因式分解教案

时间:2023-04-14 18:16:51 教案大全 我要投稿

因式分解教案模板锦集九篇

  作为一位杰出的教职工,就有可能用到教案,借助教案可以让教学工作更科学化。我们该怎么去写教案呢?下面是小编精心整理的因式分解教案9篇,欢迎大家分享。

因式分解教案模板锦集九篇

因式分解教案 篇1

  第6.4因式分解的简单应用

  背景材料:

  因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。

  教材分析:

  本节课是本章的.最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的经验。

  教学目标:

  1、在整除的情况下,会应用因式分解,进行多项式相除。

  2、会应用因式分解解简单的一元二次方程。

  3、体验数学问题中的矛盾转化思想。

  4、培养观察和动手能力,自主探索与合作交流能力。

  教学重点:

  学会应用因式分解进行多项式除法和解简单一元二次方程。

  教学难点:

  应用因式分解解简单的一元二次方程。

  设计理念:

  根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

  教学过程:

  一、创设情境,复习提问

  1、将正式各式因式分解

  (1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

  (3)2 a2b-8a2b (4)4x2-9

  [四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]

  教师订正

  提出问题:怎样计算(2 a2b-8a2b)÷(4a-b)

  二、导入新课,探索新知

  (先让学生思考上面所提出的问题,教师从旁启发)

  师:如果出现竖式计算,教师可以给予肯定;可能出现(2 a2b-8a2b)÷(4a-b)= ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2 a2b-8a2b=2 ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。

  (2 a2b-8a2b)÷(4a-b)

  =-2ab(4a-b)÷(4a-b)

  =-2ab

  (让学生自己比较哪种方法好)

  利用上面的数学解题思路,同学们尝试计算

  (4x2-9)÷(3-2x)

  学生总结解题步骤:1、因式分解;2、约去公因式)

  (全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合, [运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]

  练习计算

  (1)(a2-4)÷(a+2)

  (2)(x2+2xy+y2)÷(x+y)

  (3)[(a-b)2+2(b-a)] ÷(a-b)

  三、合作学习

  1、以四人为一组讨论下列问题

  若A?B=0,下面两个结论对吗?

  (1)A和B同时都为零,即A=0且B=0

  (2)A和B至少有一个为零即A=0或B=0

  [合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]

  2、你能用上面的结论解方程

  (1)(2x+3)(2x-3)=0 (2)2x2+x=0

  解:

  ∵(2x+3)(2x-3)=0

  ∴2x+3=0或2x-3=0

  ∴方程的解为x=-3/2或x=3/2

  解:x(2x+1)=0

  则x=0或2x+1=0

  ∴原方程的解是x1=0,x2=-1/2

  [让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]

  3、练习,解下列方程

  (1)x2-2x=0 4x2=(x-1)2

  四、小结

  (1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。

  (2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。

  设计理念:

  根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。

因式分解教案 篇2

  第十五章 整式的乘除与因式分解

  根据定义,我们不难得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.

  15.1.2 整式的加减

  (3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)

  四、提高练习:

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,问C是什么样的多项式?

  2、设A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。

  3、已知有理数a、b、c在数轴上(0为数轴原点)的`对应点如图:

  试化简:│a│-│a+b│+│c-a│+│b+c│

  小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。

  作 业:课本P14习题1.3:1(2)、(3)、(6),2。

  《课堂感悟与探究》

因式分解教案 篇3

  学习目标:经历探索同底数幂的乘法运算性质的过程,能用代数式和文字正确地表述,并会熟练地进行计算。通过由特殊到一般的猜想与说理、验证,发展推理能力和有条理的表达能力.

  学习重点:同底数幂乘法运算性质的推导和应用.

  学习过程:

  一、创设情境引入新课

  复习乘方an的意义:an表示个相乘,即an=.

  乘方的结果叫a叫做,n是

  问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?

  列式为,你能利用乘方的意义进行计算吗?

  二、探究新知:

  探一探:

  1根据乘方的意义填空

  (1)23×24=(2×2×2)×(2×2×2×2)=2();

  (2)55×54=_________=5();

  (3)(-3)3×(-3)2=_________________=(-3)();

  (4)a6a7=________________=a().

  (5)5m5n

  猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?

  说一说:你能用语言叙述同底数幂的乘法法则吗?

  同理可得:amanap=(m、n、p都是正整数)

  三、范例学习:

  【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x

  1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.

  2.计算:

  (1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.

  【例2】:把下列各式化成(x+y)n或(x-y)n的.形式.

  (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)

  (3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1

  四、学以致用:

  1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=

  ⑷-4444=⑸22n22n+1=⑹y5y2y4y=

  2.判断题:判断下列计算是否正确?并说明理由

  ⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();

  ⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

  3.计算:

  (1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4

  (3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2

  (5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2

  4.解答题:

  (1)已知xm+nxm-n=x9,求m的值.

