可能性教案

时间:2023-04-16 17:38:45 教案大全 我要投稿

精选可能性教案模板汇总五篇

  作为一位兢兢业业的人民教师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。那么什么样的教案才是好的呢?以下是小编收集整理的可能性教案5篇,欢迎大家分享。

精选可能性教案模板汇总五篇

可能性教案 篇1

  教学内容:

  义务教育课程标准实验教科书二年级上册第98—99页

  教学目标:

  1、通过一系列的游戏让学生体会到有些事情是确定的,有些事情是不确定的。初步能用“一定”“可能”“不可能”等词语描述生活中一些事情发生的可能性。

  2、培养学生初步的判断和推理能力

  3、培养学生学习数学的兴趣,形成良好的合作学习的态度

  教学重难点:通过具体的操作活动,使学生体会事件发生的“可能性”。并能对一些事件的可能性做出正确判断。

  教学准备:

  1、每组2个口袋,1个装6个红球,1个装3个绿的和3个蓝的。

  2、每组一个小正方体,写上1、1、2、2、3、3

  3、4张不同图案的A

  教学过程:

  一、小组合作 游戏探知

  1、小朋友你们喜欢玩游戏吗?那这节课就让我们一起来玩游戏好吗?

  2、教师出示1个格子口袋:谁来猜一猜老师在袋子里装了什么东西呢?(学生猜)

  想知道答案吗?(请一个小朋友上来在袋子外面摸一摸)

  请你告诉小朋友老师在口袋里装了什么东西?(球)谁猜对了?

  3、如果老师从口袋里任意摸出一个球,摸出的一定是红球吗?(出示:任意摸出一个球,摸出的一定是红球吗?)(学生猜一猜)

  4、你想知道自己猜的对不对呢,让我们自己来试一试吧。

  5、宣布规则:你们的桌子上也都有这个袋子,请组长拿袋子,按顺序给每人任意摸出一个球,然后记住你摸到的是什么颜色,再把球放在篮子里。开始

  活动后统计:你们摸到的都是什么颜色的球呀?刚才谁又猜对了。

  6、为什么每一位同学摸出的都是红球呢?(因为袋子里都是红球,所以摸出来的一定是红球)出示读:袋子里都是红球,摸出的一定是红球。

  7、小结:原来袋子里都是红球,所以每次摸到的——学生说:一定是红球。

  8、拿出黑袋子,在这个袋子里任意摸出一个球,摸出的也一定是红球吗?为什么呢?有没有不同的想法?(学生猜)

  9、按刚才的方法每人再任意摸一次,看一看摸出的还一定是红球吗?(学生小组活动)

  10、提问:摸到红球的请举手?那么多人怎么会一个红球也没有摸到呢?什么原因呢?(袋子里没有红球,所以不可能摸到红球)出示读:袋子里没有红球,摸出的不可能是红球。

  11、小结:原来袋子里只有蓝球和绿球,没有红球,所以摸出的——学生说:不可能是红球。板书:不可能

  12、那你们刚才摸到的是什么颜色的球呀?(绿球和蓝球)

  13、现在请组长在黑袋子里装进2个红球、2个蓝球、2个绿球。想一想任意摸一个球会是什么颜色的球?(可能是红球,也可能是绿球,还可能是黄球)为什么呢?(因为刚才放进去的是2个红球、2个蓝球、2个绿球呀)他的想法对吗?和他想的一样的请举手。想不想通过摸一摸来验证你的想法呢。注意:这次每人任意摸一个球看清楚颜色后,还要回放在袋子里,摇一摇再按顺序给其他小朋友摸(学生活动)

  14、摸到红球的请举手?摸到蓝球的请举手?剩下的肯定是摸到绿球的吧。刚才我们摸到的有红球,也有蓝球,还有绿球。怎么会这样的呢?(因为袋子里放了红球、蓝球、绿球)所以摸出的出示读:板书:袋子里有红球、绿球、蓝球,摸出的可能是红球,也可能是蓝球,还可能是绿球。

  15、小结:通过刚才的游戏,我们知道了:(学生一起读一读)袋子里都是红球,摸出的一定是红球。袋子里没有红球,摸出的不可能是红球。袋子里有红球、绿球、蓝球,摸出的可能是红球,也可能是蓝球,还可能是绿球。

  二、联系生活 巩固新知

  1、还想做摸球的游戏吗?

  出示想想做做第一题图:从每个口袋里任意摸一个球,一定是黄球吗?(学生读要求)

  老师强调:从每个口袋里任意摸一个球,一定是黄球吗?把你的想法先在小组里说一说。(学生小组交流)

  全班交流:谁来说一说从每个口袋里任意摸一个球,一定是黄球吗?注意还要说出你的理由

  指第一个口袋:任意摸一个球,一定是黄球吗?

