范文资料网>反思报告>教案大全>《《平均数》教案

《平均数》教案

时间:2023-03-29 16:58:06 教案大全 我要投稿

《平均数》教案

  作为一位优秀的人民教师,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。教案应该怎么写才好呢?以下是小编整理的《平均数》教案,希望对大家有所帮助。

《平均数》教案

《平均数》教案1

  一、说教材

  1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》

  2、教材分析:

  随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。新《数学课程标准》中也将“统计与概率”安排为一个重要的学习领域,强调发展学生的统计观念。本单元正是在此基础上,向学生介绍统计的初步知识的。本课则是在学生初步认识统计后进行教学的,它包含两部分,即算术平均数和加权平均数(较复杂的平均数问题)。

  3、教学重、难点:求平均数说课稿

  平均数是统计工作中常用的一种特征数,它能反映统计对象的一般水平,用途很广泛。所以进一步理解平均数的意义,掌握求平均数的计算方法是教学的重点。而本课的“平均数”又和过去学过的“平均数”的方法不同,弄清“全部数据的总和”与“全部数据的个数”之间的对应关系就是教学的难点。

  4、教学目标

  在学生计算出平均数的`基础上应充分引导学生理解“平均数”概念所蕴含的丰富、深刻的统计与概率的背景,帮助他们认识到平均数在现实生活中的实际意义与广泛应用,并能在新的情境中运用它去解决实际问题,从而获得必要的发展。基于这样的认识我们定为:

  知识目标:使学生进一步理解平均数的含义,掌握求算术平均数的方法。

  能力目标:能从现实生活中发现问题,并根据需要收集有用的信息,培养学生的策略意识和应用数学解决实际问题的能力。

  情感目标:通过小组学习活动培养学生的合作精神和创新品质,体验数学与生活的紧密联系,促进学生个性和谐发展。

  二、说教法:

  “求平均数”作为一类应用题,若教学内容脱离生活实际,会使学生感到枯燥乏味。因此要积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程,充分发挥教师的主导作用,扮演好组织者、引导者与合作者的角色。

  三、说学法:

  在学法指导上,努力营造平等、民主、和谐、安全的教学氛围,充分发挥学生的主体性,通过观察、操作、比较、分析等活动,让每个学生积极参与,根据自己的体验,用自己的思维方式主动探究,去发现、构建数学知识。通过小组合作中的互相讨论交流,让学生从中学会与他人交往,分享同伴的成功,解释自己的想法,倾听别人的意见,获得积极的情感体验。教师还要让学生进行自己我反思,自主评价,以提高解决问题和综合概括的能力。

  四、说教学过程:

  五年级下册数学平均数的再认识教学设计

  教学内容 平均数的再认识

  教学目标

  1、结合生活实际再进一步理解平均数的意义的基础上,掌握求平均数的方法。

  2、能运用平均数解决简单的实际问题,体会平均数在实际生活中的应用。

  3、在探索知识的过程中,增强学好数学的信心,提高自主学习的能力。

  教学重点

  难点 掌握求平均数的方法。

  体会平均数在实际生活中的应用。

  教具准备:多媒体

  教学课时:1课时

  教学过程

  一、情境引入。

  1、出示:根据有关规定,我国对学龄前儿童实行免票乘车,即一名成年人可以携带一名身高不足1.2米的儿童免费乘车。1.2米这个数据是如何得到的呢?

  2、学生质疑,说一说你的看法。

  二、新授。

  1、解决疑惑。

  学龄前儿童,即0-6岁的儿童,而这就意味着0-6岁的儿童身高普遍不会超过1.2米,那么我们首先就要调查一下0-6岁儿童的身高数据,但是我们无法确定一个准确数值,这就需要计算出数据的平均数来解决问题。

  出示平均数的意义:一组数据中所有数据之和除以数据的个数。它是反映数据集中趋势的一项指标,具有代表性。

  2、求平均数的方法。

  出示:“新苗杯”少儿歌手大奖赛的成绩统计表。

  评委1 评委2 评委3 评委4 评委5 平均分

  选手1 92 98 94 96 100

  选手2 97 99 100 84 95

  选手3 90 98 87 85 90

  (1)把统计表填写完整,并排出名次。

  (2)在实际比赛中,通常采取去掉一个最高分和一个最低分,然后再计算平均数的记分方法。你能说出其中的道理吗?

  (3)按照上述的记分方法重新计算3位选手的最终成绩,然后排出名次。

  3、教授解题策略。

  题中数据众多,无法直接比较,可以先求出每位选手的平均成绩,再进行比较,这样就容易排出名次。

  求平均数的方法:总数量÷总份数=平均数。

  选手1:(92+98+94+96+100)÷5=96(分)

  选手2:(97+99+100+84+95)÷5=95(分)

  选手3:(90+98+87+85+90)÷5=96(分)

  4、计算完毕请补充统计表,并排出最终名次。

  板书设计

  平均数的再认识

  平均数的意义。

  求平均数的方法:总数量÷总份数=平均数。

《平均数》教案2

  教材分析:

  平均数是简单统计中的一个重要概念,是用来表示统计对象的一般水平,描述数据集中程度的一个统计量。用它可以反映一组数据的总体水平,也可以对不同数据进行比较,在日常生活中,经常遇到平均数的概念。

  本小节安排了两个例题,例1教学平均数的意义和平均数的求法,选用了收集塑料瓶这一紧密联系学生实际的生活实例,让学生在生活中去学习知识,解决问题。同时,又给学生渗透了环保的意识。例2中给出两个数据表,让学生根据数据表求出平均数,并进行比较,重点让学生体会平均数可以反映一组数据的总体情况和区别不同数据的总体情况。练习中提供了一些让学生在实际生活中进行调查的练习题,让学生在实践中去了解统计知识,掌握求平均数的方法。

  学情分析:

  本节课所面对的是四年级的学生,他们已经具备平均分的基础知识,并且有初步的合作意识与合作能力,但是平均数对于学生来说是一个全新的概念,所以应着重让学生理解平均数的意义,并在此基础上掌握计算平均数的方法。这就要求作为老师的我需要结合学生特点采用合适的教学手段,及充分利用教具学具等资源在上课过程中给学生加以引导。

  教学目标

  1、知识与技能:使学生理解平均数的含义,初步学会简单的求平均数的方法,理解平均数在统计学上的意义。

  2、过程与方法:初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。

  3、情感态度与价值观:在愉悦轻松的.课堂里,掌握富有挑战性的知识,丰富生活经验;在活动中增强探索数学的兴趣,积累积极的数学学习体验。

  重难点:理解平均数的含义,会求平均数。

  难点:平均数的统计意义。教学准备:PPT、教具。

  教学过程:

  一、激情引入

  师:都说田各庄小学的学生不仅学习成绩好,体育运动方面也很不错。老师想问问你们,你们都喜欢哪项体育运动?(点名回答)

  师:你们的爱好还真是很广泛啊,老师认识一个小朋友,他特别喜欢游泳。他非要到这个池塘游泳,你觉得他下水游泳安全吗?小组之内讨论讨论,说说你的观点。(教师巡视,挑出持不同意见的两个代表到台上)

  师:这两名同学对这件事的看法不一样,大家听听他们的观点。(相同意见的同学可以补充意见)

  师:看大家讨论的这么激烈,等今天咱们学习了平均数的相关知识,就知道是不是安全的。

  二:学习新知

  师:刘老师所在的学校为了丰富同学们的课余活动,创办了许多社团,我就是环保社团的一员。我们环保社团利用周末的时间捡了很多废旧瓶子,这张就是四名同学捡瓶子的数量统计图,通过这张统计图,你发现了哪些数学信息?(指名回答)

  师:每个小组手中都有这个统计图,小组之内合作研究,动手操作,怎么解决这个问题。(教师巡视指导)

  师:我看同学们都有了结果,哪个小组派代表上前面来演示一下?(指名上台)

  师:就像我们刚才那样,把原来几个不相同的数,通过移多的补少的,得到一个同样多的数,这个同样多的数就是原来那几个数的平均数。也就是说,我们得到的13是哪几个数的平均数?(学生回答)我们完整的说一遍,13是14、12、11、15的平均数。