  (2)据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?

因式分解教案 篇4

  一、运用平方差公式分解因式

  教学目标1、使学生了解运用公式来分解因式的意义。

  2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。

  3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)

  重点运用平方差公式分解因式

  难点灵活运用平方差公式分解因式

  教学方法对比发现法课型新授课教具投影仪

  教师活动学生活动

  情景设置:

  同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?

  (学生或许还有其他不同的解决方法,教师要给予充分的`肯定)

  新课讲解:

  从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?

  首先我们来做下面两题:(投影)

  1.计算下列各式:

  (1)(a+2)(a-2)=;

  (2)(a+b)(a-b)=;

  (3)(3a+2b)(3a-2b)=.

  2.下面请你根据上面的算式填空:

  (1)a2-4=;

  (2)a2-b2=;

  (3)9a2-4b2=;

  请同学们对比以上两题,你发现什么呢?

  事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。(投影)

  比如:a2–16=a2–42=(a+4)(a–4)

  例题1:把下列各式分解因式;(投影)

  (1)36–25x2;(2)16a2–9b2;

  (3)9(a+b)2–4(a–b)2.

  (让学生弄清平方差公式的形式和特点并会运用)

  例题2:如图,求圆环形绿化区的面积

  练习:第87页练一练第1、2、3题

  小结:

  这节课你学到了什么知识,掌握什么方法?

  教学素材:

  A组题:

  1.填空:81x2-=(9x+y)(9x-y);=

  利用因式分解计算:=。

  2、下列多项式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

  (1)1-16a2(2)9a2x2-b2y2

  (3).49(a-b)2-16(a+b)2

  B组题:

  1分解因式81a4-b4=

  2若a+b=1,a2+b2=1,则ab=;

  3若26+28+2n是一个完全平方数,则n=.

  由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.

  学生回答1:

  992-1=99×99-1=9801-1

  =9800

  学生回答2:992-1就是(99+1)(99-1)即100×98

  学生回答:平方差公式

  学生回答:

  (1):a2-4

  (2):a2-b2

  (3):9a2-4b2

  学生轻松口答

  (a+2)(a-2)

  (a+b)(a-b)

  (3a+2b)(3a-2b)

  学生回答:

  把乘法公式

  (a+b)(a-b)=a2-b2

  反过来就得到

  a2-b2=(a+b)(a-b)

  学生上台板演:

  36–25x2=62–(5x)2

  =(6+5x)(6–5x)

  16a2–9b2=(4a)2–(3b)2

  =(4a+3b)(4a–3b)

  9(a+b)2–4(a–b)2

  =[3(a+b)]2–[2(a–b)]2

  =[3(a+b)+2(a–b)]

  [3(a+b)–2(a–b)]

  =(5a+b)(a+5b)

  解:352π–152π

  =π(352–152)

  =(35+15)(35–15)π

  =50×20π

  =1000π(m2)

  这个绿化区的面积是

  1000πm2

  学生归纳总结

因式分解教案 篇5

  一、教材分析

  1、教材的地位与作用

  “整式的乘法”是整式的加减的后续学习从幂的运算到各种整式的乘法,整章教材都突出了学生的自主探索过程,依据原有的知识基础,或运用乘法的各种运算规律,或借助直观而又形象的图形面积,得到各种运算的基本法则、两个主要的乘法公式及因式分解的基本方法学生自己对知识内容的探索、认识与体验,完全有利于学生形成合理的知识结构,提高数学思维能力.利用公式法进行因式分解时,注意把握多项式的特点,对比乘法公式乘积结果的形式,选择正确的分解方法。

  因式分解是一种常用的代数式的恒等变形,因式分解是多项式乘法公式的逆向变形,它是将一个多项式变形为多项式与多项式的乘积。

  2、教学目标

  (1)会推导乘法公式

  (2)在应用乘法公式进行计算的基础上,感受乘法公式的作用和价值。

  (3)会用提公因式法、公式法进行因式分解。

  (4)了解因式分解的一般步骤。

  (5)在因式分解中,经历观察、探索和做出推断的过程,提高分析问题和解决问题的能力。

  3、重点、难点和关键

  重点:乘法公式的意义、分式的由来和正确运用;用提公因式法和公式法进行因式分解。

  难点:正确运用乘法公式;正确分解因式。

  关键:正确理解乘法公式和因式分解的意义。

  二、本单元教学的方法和策略:

  1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟过程中建构体系,从而更好地实现知识体系的更新和知识的.正向迁移.

  2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.

  3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.

  4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.