  (任意摸一个球不一定是黄球。可能是黄球,也可能是红球。因为袋子里有红球也有黄球。)

  第二个袋子呢任意摸一个球,一定是黄球吗?(第二个口袋里任意摸一个球不可能是黄球。因为袋子里根本就没有黄球。)

  还可以怎么说呢?(可能是蓝球也可能是红球)说的太好了

  第三个袋子呢任意摸一个球,一定是黄球吗?(第三个袋子里任意摸出一个球一定是黄球。因为袋子里只有黄球。)

  还可以怎么说呢?(不可能摸到其它颜色的球)说的真好

  2、想玩摔股子游戏吗?

  出示一个小正方体,给学生观察,老师在正方体的6个面上写上了哪几个数字?(1、2、3)我这样随便一摔,朝上的一面会是什么数字呢?(学生猜)老师摔,展示结果,是几?谁猜对了呀。还想玩这个游戏吗?下面老师请你们每人做一回小老师,(每桌发一个小正方体给第一位)玩的时候小老师要想老师刚才那样先让小朋友猜一猜是什么数字,然后再摔,看谁猜的对。按顺序每人摔一次。开始吧(学生活动)

  提问:哪些人摔到了1?2呢是谁?剩下的`肯定摔到的是3吧。

  3、刚才你们玩的很开心,老师也想玩,同意吗?现在老师想玩摸球的游戏,请你们来为老师装球,好吗?

  (1)想一想:每次口袋里该放什么球?

  (2)出示;任意摸一个,不可能是绿球。

  小组里可以先讨论一下该放什么球,然后有组长拿起该放的球举起来。

  提问:为什么不拿绿球呢?(因为是任意摸一个,不可能是绿球。所以不能拿绿球。拿其它颜色的球都可以。)你们真聪明呀

  (2)我还想摸一次可以吗?出示:任意摸一个,可能是绿球。现在看你们拿什么球了?商量好了组长举起来。(学生商量取球)怎么有那么多颜色的球呀?(因为要摸的可能是绿球,也有可能是红球,还有可能是蓝球)所以只要有绿球,然后再放其它颜色的都可以。你们又对了

  (3)再装一袋,这次老师(出示:任意摸一个,一定是绿球。)该拿什么球呢?

  怎么都是绿球呀?(因为老师任意摸一个,一定是绿球,所以不能拿其它颜色的球的)真聪明。如果我加了1个红球进去会怎么样呢?(就不一定是绿球了,可能是绿球也可能是红球了)如果现在袋子里放1个红球5个绿球,谁摸到的可能性大?(摸到绿球的可能性大)为什么呢?(绿球多,红球少)

  4、的确,在生活中有些情况一定会发生,有些情况不可能会发生;还有些情况有可能发生,也有可能不发生。譬如你爸爸妈妈问你:你们查老师是女老师还是男老师,你肯定说是女老师,不可能回答是男老师吧;还有查老师和一个小朋友比,现在查老师一定比这位小朋友高。再过10年呢,查老师还一定比他高吗?为什么呢?

  5、你也能用“一定”、“可能”和“不可能”来说说生活中的事吗?

  学生说,师注意评价。

  6、还想不想玩扑克牌游戏呢?

  出示4张不同的A展示给学生看,现在老师手里有4张不同图案的A,(绞和一下)提问:最上面一张是什么图案的呢?(可能是……4种情况)出示:谁猜对了呀,你真厉害

  现在上面的一张是什么图案的牌呢?为什么不猜(刚出来的图案)呢?(因为他已经不在里面了)。你真聪明!出示,谁又猜对了呢

  现在还剩下2张牌了,(教师每只手各拿一张)你觉得这张可能是什么呀?如果这张是?那么这张就是?那你猜猜这张是什么呢?(学生猜)出示,谁又猜对了,

  现在只有一张了,可以怎么样说?(这张一定是……)你们真聪明!出示

  三、全课总结 拓宽延伸

  1、这节课我们一起研究了有关可能性的知识(板书:可能性),

  2、回家后把学到的新知识讲给爸爸妈妈听,再调查一下,看看生活中还有哪些事情一定能发生,哪些事情不可能发生或可能会发生,一星期后我们可以利用综合活动课举行一个交流会,比比谁讲得多讲得好

  2、 回家后还可以和爸爸妈妈继续玩刚才我们玩的游戏,譬如:可以在正方体上写上1、3、3、4、5、6,摔一摔看看每次会摔到几?还可以试一试,如果每次我要摔到一样的数字,正方体上该写上什么数?