  师:在数学上,我们把这种求平均数的方法叫“移多补少”,其实,在现实生活中,这种方法是很少用到的,因为当我们遇到的数据又大又多的时候,这种方法比较麻烦。那么,你有其他方法求得平均数吗?小组之内讨论,把结果写在练习纸上。

  师:谁来说一说你是怎么解决这个问题的?(指名回答)(教师板书列式计算的方法)

  师:老师问一问,这个算式中,每一部分求的是什么?(引导学生概括出总数÷份数=平均数)

  师:在数学上,我们把“总数÷份数=平均数”这种方法叫“求和平分”。

  师:老师问问你们,求出的平均数是13,就真的代表每个人都捡了13个吗?(不是),我们观察一下,捡的最多的是多少个?最少的是多少个?和平均数比较你发现了什么?(引导学生总结出“最大的数﹥平均数﹥最小的数”)这四个人当中,真的有人捡到13个吗?(没有),也就是说平均数只是一个虚拟的数,它有可能出现在数据中,也有可能根本不会出现。

  师:明白了平均数的范围,在以后计算平均数时,我们可以对平均数进行估计,也可以检验我们算出的平均数是不是合理的。

  师:我们来看,这是5位同学向灾区捐书的情况,通过这张统计表,你得到哪些数学信息?(指名回答),我们猜测一下,平均数可能是几?(指名回答)下面动手计算出平均数?

  三、知识运用

  师:除了环保社团,我们看看花样踢毽社团,有什么活动呢?

  (播放踢毽比赛的视频)

  师:这是踢毽比赛的成绩表,如果你是裁判,你对于比赛结果有异议吗?

  生:不公平,人数不同,不应该比较总数,应该比较平均数。

  师:我们来思考一下,为什么比较平均数就公平了呢?平均数能代表单个数据吗?(不能)它代表的是这一组数据的总体水平。

  师:那同学生动手计算出男女两队的平均成绩,判出胜负。

  师:平均数帮我们解决了这场比赛的输赢问题,其实它的作用不止这些,它还能帮我们更好地了解身边的事情,下面拿出你们的调查表,说说你们都调查了什么?(指名回答)你们能动手算出调查的平均数吗?请在练习纸上计算出来。(指名学生上台展示自己的调查及计算)

  师:老师看到其他同学也做了很多有意义的调查,其实我们的生活中处处蕴藏着数学,数学就来源于我们的生活,老师希望你们以后多多留心观察。

  四、课堂小结

  师:今天学得开心吗?谁来说说你今天有什么收获?(指名回答)

  五、作业

  92页做一做第二题

  六、板书

  平均数 代表总体水平

  总数 ÷ 份数=平均数

  (14+12+11+15)÷ 4 =13(个)

  最大的数>平均数>最小的数

《平均数》教案3

  一、 复习铺垫,导入新课

  小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。

  出示动物寿命统计表:

  小猫老鼠大象乌龟

  寿命/年6251152 提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)

  谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)

  【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】

  二、 创设情境,自主探索

  1. 呈现套圈情境。

  多媒体演示“套圈比赛”的场景。

  谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。

  2. 引入平均数。

  出示男、女生套圈成绩统计图。

  ①提问:从统计图中,你知道了什么?

  结合学生的想法,相机进行引导。

  想法一:男生有4人,女生有5人。(为比较总数预设)

  想法二:男生每人套中的个数,谁来介绍女生没人套中的`个数。

  ②男生套得准一些还是女生套得准一些?你有什么方法?

  和你的同桌说说自己的想法。

  想法一:女生套得准一些,因为套中的最多的是吴燕。

  追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?

  想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。

  ③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。

  可以怎么办呢?

  想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。

  追问:这样比公平吗?(公平)我们就用这种方法试一试。

  【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】

  4. 理解平均数。

  ④操作:你知道男生平均每人套中多少个圈吗?

  请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。

  学生可能出现两种方法:一是移多补少;二是先求和再求平均数。

  ⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?

  可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少

  反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。

  ⑥还有其他的方法吗?

  引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?

  28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)

  ⑨你能看出,7比谁套中的个数多?比谁套中的个数少?

  小结:平均数比最大的数小,比最小的数大

  【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】

  ⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?

  ⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)

  30÷5=6(个)

  ⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)

  ⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?

  仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。

  提问:现在你能判断男生套得准还是女生套得准吗?

  ⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?

  相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)

  ⑵平均数比最大的数小,比最小的数大大。

  ⑶平均数都是代表了一个整体的水平。

  不同:总数不同,人数不同,平均数也不同。

《平均数》教案4

  教学目标:

  1、体会平均数可以反映一组数据的总体情况和区别不同组数据的总体情况这一统计学上的意义。

  2、使学生认识统计与生活的联系,发展学生的实践能力。

  3、巩固求平均数的计算方法。

  教学过程:

  一、复习

  1、师出示一杯水,告诉学生这一大杯水大约600克,而后把这杯水分别到入4个杯子中(每个杯子的水不同)提出:你们能求出这4个杯子的水的平均重量吗?

  2、学生动手解决,并交流解决的方法。

  二、创设问题情景,引导探究。

  1、六一节,老师带了许多糖果想送给大家吃,老师给奋飞组6人共分36块,给前进组8人共分了40块,给蓝天组5人共35块,你们认为哪一组的同学分到的糖果多?怎么解决?

  (1)组织交流解决的方法。

  (2)小结:象这种情况下,每组的人数不一样,不能直接拿总数来比较,而是要求出每组同学的平均数来比较。

  2、出示情景图,告诉同学穿兰色衣服的是开心队,穿黄色衣服的是欢乐队,引导学生观察后猜一猜:你认为哪一队的身高高?并说说理由。

  3、出示统计表,组织学生收集有关数据,根据统计表估一估,欢乐队和开心队的'平均身高分别是多少?并说说估的方法。

  4、同桌合作,一人求欢乐队的平均身高,另一个求开心队平均身高,后比较哪一队高?

  5、组织交流计算的方法与结果。

  6、组织讨论:从刚才的这件事,你有什么发现,并小结:平均数能较好地反映一组数据的总体情况。

  三、拓展与应用

  说说生活中还有哪些事要通过求平均数来解决一些问题。

  四、小结:通过本节课的学习,你有什么收获,有什么问题需要帮助的吗?

  五、作业练习十一4、5

  教学反思:

《平均数》教案5

  教学内容:

  人教社义务教育教科书第六册第三单元。

  设计思路:

  本节课要通过一道道练习题的精心设计,来体现以下特点:

  一、营造人文的课堂环境。

  课堂教学只要以人为本,在整个教学环节中,本人充分尊重学生,给学生提供表现的机会,增强成功的体验,鼓励学生根据自己对平均数问题的理解进行阐释,使教学活动真正面向全体,使不同的学生得到不同的发展。另外,充分尊重学生独特的学习感受,不以教师权威压制学生的思维,而是积极引导学生多角度观察问题、思考问题,使学生敢想、敢说、敢质疑,做到课堂教学体现了尊重学生、理解学生、发展学生、激励学生,从而提高人的教育原则。

  二、深刻的思维引领。

  本人在练习课教学中呈现的练习题,只要针对学生在学习求平均数问题过程中极易出错的典型问题为着眼点,把学生学习中的“模糊点”,常犯错误有意识引进课堂。让学生的思维火花在探究交流中碰撞,使之明确错因,并主动纠错。然后,有针对性地让学生通过合理的习题进行深度挖掘,举一反三,对学生思维进行深刻、逆向性、批判性的指导和渗透。这样的.课堂设计会因习题的多元化而倍显生动精彩,使学生感到一股浓浓的数学味,体验到思维的快感,抵制错源,享受课堂师生的平等交流的快乐,从而更加乐于学习数学。

  教学目标:

  1、进一步理解平均数的含义,掌握求平均数的方法。

  2、通过解决生活实际问题,对学生进行节约资源和环保教育。

  重点、难点:

  进一步理解平均数的含义,掌握求平均数的方法,利用有关平均数的知识解决生活实际问题。

  教学过程:

  一、复习:

  1、平均数的定义

  2、求平均数的方法

  二、课堂练习:

  (一)基本训练

  师:我们已经学会求平均数的方法,下面请同学们看一道习题。

  1、判断:

  ⑴小华所在班级平均身高131厘米,小明所在班级平均身高135厘米,所以小华比小明矮。( )

  ⑵全体同学为希望工程捐款,平均每人捐款12元,李洁同学可能捐了15元( )

  ⑶小明语文、数学、英语三科的平均成绩是93分,小明的语文成绩是93分。( )

  2、小丽家这一星期用塑料袋情况如下图:

  看图填空:

  ⑴图中每格代表( );

  ⑵用塑料袋最少的是( );

  ⑶平均每天用塑料袋( );

  ⑷你的建议是( )。

  3、以小组为单位(6人一组)统计你家上个月用水情况,制成统计图:

  姓名合计

  用水量

  以小组为单位展示汇报后对学生进行节约用水教育。

  (二)拓展训练:(课件出示)

  1、一个小组有7个同学,他们的体重分别是:39千克、36千克,38千克、37千克、35千克、40千克、34千克。求这个小组的平均体重是多少千克?