  三、课时安排:

  2.1平方差公式 1课时

  2.2完全平方公式 2课时

  2.3用提公因式法进行因式分解 1课时

  2.4用公式法进行因式分解 2课时

因式分解教案 篇6

  教学目标:

  1、进一步巩固因式分解的概念; 2、巩固因式分解常用的三种方法

  3、选择恰当的方法进行因式分解 4、应用因式分解来解决一些实际问题

  5、体验应用知识解决问题的乐趣

  教学重点:灵活运用因式分解解决问题

  教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3

  教学过程:

  一、创设情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。

  二、知识回顾

  1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.

  判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的.关系)

  (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

  (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

  (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

  (7).2πR+2πr=2π(R+r) 因式分解

  2、.规律总结(教师讲解): 分解因式与整式乘法是互逆过程.

  分解因式要注意以下几点: (1).分解的对象必须是多项式.

  (2).分解的结果一定是几个整式的乘积的形式. (3).要分解到不能分解为止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

  公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

  4、强化训练

  试一试把下列各式因式分解:

  (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

  三、例题讲解

  例1、分解因式

  (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

  (3) (4)y2+y+例2、分解因式

  1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

  4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

  三、知识应用

  1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除吗?还能被哪些整数整除?

  四、拓展应用

  1.计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除吗?

  3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数.

  五、课堂小结:今天你对因式分解又有哪些新的认识?

因式分解教案 篇7

  教学目标

  教学知识点

  使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。

  潜力训练要求。

  透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。

  情感与价值观要求。

  透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。

  教学重点

  1、理解因式分解的好处。

  2、识别分解因式与整式乘法的关系。

  教学难点透过观察,归纳分解因式与整式乘法的关系。

  教学方法观察讨论法

  教学过程

  Ⅰ、创设问题情境,引入新课

  导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

  Ⅱ、讲授新课

  1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。

  993-99=99×98×100

  2、议一议

  你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。

  3、做一做

  (1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

  ③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

  (2)根据上面的算式填空:

  ①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();

  ④y2-6y+9=()2。⑤a3-a=()()。

  定义:把一个多项式化成几个整式的积的.形式,叫做把这个多项式分解因式。

  4。想一想

  由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?

  下面我们一齐来总结一下。

  如:m(a+b+c)=ma+mb+mc(1)

  ma+mb+mc=m(a+b+c)(2)

  5、整式乘法与分解因式的联系和区别

  ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。

  6。例题下列各式从左到右的变形,哪些是因式分解?

  (1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

  (3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

  Ⅲ、课堂练习

  P40随堂练习

  Ⅳ、课时小结

  本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。

因式分解教案 篇8

  教学目标:

  1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。

  2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

  3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。

  4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。

  教学重点:

  应用平方差公式分解因式.

  教学难点:

  灵活应用公式和提公因式法分解因式,并理解因式分解的要求.

  教学过程:

  一、复习准备 导入新课

  1、什么是因式分解?判断下列变形过程,哪个是因式分解?

  ①(x+2)(x-2)= ②

  ③

  2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。

  x2+2x

  a2b-ab

  3、根据乘法公式进行计算:

  (1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

  二、合作探究 学习新知

  (一) 猜一猜:你能将下面的.多项式分解因式吗?

  (1)= (2)= (3)=

  (二)想一想,议一议: 观察下面的公式:

  =(a+b)(a—b)(

  这个公式左边的多项式有什么特征:_____________________________________

  公式右边是__________________________________________________________

  这个公式你能用语言来描述吗? _______________________________________

  (三)练一练:

  1、下列多项式能否用平方差公式来分解因式?为什么?

  ① ② ③ ④

  2、你能把下列的数或式写成幂的形式吗?

  (1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

  (四)做一做:

  例3 分解因式:

  (1) 4x2- 9 (2) (x+p)2- (x+q)2

  (五)试一试:

  例4 下面的式子你能用什么方法来分解因式呢?请你试一试。

  (1) x4- y4 (2) a3b- ab

  (六)想一想:

  某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?

因式分解教案 篇9

  教学设计思想:

  本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

  教学目标

  知识与技能:

  会用平方差公式对多项式进行因式分解;

  会用完全平方公式对多项式进行因式分解;

  能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;

  提高全面地观察问题、分析问题和逆向思维的能力。

  过程与方法:

  经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的`不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。

  情感态度价值观:

  通过学习进一步理解数学知识间有着密切的联系。

  教学重点和难点

  重点:①运用平方差公式分解因式;②运用完全平方式分解因式。

  难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式

  关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。

【因式分解教案】相关文章:

因式分解教案09-26

精选因式分解教案三篇07-18

初中数学因式分解教案03-19

因式分解教案合集8篇02-05

关于因式分解教案合集五篇04-09

因式分解教案范文合集六篇04-06

因式分解教案锦集六篇04-05

因式分解教案集锦五篇04-04

因式分解教案汇总十篇04-08

关于因式分解教案七篇04-07