  (评析)本节课学习的可能性是概率的初步,即事件的不确定性和可能性,要让学生感受事件发生的可能性和不确定性,初步体验有些事件是一定会发生的,有些事件是不可能发生,有些事件是可能发生,也可能不发生的。

可能性教案 篇2

  教材分析:

  本课教学是在学生已经学习了简单的统计知识的基础上,进一步了解事件发生的可能性以及可能性的大小。

  教学目标:

  1.学生能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

  2.使学生能够对一些问题简单事件发生的可能性作出描述。

  3.培养学生分析问题,解决问题的能力。

  4.在引导学生探索新知的过程中,培养学生合作学习的意识以及养成良好的学习习惯。

  教学重点:

  使学生能够列出简单试验所有可能发生的结果,知道事件发可能性是有大小的。

  教学难点:

  能够对一些简单事件发生的可能性作出描述。

  教学用具:

  转盘、纸杯、白球、黄球、红球、盒子。

  教学过程:

  一、激情导入,提示课题

  同学们,你们课间喜欢做游戏吗?在游戏前怎样决定谁先玩的呢?石头、剪刀、布这三种手式哪种最厉害呢?想和老师比试比试吗?如果老师和人们一起玩,你们认为有什么结果?学生发言

  预设:可能赢、可能输、也可能平。

  师生共同班几次,充分体验。

  今天这节课我们就来研究有关可能性的问题。(板书课题)

  【设计意图:利用剪刀石头布这一常见的生活情境,激发学生兴趣,使学生们切身感受到数学与生活的密切联系,并能直接唤起学生学习新课的兴趣。】

  二、实验探索,学习新知

  活动一:摸名片

  1. 学生制作自己的名片,注意写清姓名、性别、属相、班级、爱好、电话号码。

  2. 老师介绍游戏规则。

  3. 学生以小组为单位开始摸名片游戏,游戏后各组组长做好记录并统计结果。

  4. 集体交流:汇总每小组的实验数据。

  预设1:摸出来的属相是属牛。

  预设2:摸出来的属相是属鼠。

  共有两种可能性。

  接着引导学生:通过观察这些数据,你发现了什么?

  预设1:摸出的属牛的同学多。即摸出牛的可能性大。

  预设2:摸出的属鼠的同学多。即摸出鼠的可能性大。

  预设3:一样多。即摸出牛的可能性与鼠的可能性一样大。

  5. 质疑:为什么呢?

  学生会发现:有的小组属牛的人多,有的小组属鼠的人多。有的小组属牛和属鼠的人数一样多。

  6. 提问:可能性的大小与这个数量有什么有关系?小组讨论。

  7. 学生举例:生活中哪些事情存在可能性的现象?

  活动二:抛纸杯

  1.猜想:纸杯抛向空中落地时有几种可能。学生独立思考后回答。到底谁说得对呢?我们一起来做个试验。

  2.实验:每个人重复抛5次,并把实验结果记录下来。

  3.与同伴说一说,可能出现哪几种结果并写下来。

  4.结论:纸杯抛向空中落到地面后可能出现三种情况:杯口朝上、杯口朝下、躺在地面上。

  活动三:摸球

  1.出示盒子(里面两个黄球,一个白球)

  ①任意摸一个球,摸哪种颜色球的可能性大。

  ②分组实验加以证明。

  ③小结:任意摸一个球,有2种结果,摸到黄球的可能性大,白球的.可能性小。

  2.再放入3个红球,会出现哪种结果?摸到哪种球的可能性大,哪种球的可能性小,能摸出黑球吗?

  ①实验验证。

  ②小结。

  3.出示盒子(2个白球,2个黄球)

  师:一次摸出两个球,可能出现哪些结果?那种可能性大?

  这个问题很简单,学生都能答对。

  【设计意图:通过游戏的方式吸引学生的注意力。另外让学生自己动手操作,不仅体现了课堂以学生为主的教学模式,更能使学生在动手操作,动眼观察,动脑思考的过程中深化知识,加深印象。】

  三、巩固练习

  课后习题和配套上选取。

  【设计意图:学完新知识后立刻进行练习,可以在做题过程中加深对知识的理解,更能完成从理论到实践的转化。】

  四、拓展延伸

  ①前几天老师在一个商场门口发现了这样一种情况:一个人手里拿着一个布袋,布袋里红、绿两种玻璃球各5个,只需5角球就能玩一次,谁能在布袋里摸5次,摸5个红球或5个绿球就奖励5元钱,如果你在场你会不会去玩?为什么?