  2、商店买来5筐苹果,第一筐重38千克,第一筐重39千克,第一筐重43千克,第一筐重34千克,第一筐重36千克,求平均每筐重多少千克?

  3、哪一组的成绩好?

  4、选择题:想一想:下面哪个列式才对?

  5、小丽期末考试中三门的平均成绩是96分,其中语文是89分,英语是100分,她的数学成绩是多少?

  6、小华期末考试中四门的平均成绩是92分,其中语文是96分,科学和英语都是87分,他的数学考了多少分?

  7、小芳有36本书,小丽有22本书。小芳送几本书给小丽,他们两人的书就同样多?

  三、练习小结。

  四、作业

  1、复习课本第42、43页的内容。

  2、做课本第45页的第5题。

  3、收集资料:平均数在日常生活中有哪些应用及作用。

  附板书设计:

  求平均数的练习课

  (一)平均数的定义: 几个不相等数-----→相等的数

  (求平均数)

  1、移多补少

  2、计算方法:

  (1)先求出总数----→ 把各个部分数加起来。

  (2)再求平均数----→ 总数÷份数=平均数

  (二)平均数问题的基本数量关系:

  总数÷份数=平均数

  平均数×份数=总数

  总数÷平均数=份数

《平均数》教案6

  总课时:4课时使用人:

  备课时间:第十五周上课时间:第十六周

  第4课时:8、3利用计算器求平均数

  教学目标:

  知识与技能:根据给定信息,会利用计算器求一组数据的平均数,并会进行数据的收集、加工与整理。

  过程与方法:初步经历数据的收集、加工与整理的过程,发展学生初步的统计意识和数据处理能力。

  情感态度与价值观:通过使用计算器求平均数的探索活动,培养学生的探索精神和创新意识;通过相互间合作交流,让所有学生都有所获,共同发展。

  教学重点:用计算器求平均数

  教学难点:按键顺序

  教学准备:同种规格的计算器

  教学过程

  第一环节:情境引入(5分钟,学生遇到困难,亟待解决)

  内容:展示引例:20xx年第一季度我国各地区农村家庭平均每人现金收入情况表:(单位:元)

  北京1692.2上海3075.6天津1254.5河北584.4

  山西420.5内蒙古596.2辽宁875.4吉林705.5

  黑龙江746.8江苏1354.2浙江1891.1安徽520.6

  福建972.2江西575.1山东831.9河南426.3

  湖北582.2湖南685.7广东1065.5广西554.6

  海南699.3重庆523.2四川538.4贵州316.4

  云南411.6西藏254.4陕西441.0甘肃328.4

  青海337.8宁夏458.1新疆340.3

  请计算这组数据的平均数,在计算过程中,你体会到什么困难吗?

  显然,当一组数据比较大且比较多时,用笔计算平均数较麻烦,因此,需要一个帮手—计算器,这节课就来学习用计算器求平均数。

  第二环节:活动探究(15分钟,小组合作交流)

  内容:学生分组(拿同类型计算器的`同学分在一起)活动探究,看哪个小组做得好:

  (1)估计一下自己课桌的宽度,并将各组员的估计结果统计出来(精确0.1厘米)。

  (2)用计算器求出估计结果的平均值,你是怎么做的?与同伴交流。

  在学生分组合作探究的基础上,全班总结交流不同类型的计算器求平均数的一般步骤,教师根据反馈的信息,及时进行评价。

  (3)用尺子量一量课桌的宽度,看看大家估计的结果怎么样。

  各组派代表谈谈本组估计结果的准确度,对准确度较高的小组进行表扬,并评为优秀小组以资鼓励。

  第三环节:运用提高(15分钟,教师引导,全班交流)

  内容:1.利用计算器计算下列数据的平均数:

  12.8,12.9,13.4,13.0,14.1,13.5,12.7,12.4,13.9,13.8,14.3,13.2,13.5。

  2.观察下图1,利用计算器计算上海东方大鲨鱼篮球队队员的平均年龄。

  3.英语老师布置了10道选择题作为课堂练习,小丽将全班同学的解题情况绘成了条形统计图,见下图2。根据图表,求平均每个学生做对了几道题?

  4.利用计算器计算本节课的引例中我国各地区农村家庭平均每人现金收入的平均数、中位数和众数,并回答下列问题:

  (1)如果要如实反映我国农村的现金收入状况,你会用哪个数据?

  (2)如果要展示我国农村发展形势好,你会用哪个数据?

  (3)从这些数据中,你获得了哪些信息?有何感想?

  第四环节:课堂小结(5分钟,师生共同总结)

  内容:引导学生归纳总结本节课学习的主要内容:

  1.根据给定信息,利用计算器求一组数据的平均数。

  2.从所给统计图中正确获取信息,并能进行数据的加工与整理。

  3.探索精神和合作交流的方式,初步的统计意识和数据处理能力。

《平均数》教案7

  导学内容:人教版小学数学教材第90~91页的例1、例2及相关内容。

  导学目标:

  1.使学生理解平均数的含义,初步学会计算简单的平均数的方法。

  2.感知平均数的范围。

  3.培养应用所学知识合理、灵活解决简单的实际问题的能力。

  导学重点:理解平均数的意义,掌握求平均数的方法。

  导学难点:理解平均数在统计学上的意义。

  教学准备:教师:多媒体;学生:收集自己的身高

  导学过程:

  一、预学--谈话导入

  师:期末考试成绩出来了以后,要想比较蓝鑫小组和长敏小组哪个小组的成绩好一些,怎么比较呢?

  生(预测):比较总分,看看哪个小组的总分高。

  生(预测):这样不公平,我们小组三个人,他们小组四个人。

  生(预测):应该比较平均成绩。

  师:对,应该比较他们两个小组的平均成绩。在我们数学的统计中,平均成绩也有一个名字,它叫做平均数。

  每年的四月七日是世界卫生日,环境卫生对我们的身体起着至关重要的作用。为了保护环境,我们学校的环保小队利用周末的时间去收集了很多的废旧塑料瓶。出示图,你能提出哪些数学问题?

  平均数教案

  出示自学小贴士,学生独立完成:

  1、自己想办法找出这几位同学收集的废旧饮料瓶的平均数,你有几种方法来解决。

  2、这个平均数表示什么?它是不是实际每个人收集废旧饮料瓶的数量?

  3、平均数与这组数相比,你有什么发现?

  独立完成后组内做好分工,在组内交流,看谁说得好,看谁听得认真!

  二、互学--小组交流,展示点拨

  1、小组交流

  师:已经计算出来的同学,小组可以在小组里面交流一下你的方法,比一比看哪个小组做的又对又快!

