放回去,重复20次”。然后还要使学生明确组内成员的分工,应有人负责摸出棋子,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法(可以用画“正”字的方法)。而且还要向学生说明在试验的过程中,应注意保证试验的随机性,如:每次摸棋子前应将盒中的棋子摇匀;摸棋子时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。
二、观察思考 理解新知
请考虑下面问题:
(1)如果你和象棋职业棋手下一盘象棋,谁赢利的可能性大?
分析:根据本人的实际棋艺水平来确定,答案不唯一。
(2)有一批成品西装,经质量检验,正品率达到98%。从这批西装中任意抽出1件,是正品的可能性大,还是次品的可能性大?
分析:要比较“任意抽出1件是正品”与“任意抽出1件是次品”两个事件发生的可能性大小,只要比较两个事件发生的.条件:“正品率达到98%”与“次品率达到2%”,显然抽到正品的可能性大。
(3)任意抛一枚均匀的硬币,出现正面朝上、反面朝上的可能性相等吗?
分析:任意抛一枚均匀的硬币,有两种可能①正面朝上②反面朝上,因为它们出现的机会均等,所以出现正面朝上、反面朝上的可能性相等。
(4)一个游戏转盘如图,红、黄、蓝、绿四个扇形的圆心角度数分别是90°,60°,90°,120°。让转盘自由转动,当转盘停止后,指针落在哪个区域的可能性最大?在哪个区域的可能性最小?有可能性相等的情况吗?为什么?
分析:因为绿色扇形区域面积最大,黄色扇形区域面积最小,红、蓝色扇形区域面积相等,所以指针落在绿域的可能性最大,黄域的可能性最小,红、蓝域的可能性相等。
从上可得出以下结论:
①事件发生的可能性大小是由发生事件的条件来决定的。
②可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
三、师生互动运用新知
例1某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?
分析:在教学中要求学生先分清事件发生的条件分别是什么?事件“遇到红灯”发生的条件是“红灯时间设置40秒”,事件“遇到绿灯”发生的条件是“绿灯时间设置60秒”,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到红灯的可能性最小。本例相对容易,可让学生通过交流自己完成。
完成P76 1,2的做一做
例2某旅游区的游览路线图如图3—4所示.小明通过入口后,每逢路口都任选一条道.问他进人A景区或B景区的可能性哪个较大?请说明理由.
分析:本题有一定难度,教学时要抓住这两个事件发生的条件,可分以下几个步骤:
(1)小明进入旅游区后一共有多少种可能的路线?可以把小明进入旅游区的A景点或进入旅游区B景点的过程分解为两个步骤:第一步进入左、中、右主干线,有3种可能,第2步进入每条主干线的两条支线,各有2种可能;
(2)将上述结果列表或画树状图;
(3)确认各种可能性是否相等,确认“进入A景点” “进入B景区”分别占了多少种,也就是确定两个事件发生的条件;
(4)比较两个事件发生的条件,判定哪个事件发生的可能性大。
完成课内练习1,2
四、梳理知识 形成结构
通过本节课的学习,谈谈你的收获?
在交流中,师生可共同梳理知识点:
(1)事件发生的可能性大小是由发生事件的条件来决定的。
(2)可能性的大小与数量的多少有关。
数量多(所占的区域面积大)?可能性大
数量少(所占的区域面积小)? 可能性小
五、应用新知 体验成功
1、小明任意买一张电影票(每排有40个座位),座位号是2的倍数与座位号是5的倍数的可能性哪个大?
答案: 2的倍数可能性哪个大。
2、请你在班上任意找一名同学,找到男同学与找到女同学的可能性哪个大?为什么?
答案:要根据该班的男、女实际人数来确定.如该班男同学22名,女同学24人,则任意找一名同学,找到女同学与的可能性比找到男同学的可能性大。
3、某公交车站共有1路、12路、31路三路车停靠,已知1路车8分钟一辆;12路车5分钟一辆、31路车10分钟一辆,则在某一时刻,小明去公交车站最先等到几路车的可能性最大。
答案:间隔时间最短,31路车间隔时间最长,所以小明去公交车站最先等到12路车的可能性最大。
4、盒子中有8个白球、4个黄球和2个红球,除颜色外其他相同。任意摸出一个球,可能出现哪些结果?哪一种可能性最大?哪一种可能性最小?
答案:任意摸出一个球,可能摸出白球、黄球或红球。任意摸出一个球,摸出白球可能性最大,摸出红球可能性小。
5、如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:小猫踩在哪种颜色的正方形地板上可能性较大?
讲故事 5张
唱 歌 3张
跳 舞 1张
答案:由于黑色正方形比白色正方形块数多,所以小猫在地板上行走,踩在黑色的正方形地板上可能性较大。
6、联欢会上小红可能抽到什么节目?
抽到什么节目的可能性最大?抽到什么节目的 可能性最小?
答案:联欢会上小红可能抽到的节目是讲故事、唱歌或跳舞。抽到讲故事节目的可能性最大。
7、连续两次抛掷一枚均匀的硬币,朝上一面有几种可能?你认为两次正面朝上与一次正面朝上、一次正面朝下发生的可能性哪个大?
答案:
朝上一面有4种可能:①正、正 ②正、反③反、正 ④反、反。
一次正面朝上,另一次正朝面下发生的可能性大。
六、布置作业巩固新知
作业题:1 — 4必做5、6选做。
【可能性教案】相关文章:
《可能性》教案02-13
可能性教案06-14
认识可能性教案07-28
可能性教案精选15篇02-17
可能性教案(精选15篇)01-31
可能性教案(15篇)09-11
可能性教案15篇09-04
精选可能性教案四篇03-07
精选可能性教案3篇01-15
可能性教案通用15篇01-31