  ②学生模拟摸球游戏。

  ③小结:在布袋中能够摸出5个红球或5个绿球可能性非常小,这只是生活中最简单的骗术,在生活中还有许多形形色色的陷井,我们识破这些陷井的办法就是学好科学知识,用知识武装我们的头脑。

  【设计意图:数学就是来源于生活又服务于生活,本节课以游戏开始,也以游戏结束,能使学生体会到学习数学的乐趣。】

  五、总结

  这节课你有哪些收获?

  请学生谈收获。

  板书设计:

  摸名片----统计与可能性

可能性教案 篇3

  复习内容:教科书第12册112页-115页整理与反思和练习与实践。

  教学目标:

  1、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点。恰当地选择统计图和统计表进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。

  2、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点恰当地选择统计图和统计表。进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。

  3、进一步体会有关平均数、众数、中位数在表示数据特征方面的特点和作用;明确各种统计图在描述数据方面的特点及作用,进一步掌握简单统计量的基本计算方法。

  教学过程

  一、复习有关统计的知识和方法。

  1、引导学生回忆收集和整理数据的方法。

  ①广泛地有针对性地收集各种原始数据。

  ②对数据进行加工,去粗取精,去伪存真。

  ③数据处理、分类和计算。

  ④ 按一定的顺序或方式表示出来。

  提问:收集数据有哪些方法?(小组讨论,集体交流)

  小结:常用的方法有调查、测量、实验以及直接从报刊、杂志、图书和网络中获取。

  2、提问:记录数据有哪些方法?举例说明。

  (如选举中队长统计选票时可以用画正字的方法,作图形符号的方法)

  3、出示填空题。

  ( )统计图能清楚地表示出数量的增减变化情况

  ( )统计图可以清楚地表示出各部分同总数的关系。

  ( )统计图能清楚地直接比较出数量的多少。

  小结:我们学过了条形统计图、折线统计图、扇形统计图,它们在描述数据时,各自有自己的特点,我们要根据数据特点进行选择。

  4、指导学生完成第1题

  ⑴引导观察教材提供的两张统计表,说说从中获得哪些信息。(第一张统计表,重点引导学生对各个城市的数据进行比较,突出最多量和最少量;第二张统计表,不仅要引导学生对数据进行比较,还要引导学生说说发展变化趋势。)

  ⑵思考:这两组数据分别制成什么统计图比较合适?为什么?

  ⑶鼓励学生独立完成相应的统计图,并进一步讨论这两种统计图的结构和特点。

  ⑷提出一些问题让学生看图回答。

  二、回忆不同统计图的特点。

  (一)出示教材113页的统计图指导观察统计图

  1、指名回答,这是什么统计图?

  2、组织讨论:这个复式条形统计图与普通复式条形图有什么不同?

  (①直条方向是横着的,也就是用横轴方向表示数量的多少;②表示同一组两个数量的直条不是并着排列的,而时是首尾相接。)

  3、独立完成统计表

  根据图中的信息将统计表填写完整。

  4、小组交流讨论教材中提出的4个问题

  引导学生可以根据统计图或统计表进行回答出示条形统计图

  (二)指导完成第3题

  1、出示第3题统计表,说说从表中可以了解哪些信息?

  2、引导学生完成折线统计图:描点、标数据、连线。(注意实线和虚线之分)

  3、指导观察完成的折线统计图,引导发现,乙车路程和时间所对就的点连接起来有何特点?(小组讨论)

  4、进一步分析每辆车行驶时间与路程的关系,明确乙车所行路程和时间是成正比例。

  5、在讨论中完成对两个问题的解答。

  (三)指导完成第4题

  1、讨论扇形统计图的有关特征?

  2、独立完成书上3个问题的解答,然后集体校对

  课前思考:

  考虑到《统计与可能性》这部分知识难度不大,所以将潘老师设计的两课时合并成一课时上。

  在复习统计时,要让学生认识到各类统计图的特点,有关中位数、众数的理解可以结合具体的练习题来分析。

  教材提供的第113页的第2题的条形统计图与一般的条形统计图表示有所不同,需要加以指导,要让学生都能看懂这幅统计图。

  第3题中涉及的计算较多,需要指导学生根据统计图提供的数据现分别计算出两个年级的.学生总人数,然后再计算。

  讨论第6题时要让学生看到由于男生体重的10个数据中出现了2个极端数据,所以平均数的位置明显偏离这组数据的中心,这种情况下用中位数代表男生体重的一般情况比较合适。

  课后反思:

  复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。

  练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。

  通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。

  课前思考:

  本节课不仅要学生能够会绘制统计图,更要体会不同统计图的特点,会灵活选择适当的统计图。让学生知道条形统计图:能清楚的看出数量的多少。折线统计图:不仅能清楚的看出数量的多少,而且能清楚的知道数量的增减变化情况。扇形统计图:能清楚的看出各部分数量同总数量之间的关系。众数:出现次数最多的一个数。中位数:正中间的一个数。平均数:总数份数。学生不容易判断的是用中位数、众数和平均数哪个数据更具代表性。

  课后反思:

  指导学生计算每组数据的中位数,让学生计算中位数要注意先把数据按从大到小或从小到大的顺序进行排列。在完成P114页第4题时,学生的估计能力不是很好,当然这要在充分读清楚题意的基础上,合理的进行估计。如:本课中各档节目所占的百分比是容易估计得到的,但时间不太容易掌握,因此先不估计时间。在画折线统计图时,一定要注意所描的点和点之间的线段,是直线的连在一起画,不是直线时,要一段一段画。

  课后反思:

  复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。

  练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。

  通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。

可能性教案 篇4

  教材说明

  本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。

  1.事件发生的可能性以及游戏规则的公平性。

  关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。

  根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。

  等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。

  2.中位数的统计意义及计算方法。

  学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。

  在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。

  教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。

  教学建议

  1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。

  在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的.“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。

  在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。

  2.加强学生对中位数在统计学意义上的理解。

  中位数和平均数一样,也是反映一组数据集中趋势的一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。

  在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。

  另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。

可能性教案 篇5

  教学目标:

  1.通过媒体能够列出简单的试验所有可能发生的结果。

  2.通过模拟实验,知道事件发生的可能性是有大小的。

  3.能对一些简单事件发生的可能性做出描述,并和同伴交换想法。

  教学过程:

  一.引入:

  1.投飞镖游戏:

  计算机模拟两个飞镖盘:

  先让同桌进行比赛,各投五次(计算机发镖)

  学生发现游戏不公平,说出理由。

  2.验证:计算机同时投掷20镖。(告知学生,同样的个数,同样的投掷发现)

  小结展示:两个镖盘都有可能被投到黑色和白色 区域,但是后面一个被投中的可能性更大。

  3.师:今天我们来研究一下不确定事件中可能性的大小问题。

  二.探究:

  1.实验:出示一个透明的箱子,展示出里面的内容,再遮蔽,学生通过鼠标去摸取一个棋子,用电子表格记录,再放回去,重复20次。

  2.汇总结果:从主机上展示所有同学的记录情况

  (1)摸出的棋子有两种可能性,一是摸出红旗子,二是摸出兰棋子。

  (2)而且发现总是摸出的红旗子的次数比兰棋子多。

  3.组织讨论,思考:

  为什么不会摸出其他颜色的棋子?

  为什么摸出的红旗子的次数比兰棋子多。

  3.反馈小结和展示:因为盒子里只有两种颜色的棋子,所以摸出棋子的可能性也只有两种;在每个棋子的`大小样式都一样的情况下,每个棋子被摸出的可能性都一样大,但是红旗子的数量比兰棋子要多,所以摸出红旗子的可能性和兰棋子的可能性是不一样的。红旗子数量多,摸出红旗子的可能性就大。

  演示系统再提出:再摸一次,猜猜看,摸出那种棋子的可能性大?

  4.转盘辩析:

  出示两种转盘,请学生预测指针停的可能性有几种?哪一种可能性大。

  5.情景辩析:

  小明家离车站100米左右,平时走路5分钟就可走到。今天他要出门,车子9:30到,他在9:20分准备出门?他能赶上这辆车吗?

  (1)预测可能性有几种?(赶上和没赶上两种)

  (2)哪一种的可能性大?

  三.练习:

  1.在原盘中涂上蓝色和红色两种颜色。

  要求:(1)指针停在红色的可能性大。

  (3)指针停在蓝色的可能性大。

  2.设置模拟情景:我是小小督察员。

  一个商场门口,有一个转盘抽奖活动,根据转盘来判断,商场是否有欺诈消费者的嫌疑,抽奖是否公平。

  四.小结:

  数学 - 可能性的大小

【可能性教案】相关文章:

可能性教案06-14

《可能性》教案02-13

认识可能性教案07-28

可能性教案(15篇)09-11

可能性教案15篇09-04

精选可能性教案四篇03-07

精选可能性教案3篇01-15

可能性教案(精选15篇)01-31

可能性教案精选15篇02-17

关于可能性教案三篇06-22