  生(预测):可以通过画图表来解决,每个人先都画出11个,然后将剩下的8个平均分下去,每人就是13个了;

  生(预测):把他们每个瓶子用一个圆圈表示,再进行移动,使每个人的瓶子一样多为止,这样把小红的一个移给小兰,小明移两个给小亮,这样每个人就一样多了;

  生(预测):可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量;

  2、展示点拨

  汇报预测:

  生1(预测):我们组认为可以移动瓶子,将小红移1个给小兰,小明移2个给小亮,最后每个人都是一样多;

  此时可展示移动瓶子的过程;

  生2(预测):我还有一种方法,可以把所有的瓶子加起来,再平均分成4份,每份就是平均每个人收集的瓶子数量;

  生3(预测):平均数就是把收集瓶子的总数平均分给4个人,每个人得到的数量。它不是实际每个人收集废旧饮料瓶的数量;(二年级学习的平均分的知识)

  生4(预测):平均数与这组数据相比,它不等于少先队干部收集废旧瓶的实际数量,(它比最大的数字要小,比最小的数字要大,居于这两个数中间)。

  师通过超链接小明下水游泳的问题,学生通过题可知平均数非实际数量,它大于一组数最小的数,小于一组数中最大的数。

  讲解:想一想:为什么要把小红的瓶子移给小兰?(小红的多,小兰的少)这样把多的移补给少的,让每个同学的瓶子数量同样多,我们叫这种方法为“移多补少法”(板书“移多补少法”)。我们还有一种方法,(14+12+11+15)÷4=52÷4=13(个),就是先求出这四个人收集的瓶子的总数量52(板书总数量),然后在除以总份数4人(板书总份数),13表示什么意思?他们每个人收集瓶子数量的平均数(板书平均数)。那么这个式子应该怎么表示呢?(平均数=总数量÷总份数。)

  归纳整理,总结方法:我们用“移多补少”的方法和计算的方法都得到了平均数是13个。平均数的求法:(1)移多补少;(2)平均数=总数量÷总份数。平均数的'特征:它比一组数据中大于最小的数,小于最大的数,它表示统计对象的一般水平。平均数能较好地反映一组数据的总体情况。

  三、评学

  1、巩固反馈

  我们首先回到可得开始的时候这几位同学的介绍他们的身高,现在我们能计算出他们的身高了吗?(生齐做,选代表回答他的解答过程)

  下面是5位同学为灾区小朋友捐书的情况。

  姓名

  杨欣宇

  王 波

  刘真尧

  马 丽

  唐小东

  本数

  8

  6

  9

  8

  14

  平均每人捐了几本?

  (8+6+9+8+14)÷5

  =45÷5

  =9(本)

  2、拓展提升

  哪一组的成绩好?

  第一小组口算成绩表

  姓名

  孙红

  丁晓

  周玉

  李丹

  合计

  正确题数

  14

  10

  11

  9

  44

  第二小组口算成绩表

  姓名

  张华

  王明

  赵雪

  合计

  正确题数

  10

  12

  14

  36

  第一小组:(14+10+11+9)÷4 =11(道)答:第一组平均每人做对11道题。

  第二小组:(10+12+14)÷3 =12(道)答:第二组平均每人做对12道题。

  3、评价小结:

  通过今天这节课,大家有什么收获?小结:平均数是一组数据平均水平的代表,我们可以用“移多补少法”和平均分的方法算出平均数是多少。

  在我们生活中,平均数无处不在,请你读一读下面的话:

  1.春节期间丽江旅游人数平均每天为3万人。

  2.丽江旅游收入平均每天为500万元。

  3.丽江今年三月份平均每天气温是15摄氏度。

  4.我校三年级学生平均年龄是9岁。

  5.我校三(1)班平均身高是120厘米。

  6.王老师家20xx年平均每月用电85千瓦时。

  7.西部最缺水的地区,平均每人每天用水只有3千克。

  附:板书

  平均数

  移多补少法:将小红移1个给小兰,小明移2个给小亮,最后每个人都是13个。

  平均分:平均数=总数量÷总份数

  (14+12+11+15)÷4 =52÷4=13(个)

  5

《平均数》教案8

  第一课时

  素质教育目标

  (一)知识教学点

  1.使学生初步了解统计知识是应用广泛的数学内容 .

  2.了解平均数的意义,会计算一组数据的平均数 .

  3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .

  (二)能力训练点

  培养学生的观察能力、计算能力 .

  (三)德育渗透点

  1.培养学生认真、耐心、细致的学习态度和学习习惯 .

  2.渗透数学来源于实践,反地来又作用于实践的观点 .

  (四)美育渗透点

  通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

  重点·难点·疑点及解决办法

  1.教学重点:平均数的概念及其计算 .

  2.教学难点:平均数的简化计算 .

  3.教学疑点:平均数简化公式的应用,a如何选择 .

  4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

  教学步骤

  (一)明确目标

  在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

  为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

  甲 7 8 6 8 6 5 9 10 7 4

  乙 9 5 7 8 7 6 8 6 7 7

  1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

  教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

  对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的`注意,还能诱发学生探求新知识的浓厚兴趣.

  (二)整体感知

  解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

  (三)教学过程

  这节课我们首先来学习平均数.

  1.(出示幻灯片)请同学看下面问题:

  某班第一小组一次数学测验的成绩如下:

  86 91 100 72 93 89 90 85 75 95

  这个小组的平均成绩是多少?

  教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .

  2.平均数的概念及计算公式

  一般地,如果有n个数 .

  那么 ①

  叫做这n个数的平均数, 读作“x拨” .

  这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

  3.平均数计算公式①的应用

  例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

  -6,-5,-7,-6,-4,-5,-7,-8,-7

  求它们的平均气温 .

  让学生动手计算,以巩固平均数计算公式(一名学生板演)

  教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .

  例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

  210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

  计算它们的平均质量 .(用投影仪打出)

  引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

  教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

  学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

  讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .

  通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

  3.推导公式②

  一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,

  那么 ,

  因此,

  即 ②

  为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

  课堂练习:

  教材P148中~P149中1,2,3

  (四)总结、扩展

  知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

  2.求n个数据的平均数的公式① .

  3.平均数的简化计算公式② .这个公式很重要,要学会运用 .

  方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

  八、布置作业

  教材P153中1、2、3、4 .

《平均数》教案9

  设计理念

  《义务教育数学课程标准(20xx年版)》指出,解决问题要让学生初步学会从数学的角度发现问题,提出问题,并能综合运用所学的知识和技能解决问题,密切数学与生活的联系,增强学生的应用意识,形成解决问题的一些基本策略,体验解决问题策略的多样性,培养简单的数据分析能力和运算能力,发展统计观念。

  教学内容

  人教版四年级下册第90页—92页“做一做”及练习二十二中部分习题。

  学情及教材分析

  学生在三年级已经学过简单的统计表,本节课是把已学的统计知识和认识平均数结合起来,学会求平均数的基本方法移多补少,引导学生进一步体会到平均数是解决问题的有效方法之一,以帮助学生灵活运用平均数的知识解决生活中的实际问题,并通过多种练习让学生加深对平均数意义的多角度理解和先求和再平分的求平均数一般方法的掌握。从整个小学阶段的数学学习来看,平均数是一个持续的学习内容,今后还要学习稍复杂的平均数以及其他常见的统计量。因此,我觉得这节课的目的不仅仅是让学生学会求简单的平均数,更要引导学生从数据处理分析的角度把握求平均数的方法,体会平均数的意义,用平均数进行比较,描述分析一组数据的状况和特征,感受平均数的应用价值。本节课是在学习认识简单统计表和条形统计图的基础上,教学最基础的数据整理分析,平均数的知识为今后进一步学习统计数据的分析和整理打下基础,新教材明显地加重了对平均数意义理解的份量,突出了平均数的统计学意义,既平均数反映了一组数据的整体水平。

  教学目标

  1.在具体情境中,通过实践操作和思考体会平均数的意义,能用自己的语言解释其意义,体会平均数的作用,感受求平均数是解决一些实际问题的需要,能计算平均数。

  2.运用平均数的知识解释简单生活现象、解决简单实际问题,进一步积累分析和处理数据的方法,发展统计概念。

  3.在活动中,进一步增强与他人交流的意识和能力,体验运用已学的统计知识解决问题的兴趣,建立学习数学的信心。

  教学重点

  理解平均数的实际意义,掌握求平均数的方法。

  教学难点

  体会平均数的特征,用平均数解释简单的生活现象。

  一、谈话引入,激发兴趣

  你乘车买票吗?六岁以前买票吗?你对乘车是否买票这方面的常识了解吗?我们把1.2米这条线叫“儿童乘车免票线”。看,就是这条线,经过相关部门研究决定,六岁以下儿童乘车免票线为1.2米。你知道怎么去确定这个标准吗?调查谁?如果数据来了,有高的,有矮的,如何处理?让我们一起通过这节课的学习来解决这些问题。

  (设计意图:通过学生熟悉的生活实例,让学生带着问题自然进入课堂,激发学生的学习兴趣,学生体会为什么要学  上个月我校开展了保护环境,争优环保小队活动,我班成立了三个小分队:快乐队、天使队、阳光队。

  1.相同数据,初步体会平均数的代表性。

  出示快乐队数据:宁宁12个,丁丁12个,冰冰12个。

  你能提出什么数学问题?要表示快乐队每个人的收集情况,用哪个数比较合适呢?

  小结:快乐队每人都收集了12个矿泉水瓶。12能代表快乐队每个人的收集情况。

  2.不同数据,深入体会平均数的意义。

  出示天使队数据:小红12个,小兰14个,小丽11个,小明15个。

  你看到了什么信息?你能提出什么问题?现在,每个人收集的数量各不相同,该用哪个数据代表第二小队每人的收集情况呢?14能代表吗?12呢?(如果每人同样多就好了)怎样把他们的瓶子变成同样多?

  小组合作学习,用学具摆一摆。并在组内说一说你是怎么把它们变的同样多的。

  交流汇报。

  学情预设:

  生1:可以移动瓶子,将小红移1个给小兰,小明移2个给小亮,然后每个人就一样多了。(刚才这些同学都是通过把多的瓶子移出来,补给少的同学,让每个同学的瓶子数量同样多,这种方法就叫“移多补少”。板书:移多补少)

  生2:计算的方法(14+12+11+15)÷4=13.说说你是怎么想的。

  (先把四个人的瓶子数合起来,再平均分给四个人)为什么要除以4?除以3可以吗?4表示什么。括号里的表示什么?关系式:总数量÷份数。板书:先求和再平分)

  总结:其实无论是移多补少,还是先求和再平分,目的只有一个,那就是使原来不同的数变得——同样多。在数学上,我们把这个数叫做平均数。(板书课题:平均数)

  3.追问中理解平均数的虚拟性。

  继续看天使队的收集情况:13是小红收集的数量吗?是小兰收集的数量吗?是小明收集的数量吗?

  13到底是什么呢?是哪个同学收集矿泉水瓶的数量吗?

  小结:13是天使队平均每人收集的数量。它代表天使队收集矿泉水瓶的一般水平。

  (设计意图:由浅入深,快乐队每人收集12个,用12代表每人的收集数量;天使队每人的数量各不相同,该用哪个数代表呢?学生体会到:都不合适,如果和快乐队一样,每人同样多就好了。通过移多补少或求和平分,用一个虚拟的'13来代表。这样由浅入深、层层递进,让学生慢慢体会平均数良好的代表性。在追问中让学生感受平均数的虚拟性特征,以加深对平均数意义的理解。)

  (二)在具体情境中体会平均数的作用

  出示阳光队收集矿泉水瓶统计表。阳光队一共收集了多少个?哪个小队能评为“环保小队”呢?和你的同桌说一说。

  学情预设:

  生1:快乐队收集了36个,天使队收集了52个,阳光队收集了60个,第三小队收集的多。

  生2:他们人数不同,这样不公平!

  生3:人数不同,应该比较平均数。怎么求阳光队的平均数呢?

  学生列式:(13+11+14+10+12)÷5=12(个)

  12代表什么?哪个小队能评为“环保小队”?

  小结:在人数不相等的情况下,用平均数作比较更公平!

  平均数13能代表天使队的一般水平,12能代表快乐队、阳光队的一般水平。(板书:反映一组数据的一般水平)

  (设计意图:人数不等,哪个队能评为“环保小队”?引导学生展开辩论。在辩论中学生清楚:比总数不公平,而平均数能代表每队收集的一般水平,所以用平均数作比较更公平。从而加深对平均数作用的理解。)

  (三)思考交流,理解平均数的敏感性

  如果阳光小队的王林收集的瓶子变多了或变少了,平均数会怎样呢?你发现了什么?

  小结:平均数就是这么敏感!这组数据中任何一个数发生变化,都能引起平均数的变化。

  结合平均数观察表格,平均数处于什么位置呢?

  平均数正如你们所说,可以代表一组数的一般水平,而且知道平均数在值和最小值之间,相信大家对平均数有了一定的认识。

  (四)首尾呼应,引起共鸣。

  相关部门是怎么确定这个儿童乘车免票线的呢?和你们想的一样,相关部门就是参照了平均身高确定免票线的。据统计:6岁男童平均身高119.3厘米,6岁女童平均身高118.7厘米。

  看来,平均数的作用真不小,连确定免票线的高度都可以参照它。

  (五)联系生活,体会平均数的用途。

  生活中在哪儿用到过平均数呢?出示平均数资料。如果学校订做校服,用平均身高订做可以吗?平均数的用途很广泛,可是也要根据实际情况而定。

  三、应用拓展,巩固提高

  1、小明家每人每天月平均用水量是多少?

  在严重缺水地区平均每人每天用水量约为3千克,你知道3千克的水有多少吗?

  老师还给大家带来一则信息。

  请选择正确答案。(2)第(1)式和第(3)式分别求的是什么呢?

  小刚家平均每人每天用水88千克,严重缺水地区平均每人每天用水3千克,比较这两个数据,你有什么感受?

  2、小明会遇到危险吗?

  游泳池平均水深只有120厘米,小明身高130厘米,小明站在游泳池里学游泳,会不会有危险?为什么?

  四、回顾反思,结束全课

  谈谈你对这节课的收获,把你感受最深的一点说一说。

  五、板书设计

  六、教学反思

  《数学课程标准》中将“统计与概率”安排为一个重要的学习领域,强调要培养学生从统计的角度思考问题的意识,重要途径就是要在教学中着力展示统计的广泛应用。这是因为随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。大到科学研究,小到学生的日常生活,统计无处不在。

  这节课着眼于经历、体验、感受平均数的产生,理解平均数的本质意义,关注的是学习过程,让孩子学会思考,学会解题的策略,更加关注学生的情感态度和价值观。通过小组合作学习,让孩子在活动中“做数学”,给孩子提供大量的讨论合作、独立探索、实践操作的时间和空间,充分发挥学生的主体作用,让孩子们在“做中学”。从而理解平均数的意义,掌握求平均数的方法。

  有关平均数的知识,教学中我没有只停留在“简单地给出若干数据,要求学生计算出它们的平均数”上,而是把理解平均数的意义作为教学的重点,紧密联系实际,课的导入用“儿童身高免票线”如何确定的问题串,使学生体会到为什么要学  怎样才能使四年级的小学生感受到学  最后,为了加深学生对平均数意义的理解及特征的把握,我联系学生生活实际,和开头相互呼应,学生梳理思路,明白了相关部门从调查收集数据——整理数据——求平均身高,最后呈现6岁以下儿童平均身高,因此确定“儿童乘车免票线”为120厘米。

  通过以上教学,使学生切实感受到数学的魅力与应用价值,为树立应用意识奠定了良好的基础,使学生初步形成了解决日常生活工作中的数学问题的能力,并通过这一应用过程学会用数学的眼光观察世界,将数学课中的统计与生活有机的结合,体会到数学中的生活,生活中的数学,充分调动了学生学习的积极主动性。

  总之,新的课程改革要求我们老师要以学生的发展为本,要给孩子提供自主探索的时间和空间。在平均数的教学中,学生对平均数的认识,经历了从探索中发现,从发现中体验,从体验中发展的全过程。教师起到了一个组织者的作用,但交流者的作用体现不足,如能更好的与学生达到互动,能给孩子以富有个性的评价,相信效果会更好。在这节课中,学生一次又一次的认识了平均数,他们感到平均数就在身边,并获得了一次次成功的体验,学得兴趣盎然。

《平均数》教案10

  教学目标:

  1、在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数。

  2、运用平均数的知识解释简单生活现象、解决简单实际问题的过程专用,进一步积累分析和处理数据的方法,发展统计观念。

  3、在活动中,进一步增强与他人交流的意识与能力,提高合作学习的效率。

  4、在解决实际问题中,能体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。

  教学重点:

  理解平均数的意义,学会求简单数据的平均数。

  教学难点:

  理解平均数的意义。

  教学准备:

  课件、练习纸。

  教学过程:

  一、问题引入

  1、出示例3的主题图

  谈话:四年级的男、女生进行套圈比赛,每人套15个圈。你想了解他们的比赛情况吗?

  第一轮:

  课件出示空白的男、女生套圈成绩统计图,谈话:我们来看这两个小组同学的套圈情况,第一个出场的男生是小刚,女生是小燕(分别出示表示两位同学套中个数的直条),他们各套中多少个?(6、4)谁套的准些?你是怎样看出来的?

  谈话:这数字6可以代表男生组的水平,那么女生组的水平可以用?来代替。

  第二轮:

  谈话:第二个出场的男生分别是小明(课件出示直条6),女生是小娟课件出示直条4),(结合手势,表示整体)比较每组中同学的比赛成绩,你认为是男生套的准还是女生套的准些?你是怎样比较出来的?(预设:生1,比总数,生2,比每个人套中的个数)

  提问:这时,你能用哪个数来表示男女生的水平吗?(预设:生1,6、4,生2,12、8)让学生说说分别表示什么意思。

  第三轮:

  谈话:第三、四个出场的男生是小宇和小杰(7、9),第三、四、五个出场的女生分别是小敏、小芸和小芳(7、5、10)(完整出示条形图),现在,你能比较是男生套的准些还是女生啊?你想怎样来比较呢?学生讨论

  提问:我们先来想想,你能用哪个数来表示男女生的一般水平?

  生交流,总结出(28、30)来表示不合适,也就是比较总数不合适。

  那你认为要找哪个数,才能代表男生组的一般水平呢?(这个数要基本反映一组数的一般水平,在数学上,我们把这种数叫做平均数)(板书课题)

  二、探究求平均数的方法

  1、探究男生求平均数的方法

  谈话:我们先来仔细找一找男生组的这个数,男生的得分各不相同。我们怎么来找这个数呢?套的最多的和最少的能代表整体水平吗?那你觉得这个数应该在什么范围呢?

  给大家3分钟,在练习纸上想办法找到男生组的那个数。(练习纸)

  交流:

  方法一:移多补少(课件演示)

  方法二:先合后分(说说各数表示的意思)

  预设:

  如果只答出方法一:除了像这样局部调整,得出平均数,还有其它调整方法了吗?给大家一个小提示:可以把所有男生的个数先看成一个整体,然后再把这些个数平均分配给他们。

  如果只答出方法二:除了像这样,把他们的得分先加起来,再重新平均分配给他们。还有其它调整方法了吗?给大家一个小提示:能否只移动其中一小部分个数,使得男生的个数一样多。

  交流。

  小结:同学们,刚才我们用两种不同的方法找到了能表示男生组的这个数7,我们来回顾一下。

  一种方法,通过移动来局部调整,把多的一部分,移给少的,从而得到男生的平均个数,你想帮它取个名字吗?(板书“移多补少”);

  另一种方法,通过整体重新分配,先把所有的个数先加起来,再平均分给他们,也得到了男生的平均个数,你也能取个名字吗?(板书“求和平分”)。

  2、揭示课题

  谈话:两种方法都得到了一个新的、能够反映男生组整体情况的数据,就是7个。没错,这个数就是男生组(6、6、7、9)的平均数。

  用课件显示图中平均数画线,直观感知平均数的范围。

  让学生也在练习纸上画线。请你用一条线把这个数7表示到图上来

  提问:得到的这个数7表示什么含义?你觉得这个数是一个怎样的数?能不能说男生组中每人都套中了7个?这个数7与小宇套中的7表示的意思一样吗?平均数比最厉害的个数?比最差的呢?

  3、迁移类推,感悟意义

  谈话:现在,请你们也来找一找女生组的平均数吧。(学生在练习纸上操作并交流)

  说说“6”的意义

  交流,提问:现在可以比较出哪组套的准了吗?(完整板书)

  提问:仔细观察这两组的`平均数,你想说些什么?原来的数据和平均数的大小,有什么发现?高于、低于平均数的有几个?(其中的个数有的比平均数高,有的比平均数低,初步感受平均数的范围)

  感受平均数的优势:老师啊觉得平均数真厉害,因为它在人数不等的情况下也能公平的比较出男生和女生哪组的水平高,老师说的对吗?

  三、巩固练习,应用平均数

  1、书本练一练。(课件逐个出示笔筒)

  第1个笔筒有( )枝,第2个有( )枝,第3个笔筒有( )枝。

  怎样移动笔筒中的铅笔,找到平均每个笔筒有多少枝铅笔。(课件动态显示移多补少的过程,然后逐步变化为条形图)我们也可以用条形统计图来表示,这样更直观。(显示移的过程)

  交流:当然,你还可以怎样来解决这个问题?(求和平分)

  如果用求和平分,怎么计算?综合算式?

  2、第一题

  出示丝带图,提问:这时你能用移多补少的方法一下子找出它们的平均数吗?

  估一估,平均长度到哪儿?

  想一想,应该在多少厘米到多少厘米之间?(平均数在最小数和最大数之间)

  算一算,让学生独立列式解答,再交流

  提问:如果每条丝带都增加1厘米,平均长度会有什么变化?(相当于每条丝带的长度增加了1厘米,也就是平均长度在原来的基础上增加1厘米)

  如果把其中一条丝带的长增加3厘米,3条丝带的平均长度是多少厘米?如果减少3厘米呢?(刚刚每条丝带增加1厘米,总体增加了3厘米,那么现在呢?)

  指出:一组数中有一个数据变化了,这组数据的平均数也会发生变化,平均数很敏感。

  3、第4题(假如我当经理)

  先估计一下苹果和橘子平均每天卖出的箱数,再同桌分工计算,然后画出表示平均数的那条线。

  提问:如果你是水果店的经理,看到这样的数据和平均数的情况,你会有什么想法?

  4、第3题(篮球队员的身高)

  提问:李强是学习篮球队队员,他身高155厘米,可能吗?学校篮球队可能有身高超过160厘米的队员吗?

  (出示篮球队5名队员的身高统计表)

  小结:同学们,平均数是反映一组数据整体情况的数,如果只知道平均数,要去推测其中一个数据是多少,这个数据会有很多种可能性,这就体现了依据平均去推测其中一个数据的(不确定性)。

  但是,知道了一组数据的每一个数据,可以用“移多补少”或者“先合后分”明确地得到平均数是多少,体现了求平均数的(确定性)

  思考:如果姚明加入学校篮球队,平均身高会如何变化呢?(图片显示)

  出示现在的平均身高,提问:这时得到的平均身高,具有什么样的特点?为什么增加了姚明,小队员的身高都在平均数一下了?(太高的人,对平均数的影响很大,所以姚明的身高在这组数据中属于极端数据,具有极端数据的话,平均数就变得不一样了)

  介绍:在生活中,也会遇到像这种不一样的平均数,你想知道吗?课件出示“你知道吗?”(生读)

  谈话:通过xx的介绍,我们对平均数又有了一些新的认识,那么我们就带这这个新认识去看看吴萌的诗朗诵比赛吧。

  完成练习八第9题。(口答综合算式)

  四、总结经验,感悟平均数。

  通过这节课,你有什么收获?你对平均数有那些认识?

  总结:通过今天的学习,我们知道平均数在生活中有很大的作用,愿大家能带上今天的学习内容,更好地认识生活中与平均数有关的各种问题。

《平均数》教案11

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》三年级下册P42、43页《平均数》

  二、教学准备:

  直尺、三角板,学生按矮到高的顺序坐好。

  三、教学目标与策略选择:

  以往我们把《平均数》这节课当成是一节应用题的课,侧重读题、分析、计算;从新课程标准出台以后,列入统计与概率的范畴,重视平均数意义的教学,更注重学生估计意识、猜想意识和推理能力的发展。学生已有了相当丰富的统计知识,对于“平均数”这个概念已有所接触,如测试中的“平均分”等。但大部分学生还不能准确理解“平均数”的意义。为此,确定以下教学目标:

  1、通过观察、比较,理解平均数不是一个具体的数(实际的数);

  2、在师生、生生的交流互动中,让学生知道平均数是有一定范围的,培养学生的估计、猜想意识,并产生探究数学知识的积极情感;

  3、学生能掌握求平均数的方法:(1)移多补少;(2)先求总数再平均分等;

  4、体现总体与样本的关系。

  鉴于以上的目标定位,本节课重在学生的体验、参与。在学生互动中,使学生感受够到生活中处处有数学,并会从实际生活中提出数学问题,运用不同的方法加以解决,同时在学生的合作中初步感受统计知识。为此,主要采取了以下教学策略:

  1、以“情”、“趣”开路。

  2、创设生动的生活情境,提供丰富的生活化材料,唤起学生已有的知识经验。

  四、教学流程设计及意图:

  教学流程

  设计意图

  一、活动导入,引出平均数的意义。

  1、创设情境:比身高。

  (1)第一次比较。师:今天进行男女同学比身高。先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

  (2)第二次比较。师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在是男同学高还是女同学高?

  (3)第三次比较。师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

  师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?怎么比呢?生:......

  (4)第四次比较。师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

  师:如果不请男同学上来了,你觉得还有其它比较的办法吗?

  2、同桌学生讨论。生:求出几个同学的平均数。

  3、现场测量台上同学的身高。

  4、学生尝试练一练,指名板书。

  5、比较结果。是男同学高,还是女同学高。

  6、小结:看来平均数(板书课题)还真能帮肋我们解决一些问题。

  二、延伸拓展,形成统计观念。

  1、感悟平均身高。师指着平均身高:这个身高是你们当中times;times;同学的身高吗?那它是什么?

  2、全班的平均身高。师:现在要知道全班同学的平均身高,怎么办?

  生:先把所有的身高加在一起,再除以有40人。

  师:是个办法,能解决这个问题。如果想知道全校四年级同学的平均身高,有什么办法?

  生:......

  3、选取样本。师:但是现在在课堂里没办法解决这个问题。有没有更好的办法呢?

  (1)学生参考选取第一排或第五排。

  (2)选取第一组的学生比较有代表性。

  4、估计。

  师:你们先估计一下,第一组5个同学的平均身高是多少?

  生:......(不会比最大的大,比最小的小)

  5、学生计算。

  6、进一步感悟平均数。

  师:是times;times;同学的身高吗?我们可以推测全班的同学身高,全校四年级同学的身高,甚至是更大范围的四年级同学的平均身高。

  7、小结方法。

  师:我们来观察一下,刚才我们是怎样求平均数?

  生:先求总数(板书),除以人数,等于平均身高。

  三、应用提高,深化统计观念。

  1、举例。师:其实生活除了求平均身高外,还有很多地方用到平均数,能举个例子吗?......

  2、你觉得有危险吗?

  小朋友说:我身高140厘米,在这里游泳不会有危险。

  2、猜猜看:

  3根小棒,平均3根小棒,平均

  每根长10厘米每根长15厘米

  (1)猜测。师:如果从第一个袋子里拿一根(标上序号),第2个袋子里也拿一根,哪个袋子里拿出的长一些?

  (2)举例。师:能举个例子吗?同桌商量一下。

  (3)汇报。

  3、变式练习。

  (1)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天、第三天共印87万张,他们平均每天印多少万张?

  ①(39+87)divide;2=63(万张)

  ②(39+87)divide;3=42(万张)

  (2)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天上午印22万张,下午印23万张。他们平均每天印多少万张?

  ①(39+22+23)divide;2=42(万张)

  ②(39+22+23)divide;3=28(万张)

  质疑:为什么两个数要除以3?三个数相加要除以2呢?

  小结:像这样的天数、人数,我们可以称为份数。(平均每天的张数、平均身高可以称为平均数)

  4、读信息,了解最新动态,解决实际问题。

  (1)你在这幅图上了解到哪些信息?根据这些信息,你能提出什么数学问题?

  (2)计算前,你先估计一下,第二十五届到第二十八届平均每届获金牌的块数?并介绍你是怎么估计的?

  (3)计算--课件验证。

  (4)根据这幅图的发展趋势,你能预测一下20xx年能获多少块?

  四、全课总结。

  以“比身高”作为本节课学生的学习主题,通过现场简单的两人比较,四人,六人,七人的比较,使学生在观察中发现比较的量在不断的变化,结果也不断在变化,在矛盾迭起的活动中,不断寻找平衡,寻求合理的比较方法。

  通过教师言语的引导,制造在大范围的情况下,求平均身高这么一个矛盾,怎么办?促使学生经历寻求“样本”的过程,致使合理的解决这个问题。

  在本节课的练习设计中,突出对平均数意义的理解,体现开放性,变通性,实效性。促进学生的思维不断深入、发展。

  五、教学片断实录:

  片断一:

  开场白:今天我们进行一场比赛--比身高。板书:男、女

  师:同学们的想法都很好!但是今天先进行男女同学比身高。我先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

  师:你们说谁比较高?

  生:男同学。

  师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在谁比较高?

  生:还是男同学。(男同学似乎很得意)

  师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

  此时学生大笑。

  师:你们笑什么呢?

  生:这个男同学这么矮?

  师:你们听过一句话吗,浓缩就是--精华。更何况,你们现在正是长身体的时候,过几年后,他可能会长得比你们高呢。

  师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?

  生:是男同学。生:是女同学。生:一样高。

  师:怎么比呢?

  生:把男同学高的部分“切下来”补到矮的身上,女同学也用这种办法,再比较。(还没等这位同学说完,其它同学就大笑,一致认为这是不可能的。)

  生:可以把男同学或女同学的身高加起来,再比较。

  另一学生似乎心领神会:找一个男生和一个女生比较,求出相差数,再找第二、第三个男生和女生比,最后比一比相差数的办法。

  ......

  师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

  生:女同学或不公平。

  生:还得再叫一位男生上来。

  师:如果不请男同学上来了,你觉得还有其它比较办法了吗?

  同桌讨论。

  生:求出男、女生的`平均身高。......

  六、教学反思:

  1、情境的设置不应仅仅起到“敲门砖”的作用,也即仅仅有益于调动学生的学习积极性,还应在课程的进一步开展中自始至终发挥一定的导向作用(郑毓信语)。开课这一情境的创设,并不仅仅是为了引出平均数这一概念。从第一次、第二次简单的进行比较,学生一看就明白,当出现三人比较时,学生开始犯难了,有的学生觉得男生高,有的觉得女生高,有的认为一样高等,出现意见不一,怎么办?有的学生想到了用“切”的办法(当然这种方法不近合理,但也是学生对移多补少的形象化解释)、求和比较的方法(这一方法为求平均数打下铺垫)、还有的学生受到“移多补少”方法的影响,想出了求相差数的方法等,把学生的思维不断引向深入。通过第四次身高的比较,出现不合理的因素,逐步把学生的视线引向平均数,从而学生自发解决了求平均身高,也初步掌握了求平均数的方法。

  2、新课程倡导用具体的、有趣味的、富有挑战性的素材引导学生投入数学活动。在“比身高”的情境中,让学生在一次次的观察、比较中迎接挑战,这样一个活动,在平时课堂中可以信手拈来的一个情境,在学生的争论中完成数学化的过程,并不需要花费过多的时间。在这种以情、趣开路的情境中,学生学得主动。

《平均数》教案12

  一、教学内容:平均数

  二、教学目标:

  1、经历探索平均数的过程,学会寻找平均数的方法——移多补少、先总后分,理解平均数的含义。

  2、在运用平均数的知识解释简单的生活现象、解决简单的实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。

  三、教学重难点

  重点:理解平均数的含义。

  难点:会简单的求平均数的方法。

  四、教学准备 多媒体课件。

  五、教学过程

  (一)导入新授

  1、课件出示:

  今天,我们就来深度认识一下“平均数”这个朋友。 板书课题:平均数。

  (二)探索发现

  1、教学例1。

  (1)课件出示教材第90页例1统计图:

  红星小学每周都要开展“爱心回收站,争做环保小卫士”的活动,下面是环保小分队的四名同学收集的矿泉水瓶如下(课件出示统计图)。

  师:从统计图中,你能获得哪些数学信息?

  学生交流后反馈:从统计图中,可以知道:小红收集了14个,小兰收集了12个,小亮收集了11个,小明收集了15个。

  师:根据数学信息,你能提出什么数学问题?

  生:他们一共收集了多少个?

  小红比小兰多收集了几个? 平均每人收集了多少个?

  教师从学生提出的问题中选择 求平均数的'问题。

  (2)解决问题:平均每人收集了多少个矿泉水瓶?

  师:什么是平均?

  生:平均就是每个人一样多。

  师:你是怎样理解“平均每人收集多少个”的? 你会解决这个问题吗?如何解决?

  怎样操作才能使每个人收集的瓶子个数一样多呢?小组交流探讨。教师巡视指导。 (3)汇报展示。

  汇报预测: 方法一:移多补少,学生汇报,多媒体演示移多补少的过程。

  师:像这样,在总数不变的前提下,把多的矿泉水瓶移出来,补给少的,使得每个人的矿泉水瓶数量同样多,这种方法叫移多补少,得到的这个相等的数叫做这几个数的平均数。

  所以说13是14、12、11,15的平均数。

  方法二:如果不动手操作,你能算出他们的平均数吗?把你的想法写在练习本上。 根据总数量÷总份数=平均数,得;(14+12+11+15)÷4=52÷4=13(个)。

  (4)小结:我们可以用移多补少的方法求平均数;也可以用数据的总和除以数据的个数求出平均数。数据较少时,我们可以用移多补少的方法。数据较多时,用先求总数再求平均数的方法计算比较简便。

  (5)区分“平均分”和“平均数”

  教师追问:平均每人收集13个,是不是每个人真的都收集了13个?你是怎么理解“平均每人收集13个”这句话的? 师生交流后明确:“平均每人收集13个”表示每个人收集的数量可以比13个多,也可以比13个少,也可以刚好是13个。平均数是一个位于他们中间的数

  ①把52个矿泉水瓶平均分给4个人,每人分得几个?

  ②每人分到13个和平均每人收集13个,这两个“13”所表示的意义相同吗? 师生交流后小结:平均分是实实在在的量,平均数一组数据的平均值,是虚拟的量。

  2、教学例2。

  (三)巩固发散

  1、指导学生完成教材第92页“做一做”。

  学生独立完成,集体交流时说一说自己是如何求出平均数的。

  2、四(1)班学生参加植树活动,第一组种了180棵,第二组种了166棵,第三组种了149棵,平均每组种了多少棵?

  3、想一想:游泳池的平均水深是120厘米,小明身高130厘米,他在游泳池中学游泳,会不会有危险?为什么?

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  师生交流后总结:求平均数可以采用“移多补少”的方法,也可以先求几个数据的总和再除以这几个数的个数,所得的结果即为平均数。

  (五)板书设计

  六、教学后记 平均数

  求平均数的方法:1.数据较少:移多补少法 常用方法:总数÷份数=平均数

《平均数》教案13

  学习内容:

  教材43页例2,练习十一第4、5题

  学习目标:

  1、能熟练地求平均数

  2、会根据平均数简单地分析问题

  3、知道平均数能较好地反映一组数据的总体情况

  学习重点:

  根据平均数简单地分析问题

  学习难点:

  比较平均数,得出新的信息

  学习准备:

  统计图、记录卡、小黑板

  学习流程:

  一、导入

  什么是平均数,怎样求平均数?

  二、学习交流

  1、课件出示例2图片

  (1)从图片上你知道了哪些信息?

  (2)哪个队要高一些?

  (3)怎样才能知道哪个队高一些?

  点拨:观察事物不能光靠眼睛看,还要科学地算一算

  2、出示欢乐队和开心队身高记录表

  说一说你知道了哪些信息?

  小组内算一算两个队的平均身高,交流展示自己的算法

  (148+142+139+141+140)5

  =_____5

  =_____(厘米)

  (144+146+142+145+143)5

  =_____5

  =_____(厘米)

  3、比一比

  通过计算的`结果看出( )了要高一些

  点拨:平均数能较好地反映一组数据的总体情况。

  4、出示练习十一第4题

  (1)从统计图上你知道了什么?

  (2)哪种饼干第一季度月平均销售量多?多多少?

  (3)计算平均数,比一比

  5、猜测

  (1)哪种饼干销量越来越大?

  (2)分析原因。

  6、从统计图中你还得到什么信息?

  三、展现提升

  1、展示自己的学习收获。

  2、交流算法。

  3、提问、补充。

  四、达标测评

  练习十一第5题

  五、总结归纳

  1、通过今天的学习,你有什么收获?

  2、通过求平均数,我们还可以得到很多新的信息

《平均数》教案14

  教学目标:

  1、在具体问题情境中,感受求平均数是解决一些问题的需要,使学生进一步明确平均数的特点,丰富对平均数统计意义的理解和认识。

  2、能运用平均数解释简单生活现象,掌握平均数计算方法,学会计算简单的平均数。

  3、培养学生在解决实际问题过程中,进一步积累分析和处理数据的方法,发展学生的统计意识和观察。

  教学重点:

  在解决问题的过程中,理解平均数的意义,探索求平均数的方法,并体会到学习平均数的现实价值。

  教学难点:

  体会平均数在统计的意义上的'理解。

  一、创设情境,使学生产生需求

  1、凭直觉体验平均数的代表性

  师:咱们在美术课上学会了剪各种各样的窗花,上周有个班举行了剪五角星的比赛,这次比赛很激烈,你们想知道这次比赛的结果吗

  生:(齐)想!

  师:那么这节课老师就想把这次比赛的结果给大家说道说道,让大家帮老师参考参考。到底哪个小组该得冠军?

  生:(齐)好的

  师:剪纸班分成了四个小组,比赛就在这四个小组进行。首先是1小组,1小组有三个人,我呢就随便从这三个人中抽出了一个人。瞧,他一分钟剪了几个?生:5个。

  师:我用这个人的成绩代表1小组1人1分钟剪纸的一般水平,合不合理?如果你是我,你会同意我这样做吗?

  生:我不同意。万一其他人剪得比他多,那不是不输了。

  师:呵呵,当时老师就让其余2个同学也参加了比赛,有趣的事情是他们的比赛成绩很有意思

  (师出示后两次剪纸成绩:5个,5个)

  师:还真巧,现在你觉得用几表示1组1分钟剪纸的一般水平比较合理了呢?

  生:用5。

  师:为什么这回用5就行了?

  生:因为每个人都是在1分钟剪了5个,用5来表示他1分钟投中的个数最合适了。

  2、通过两组求平均数方法,强化对平均数的概念的理解。

  (第2组)师:说得有理!也就是说他们三个人剪纸剪得一样多,用5表示他们这1分钟的剪纸水平很合理。看着大家的剪纸水平产不多,在第二组我就随便点了一个参加比赛。我们也一起来看看

《平均数》教案15

  一、教学目标:

  1、使学生理解数据的权和加权平均数的概念

  2、使学生掌握加权平均数的计算方法

  3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

  二、重点、难点和难点突破的方法

  1、重点:会求加权平均数

  2、难点:对权的理解

  3、难点的突破方法:

  首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。

  在教材P136讨论栏目中要讨论充分、得当,排除学生常见的思维障碍。讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的.平均数计算公式生搬硬套。在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?

  通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。

【《平均数》教案】相关文章:

平均数教案02-06

《平均数》 教案03-18

《求平均数》教案03-05

平均数教案15篇02-06

《求平均数》教案14篇03-06

平均数四年级数学公开课12-25

教案中班教案02-23

教案幼儿中班教案02-15

小班教案小班教案03-10